首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prozorov AA 《Mikrobiologiia》2007,76(4):437-447
The review considers the results of genomic research performed over the last decade that shed light on the location in the bacterial chromosomes of genes having different functions. A tendency towards polarity of the chromosome composition is observed: vitally important genes tend to be concentrated in the region of replication origin (oriC), and their concentration decreases toward the region of replication termination (terC). An oppositely directed polarity (an increase near the terC region) is observed for the distribution of certain oligonucleotides involved in the process of chromosome recombination and segregation.  相似文献   

2.
From a library of Bacillus subtilis DNA cloned with the Escherichia coli cosmid vector pHC79, 85 recombinant cosmids containing DNA from near the replication terminus, terC, were identified. The DNA inserts of these cosmids were confined to three regions of a 350-kilobase segment of the chromosome extending from the left end of the SP beta prophage to approximately 75 kilobases on the right of terC. All B. subtilis genes known to reside in this segment, as well as the portion of the SP beta prophage that is expressed early in the lytic cycle of the phage, appeared to be absent from the library. A region of SP beta homology distinct from the prophage and just to the left of terC was identified.  相似文献   

3.
We have studies the phenotypic suppression of a dnaA46 mutation by plasmid integration at preselected chromosomal sites after introducing homologous sequences (Mu prophages) onto both the chromosomes and the suppressive plasmid. The plasmids used were all derived from plasmid R100.1. We found that the conditions required to get viable suppressive integration varied as the plasmid integration site moved from the origin to the terminus of chromosome replication. Two constraints were observed. Both appeared to be linked to the new characteristics acquired by chromosome replication from the integrated plasmid. One constraint was that strains with integrative suppression near the terminus terC were viable only in minimal medium. The rich medium sensitivity of these strains was correlated with a loss of regulation of initiation. The other constraint was a requirement for a specific orientation in certain regions of the chromosome. The two branches defined by normally initiated replication, between oriC and terC, were also symmetrical with respect to these plasmid orientation constraints. In studying the possible reasons for a plasmid orientation constraint, we found that, of the two forks initiated in bidirectional replication from the integrated plasmid, one was capable of moving across the terC region with a higher movability than the other.  相似文献   

4.
T Jiang  Y N Min  W Liu  D D Womble    R H Rownd 《Journal of bacteriology》1993,175(17):5350-5358
Mutants of IncFII plasmid NR1 that have transposons inserted in the repA4 open reading frame (ORF) are not inherited stably. The repA4 ORF is located immediately downstream from the replication origin (ori). The repA4 coding region contains inverted-repeat sequences that are homologous to the terC inverted repeats located in the replication terminus of the Escherichia coli chromosome. The site of initiation of leading-strand synthesis for replication of NR1 is also located in repA4 near its 3' end. Transposon insertions between ori and the right-hand terC repeat resulted in plasmid instability, whereas transposon insertions farther downstream did not. Derivatives that contained a 35-bp frameshift insertion in the repA4 ORF were all stable, even when the frameshift was located very near the 5' end of the coding region. This finding indicates that repA4 does not specify a protein product that is essential for plasmid stability. Examination of mutants having a nest of deletions with endpoints in or near repA4 indicated that the 3' end of the repA4 coding region and the site of leading-strand initiation could be deleted without appreciable effect on plasmid stability. Deletion of the pemI and pemK genes, located farther downstream from repA4 and reported to affect plasmid stability, also had no detectable effect. In contrast, mutants from which the right-hand terC repeat, or both right- and left-hand repeats, had been deleted were unstable. None of the insertion or deletion mutations in or near repA4 affected plasmid copy number. Alteration of the terC repeats by site-directed mutagenesis had little effect on plasmid stability. Plasmid stability was not affected by a fus mutation known to inactivate the termination function. Therefore, it appears that the overall integrity of the repA4 region is more important for stable maintenance of plasmid NR1 than are any of the individual known features found in this region.  相似文献   

5.
The small basic protein encoded by the open reading frame adjacent to the terC site in the Bacillus subtilis chromosome and previously implicated in termination of the replication process was purified. Band retardation assays established that this protein (now called the replication terminator protein, encoded by the rtp gene) binds specifically to a 209-base-pair fragment of DNA within which terC is located.  相似文献   

6.
The sequence of 1267 nucleotides spanning the replication terminus, terC, of the Bacillus subtilis 168 chromosome has been determined. The site of arrest of the clockwise fork, which defines terC, has been localized to a 30-nucleotide portion (approximately) within this sequence. The arrest site occurs in an A + T-rich region between two open reading frames and very close to one of two imperfect inverted repeats (47-48 nucleotides each) which are separated by 59 nucleotides. The closeness of approach of the arrested clockwise fork to the first imperfect inverted repeat encountered in this region raises the possibility of a role for the inverted repeats in the mechanism of fork arrest.  相似文献   

