首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shin SM  Kim Ky  Kim JK  Yoon SR  Choi I  Yang Y 《FEBS letters》2003,543(1-3):25-30
Dexamethasone and transforming growth factor-beta (TGF-beta) show contrary effects on differentiation of adipocytes. Dexamethasone stimulates adipocyte differentiation whereas TGF-beta inhibits it. In the present study, we investigated whether dexamethasone could reverse the TGF-beta-mediated inhibition of preadipocyte differentiation. Primary rat preadipocytes, obtained from Sprague-Dawley rats, were pretreated with dexamethasone in the presence or absence of TGF-beta, prior to the induction of differentiation. Co-treatment of dexamethasone and TGF-beta before inducing differentiation reversed the TGF-beta-mediated inhibition of preadipocyte differentiation. In order to elucidate the mechanism by which dexamethasone reversed the effect of TGF-beta on the inhibition of preadipocyte differentiation, the expression of CCAAT/enhancer binding protein-alpha (C/EBPalpha) and peroxisome proliferator-activated receptor gamma (PPARgamma) was examined. Dexamethasone increased C/EBPalpha and PPARgamma expression in the absence of TGF-beta and also recovered the TGF-beta-mediated suppression of C/EBPalpha expression in preadipocytes. Its effect was sustained in differentiated adipocytes as well. However, those effects were not observed in 3T3-L1 preadipocytes or differentiated adipocytes. These results indicate that dexamethasone reverses the TGF-beta-mediated suppression of adipocyte differentiation by regulating the expression of C/EBPalpha and PPARgamma, which is dependent on the cellular context.  相似文献   

2.
We evaluated whether dexamethasone augments the osteogenic capability of bone marrow-derived stromal cells (BMSCs) and muscle tissue-derived stromal cells (MuSCs), both of which are thought to contribute to ectopic bone formation induced by bone morphogenetic protein-2 (BMP-2), and determined the underlying mechanisms. Rat BMSCs and MuSCs were cultured in growth media with or without 10-7 M dexamethasone and then differentiated under osteogenic conditions with dexamethasone and BMP-2. The effects of dexamethasone on cell proliferation and osteogenic differentiation, and also on ectopic bone formation induced by BMP-2, were analyzed. Dexamethasone affected not only the proliferation rate but also the subpopulation composition of BMSCs and MuSCs, and subsequently augmented their osteogenic capacity during osteogenic differentiation. During osteogenic induction by BMP-2, dexamethasone also markedly affected cell proliferation in both BMSCs and MuSCs. In an in vivo ectopic bone formation model, bone formation in muscle-implanted scaffolds containing dexamethasone and BMP-2 was more than two fold higher than that in scaffolds containing BMP-2 alone. Our results suggest that dexamethasone potently enhances the osteogenic capability of BMP-2 and may thus decrease the quantity of BMP-2 required for clinical application, thereby reducing the complications caused by excessive doses of BMP-2.Highlights: 1. Dexamethasone induced selective proliferation of bone marrow- and muscle-derived cells with higher differentiation potential. 2. Dexamethasone enhanced the osteogenic capability of bone marrow- and muscle-derived cells by altering the subpopulation composition. 3. Dexamethasone augmented ectopic bone formation induced by bone morphogenetic protein-2.  相似文献   

3.
The 3T3-F442A preadipocyte cell line was previously shown to possess specific glucocorticoid receptors whose number increased in the time course of differentiation. We have examined the effects of a three day dexamethasone treatment, added at confluence, on cells differentiated in the presence or absence of insulin. Triglyceride accumulation, polyamine content as well as glycerophosphate dehydrogenase and fatty acid synthetase activities were measured during the adipose conversion. We have also determined 2-deoxyglucose uptake in non-differentiated and differentiated cells. Dexamethasone was shown to decrease the adipose conversion by 3T3-F442A cells in the presence or absence of insulin. Intracellular spermidine content in differentiating cells was sensitive to dexamethasone and insulin in the same way as an enzymatic marker of terminal differentiation, glycerophosphate dehydrogenase. Dexamethasone decreases the 2 deoxyglucose uptake in non-differentiated and differentiated cells while insulin increases this uptake only in differentiated cells. This work shows that glucocorticoids inhibit adipocyte metabolism at distinct levels and suggests that these hormones might play an important role in the regulation of adipose tissue mass.Abbreviations DEX dexamethasone - FAS fatty acid synthetase - GPDH glycerophosphate dehydrogenase - MIX 1-methyl-3-isobutylxanthine  相似文献   

4.
5.
Tumor necrosis factor (TNF), interleukin-1 (IL-1), and epidermal growth factor (EGF) were mitogenic for human diploid FS-4 fibroblasts. Dexamethasone amplified the growth-stimulating action of all three agents. Amplification of the growth-stimulating action was maximal when dexamethasone was added along with TNF or EGF; no amplification was seen if the addition of dexamethasone was delayed for more than 3 hr. Prolonged simultaneous treatment with TNF and EGF resulted in less growth stimulation than treatment with EGF alone. Dexamethasone abolished this apparent antagonistic interaction between TNF and EGF. Dexamethasone also inhibited the antiviral action of TNF against encephalomyocarditis (EMC) virus in FS-4 cells. TNF and IL-1 increased the steady state level of interferon (IFN)-beta 2 mRNA but failed to induce detectable levels of IFN-beta 1 mRNA in FS-4 cells. Dexamethasone inhibited the increase of IFN-beta 2 mRNA levels by IL-1 or TNF. Inhibition of IFN-beta synthesis is likely to be responsible for the inhibition of the TNF-induced antiviral state by dexamethasone. Since IFNs suppress cell growth, inhibition of endogenous IFN-beta synthesis may also be responsible for the amplification by dexamethasone of the growth-stimulating action of TNF and IL-1. Amplification of the mitogenic action of EGF by dexamethasone appears to be mediated by different mechanism.  相似文献   

6.
The regulation of chromogranin A mRNA was examined in PC12 cells after treatment with nerve growth factor, dexamethasone, or a combination of the two agents. PC12 cells have low levels of chromogranin A mRNA, and this does not change upon treatment with nerve growth factor. Dexamethasone treatment of these cells results in a 4-fold increase in the amount of chromogranin A mRNA. The dexamethasone-stimulated increase in chromogranin A mRNA is not apparent until at least 16 h after the addition of the drug and is maintained only with continuous culture in the presence of the drug. Dexamethasone and nerve growth factor together increase chromogranin A mRNA to the level seen with dexamethasone alone. Immunohistochemistry shows a similar pattern of protein accumulation within individual cells. Chromogranin B mRNA levels are unaltered by any of the drug treatments described. Treatment with dexamethasone plus NGF seems to be required for full expression of the adrenergic, neuronal phenotype in PC12 cells. Measurement of chromogranin A mRNA provides more specific delineation of neural differentiation and how it is influenced by hormones and growth factors.  相似文献   

7.
8.
The newly evolved field of regenerative medicine is offering solutions in the treatment of bone or cartilage loss and deficiency. Mesenchymal stem cells, as well as articular chondrocytes, are potential cells for the generation of bone or cartilage. The natural mechanism of bone formation is that of endochondral ossification, regulated, among other factors, through the hormones dexamethasone and triiodothyronine. We investigated the effects of these hormones on articular chondrocytes and chondrogenically differentiated mesenchymal stem cells, hypothesizing that these hormones would induce terminal differentiation, with chondrocytes and differentiated stem cells being similar in their response. Using a 3D-alginate cell culture model, bovine chondrocytes and chondrogenically differentiated stem cells were cultured in presence of triiodothyronine or dexamethasone, and cell proliferation and extracellular matrix production were investigated. Collagen mRNA expression was measured by real-time PCR. Col X mRNA and alkaline phosphatase were monitored as markers of terminal differentiation, a prerequisite of endochondral ossification. The alginate culture system worked well, both for the culture of chondrocytes and for the chondrogenic differentiation of mesenchymal stem cells. Dexamethasone led to an increase in glycosaminoglycan production. Triiodothyronine increased the total collagen production only in chondrocytes, where it also induced signs of terminal differentiation, increasing both collagen X mRNA and alkaline phosphatase activity. Dexamethasone induced terminal differentiation in the differentiated stem cells. The immature articular chondrocytes used in this study seem to be able to undergo terminal differentiation, pointing to their possible role in the onset of degenerative osteoarthritis, as well as their potential for a cell source in bone tissue engineering. When chondrocyte-like cells, after their differentiation, can indeed be moved on towards terminal differentiation, they can be used to generate a model of endochondral ossification, but this limitation must be kept in mind when using them in cartilage tissue engineering application.  相似文献   

9.
Human blood monocytes in culture differentiate to macrophagelike cells within 1 week. Coinciding with this morphological transition the cells started releasing increasing amounts of the serine proteinase plasminogen activator (PA; Mr 56,000) of the urokinase (u-PA) type and the proteinase inhibitor alpha-2-macroglobulin (alpha 2M). Unlike the cell-associated PA activity, which was also readily detected in fresh monocytes, the activity secreted into the serum-free culture medium could be measured only after treatment of the samples with sodium dodecyl sulphate. Heat or acid treatment of the medium was not sufficient to reveal the PA activity, suggesting that, apart from alpha 2M, another PA-inhibiting substance was present in the culture medium. The inhibitor (Mr 65,000) was found to be synthesized by macrophages and specifically inhibited u-PA activity but not tissue-type PA (t-PA) or plasmin activity. Dexamethasone decreased the secretion of PA by differentiated macrophages without affecting the production of alpha 2M or the PA inhibitor. Dexamethasone also inhibited the morphological differentiation of the cells when added to the monocyte-phase cells.  相似文献   

10.
Glucocorticoids induce circadian gene expression in cultured cells and change the phase of circadian gene expression in vivo. In addition, glucocorticoids induce differentiation of preadipocyte to adipocytes. We set out to test the effect of dexamethasone, a glucocorticoid receptor agonist, on circadian rhythms in 3T3-L1 differentiated adipocytes. Our results show that differentiated adipocytes exhibit robust circadian rhythms without dexamethasone. Dexamethasone induces phase changes and increases the amplitude of circadian gene expression in nondifferentiated 3T3-L1 preadipocytes. However, dexamethasone had an opposite effect on differentiated adipocytes, leading to low-amplitude circadian expression. In conclusion, although glucocorticoids reset circadian rhythms, once rhythms are reset, glucocorticoid administration hinders circadian expression.  相似文献   

11.
Hepatocyte DNA synthesis, initiated by epidermal growth factor (EGF), is reversibly inhibited by 2% dimethyl sulfoxide (DMSO). At that concentration, both the survival of the cells in culture and the expression of differentiated functions are prolonged. DMSO does not affect thymidine uptake or EGF receptor binding. Moreover, EGF receptor binding is maintained at 84% of initial 12 hr binding when cells are cultured for several days in the presence of DMSO, whereas specific receptor binding declines to 49% of initial binding under standard culture conditions without DMSO. Studies of hepatocyte functional activity indicate that, during early culture, total cellular export protein synthesis, specific albumin synthesis, and glycogen synthesis are enhanced in the presence of DMSO. Dexamethasone is required for the effect of DMSO on survival, and although dexamethasone alone enhances hepatocyte DNA synthesis in the presence of EGF, it does not reverse the inhibitory effect of 2% DMSO on DNA replication. The correlation of prolonged survival with growth inhibition supports the hypothesis that hepatic growth and differentiated functional activity may be reciprocally regulated.  相似文献   

12.
The stable adipogenic cell line TA1 was investigated as a potential in vitro system to examine effects of beta-adrenergic agonists on lipid metabolism at the cellular level. Initial experiments were conducted to establish whether dexamethasone, indomethacin, or both in combination induce rapid differentiation of TA1 preadipocytes to adipocytes. Based on activity of fatty acid synthase, dexamethasone and indomethacin, individually and in combination, were observed to induce differentiation in TA1 cells at different rates (dexamethasone/indomethacin greater than indomethacin greater than dexamethasone). Dexamethasone/indomethacin induced complete differentiation in TA1 cells 4 days after confluence, as indicated by increased activity of fatty acid synthase, glycerol-3-phosphate dehydrogenase, and malic enzyme. Finally, mature TA1 adipocytes were treated with various concentrations of isoproterenol and ractopamine to determine the responsiveness of TA1 adipocytes to a beta-adrenergic challenge. Glycerol release was increased and fatty acid synthase activity was decreased in a dose-dependent manner for both isoproterenol and ractopamine. These results indicate that fully differentiated TA1 adipocytes may be useful to study direct cellular effects of lipolytic and lipogenic agents on lipid metabolism.  相似文献   

13.
14.
(1) The growth of 7800 C1 Morris hepatoma cells was inhibited by dexamethasone. The inhibition was detectable at 1 nM and half-maximal effect was obtained with approx. 13 nM dexamethasone. About 80% growth inhibition was obtained with 250 nM of the hormone and the growth rate was normalized on cessation of treatment. (2) These hepatoma cells contain dexamethasone receptors with equilibrium dissociation constant of 0.24 nM and a capacity of 24 fmol/mg cell protein. Treatment of the cells with insulin did not change these dexamethasone binding properties. Binding experiments showed that 2, 10 and 100% of the receptors were occupied when the cells were incubated with 1 nM, 7 nM and 250 nM dexamethasone, respectively. (3) Insulin completely counteracted the growth inhibition by dexamethasone and antagonized the induction of peroxisomal acyl-CoA oxidase and tyrosine aminotransferase caused by the glucocorticoid. (4) Micro-flow fluorometry showed that the cultures had a major diploid DNA stem line and a minor tetraploid stem line. Changes in diploid, tetraploid and S phase cells of the diploid stem line were scored. Dexamethasone reduced the proportion of cells in S phase and of tetraploid cells. Insulin partly reversed the action of dexamethasone in S phase, but prevented the reduction in tetraploid cells caused by dexamethasone. (5) The mitotic rate was significantly reduced by dexamethasone and this effect was reversed by insulin. (6) Continuous [3H]methyl-thymidine labelling showed a growth fraction of unity in all treatment groups. (7) It is concluded that dexamethasone induces growth inhibition by reducing the G1-S transition. Insulin is able to counteract this effect and increase the rate of DNA synthesis.  相似文献   

15.
16.
Inhibitors of phosphodiesterase, papaverine, 4-(3-butoxy-4-methoxybenzyl)-2 imidazolidinone (RO 20-1724) and 4-(3,4-dimethoxybenzyl)-2-imidazolidinone (RO-7-2956) induce morphological differentiation of mouse neuroblastoma cells in culture as shown by the formation of axon-like processes. These differentiated cells showed morphological maturation as revealed by an increase in the size of soma and nucleus. On removal of papaverine and re-addition of fresh growth medium 1 day after treatment, the morphological differentiation was reversible; however, when the drug was removed 3 days after treatment, the morphological differentiation for the most part was irreversible. Although a maximal differentiation of cells was seen 24 h after papaverine treatment, a maximal inhibition of cell division was observed 2 days after treatment. This observation further supports the hypothesis that the inhibition of cell division may be secondary to the induction of differentiation.  相似文献   

17.
Preadipocyte Factor 1 (Pref-1), also known as Delta-like Protein 1 (DLK-1) is an epidermal growth factor-like domain-containing trans-membrane protein that is involved in adipogenesis and cell fate decision. Its function in adipogenesis is reported inconsistently based on different cellular model systems. Here, by using human mesenchymal stem cells (MSCs), we show that Pref-1 is modulated by both dexamethasone and 3-isobutyl-1methylxanthine (IBMX), two components of the adipogenic induction mixture during the adipogenesis in vitro. IBMX induces the expression of Pref-1 in a time- and dose-dependent manner through cyclic AMP and cyclic GMP independent pathway and attenuates adipocyte differentiation by down-regulating PPARγ (peroxisome proliferator activated receptor gamma) expression. Dexamethasone, on the other hand, is capable of subduing the inhibitory effect of IBMX-induced Pref-1 and initiating the adipogenesis by up-regulating PPARγ expression. Moreover, the treatment of IBMX or dexamethasone alone fails to develop MSCs into mature adipocytes, however, treating cells with both IBMX and dexamethasone leads to a complete adipocyte differentiation as evaluated by lipid-droplet formation. Taken together, our study demonstrates that IBMX accelerates accumulation of lipid in MSCs only under the circumstance that the negative effect of Pref-1 induced by IBMX on the adipogenesis is overcome by dexamethasone.  相似文献   

18.
Background: A combination therapy with immune checkpoint inhibitors (ICIs) and platinum-based chemotherapy has become the first-line treatment for recurrent or metastatic head and neck squamous carcinoma (HNSCC). Although steroids are often used as anti-emetic medications during chemotherapy, their adverse effects on immune-combined chemotherapy are unclear in HNSCC.Methods: The effects of dexamethasone on tumor growth and immune cell population were evaluated in a mouse HNSCC model treated with PD-1 blockade combined with cisplatin. The effect of various doses of dexamethasone on cell proliferation, survival, surface markers, IFN-γ production, and antitumor effects in antigen-specific T cells was examined in vitro. The recovery of T cell dysfunction by IL-2 was assessed in vitro and in vivo.Results: In a mouse HNSCC model, dexamethasone showed limited antitumor effects on immunochemotherapy. Dexamethasone decreased the number of T cells and inhibited T cell differentiation into effector and central memory T cells. In the in vitro assessment, dexamethasone induced cell death, limited proliferation, and reduced the reactivity against HNSCC cell lines of antigen-specific T cells in a dose-dependent manner. The expression of inhibitory receptors on T cells was not affected by steroids. This inhibition was recovered by IL-2 and IL-2/anti-IL-2 complexes (IL-2 Cx) in vitro and in vivo, respectively.Conclusion: Our preclinical data indicate that dexamethasone diminishes the antitumor effects of immunochemotherapy in patients with HNSCC. IL-2 Cx recovered the inhibition of antitumor immunity by steroids and might be a potent immune adjuvant for patients who require steroids during PD-1 blockade and chemotherapy.  相似文献   

19.
A preadipocyte cell population isolated from the inguinal tissue of 3-day-old rats converts at confluence into mature adipocytes when cultured with insulin (10(-9) M). Insulin is necessary only from Day 4 postplating. If the addition of insulin is further delayed, the proportion of cells which will undergo adipose conversion decreases. A loss of the differentiation competence is also observed when the cells are allowed to proliferate (seeding at a low density in a serum containing medium). A preexposure of the primary cells to dexamethasone during the insulin-insensitive period (Days 0-4) accelerates the subsequent "insulin-dependent" adipose conversion. In order to produce its effect, dexamethasone needs only to be present for 4 h on Day 2 postplating. The effect of dexamethasone is probably due neither to inhibition of cell proliferation nor to induction of the cell content of insulin receptors. The evolution of G3PDH enzyme activity as well as of G3PDH protein and mRNA was used as an indicator of the differentiation process. The enzyme accumulates to a low extent during culture in the absence of insulin. When insulin is present, the enzyme level is dramatically increased (maximum on Day 11). Dexamethasone pretreatment (Days 0-4, or 4 h on Day 2) accelerated the G3PDH enzyme activity increase as well as protein and mRNA accumulation. This was also true in cells maintained in insulin-free medium; however, in this case, the increase in the enzyme activity was limited to the first 8 days of culture and full differentiation did not take place. We conclude that: (1) the rat preadipocytes are committed to differentiate, requiring insulin as a sufficient physiological stimulus; (2) the differentiation program is progressively lost after greater than 4 days of culture without insulin and more rapidly if the cells are allowed to undergo divisions; and (3) dexamethasone accelerates the insulin-dependent adipose conversion but alone does not ensure the complete differentiation process.  相似文献   

20.
The human undifferentiated histiocytic cell-line U937 can be induced to differentiate by incubation with 12-0-tetradecanoylphorbol-13-acetate (TPA) into macrophage-like cells. Dexamethasone reduced the prostaglandin production in TPA-differentiated U937 cells dose dependently, whereas undifferentiated U937 cells were dexamethasone insensitive. Concomitantly phospholipase A2, the enzyme liberating the prostaglandin precursor arachidonic acid, was inhibited by dexamethasone in TPA-differentiated but not in undifferentiated U937 cells. The activity of lysophosphatide acyltransferase, the key enzyme of fatty acid reacylation into phospholipids, remained unchanged both in undifferentiated and TPA-differentiated U937 cells. The data suggest that responsiveness to glucocorticoid-dependent regulation of prostanoid synthesis is acquired by cells of the monocyte-macrophage lineage late in differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号