7.
M T Smith  C Aynsley  R G Wake 《Gene》1985,38(1-3):9-17
A 10.9-kb segment of the Bacillus subtilis 168 chromosome has been cloned in an Escherichia coli plasmid and shown to contain terC (the replication terminus of the chromosome). The terC-containing portion of this plasmid has been subcloned within each of two overlapping fragments of DNA, 1.75 and 1.95 kb, again in E. coli plasmids. These have afforded a more precise definition of the location of terC in the B. subtilis chromosome and provided material for a detailed analysis of the structure and functioning of this site.  相似文献   

8.
The replication terminus region of the Bacillus subtilis chromosome, comprising TerI and TerII plus the rtp gene (referred to as the terC region) was relocated to serC (257 degrees) and cym (10 degrees) on the anticlockwise- and clockwise-replicating segments of the chromosome, respectively. In both cases, it was found that only the orientation of the terC region that placed TerI in opposition to the approaching replication fork was functional in fork arrest. When TerII was opposed to the approaching fork, it was nonfunctional. These findings confirm and extend earlier work which involved relocations to only the clockwise-replicating segment, at metD (100 degrees) and pyr (139 degrees). In the present work, it was further shown that in the strain in which TerII was opposed to an approaching fork at metD, overproduction of the replication terminator protein (RTP) enabled TerII to function as an arrest site. Thus, chromosomal TerII is nonfunctional in arrest in vivo because of a limiting level of RTP. Marker frequency analysis showed that TerI at both cym and metD caused only transient arrest of a replication fork. Arrest appeared to be more severe in the latter situation and caused the two forks to meet at approximately 145 degrees (just outside or on the edge of the replication fork trap). The minimum pause time erected by TerI at metD was calculated to be approximately 40% of the time taken to complete a round of replication. This significant pause at metD caused the cells to become elongated, indicating that cell division was delayed. Further work is needed to establish the immediate cause of the delay in division.  相似文献   

9.
10.
T R Magee  T Asai  D Malka    T Kogoma 《The EMBO journal》1992,11(11):4219-4225
  相似文献   

11.
M T Smith  R G Wake 《Gene》1989,85(1):187-192
It was earlier proposed that clockwise replication fork arrest at the chromosome terminus in Bacillus subtilis is dependent upon expression of the rtp gene adjacent to the site of arrest, terC [Smith and Wake, J. Bacteriol. 170 (1988) 4083-4090]. A merodiploid strain of B. subtilis, in which rtp was placed under the control of the IPTG-inducible spac-1 promoter, was constructed. Replication fork arrest at terC, as monitored by the level of a forked DNA molecule of predicted dimensions, was shown to be dependent upon IPTG-induced expression of rtp in this strain. The very low concentration of IPTG needed to induce a substantial level of fork arrest suggests that relatively little RTP, the protein product of rtp, is needed for fork arrest at terC.  相似文献   

12.
The Bacillus subtilis strains CU1693, CU1694 and CU1695 were shown by hybridization analysis to carry large deletions of the terminus region that originated within discrete fragments of the SP beta prophage genome. The absence of terC in CU1693 was demonstrated definitively by the identification of a novel junction fragment comprising SP beta DNA and DNA that lies on the other side of terC in the parent strain. This represented the deletion of approximately 230 kb of CU1693 DNA, with the removal of approximately 150 kb to the left of terC and approximately 80 kb to the right of terC. The lack of hybridization of CU1694 and CU1695 DNA to cloned DNA carrying the terC sequence and to cloned DNAs flanking terC suggested that terC is absent from the chromosome of each of these strains also, and that the deletions in CU1694 and CU1695 extend beyond the segment of the terminus region that has been mapped and cloned. The normal growth rate and morphology of CU1693, CU1694 and CU1695 relative to the parent strain when grown in complex medium indicated dispensability of terC for vegetative growth and division. B. subtilis SU153 was constructed using a specific deletion-insertion vector that was designed to effect the deletion of 11.2kb of DNA spanning terC, with the removal of approximately 9.7kb to the left of terC and approximately 1.kb to the right of terC. This manipulation did not introduce any readily detectable auxotrophic requirement. Physiological characterization of SU153 confirmed the dispensability of terC for vegetative growth and cell division, and also established the lack of requirement of terC for the specialized cell division that is associated with formation of the bacterial endospore.  相似文献   

13.
Cloned DNA from the replication terminus region of Bacillus subtilis 168 was used to identify and construct a restriction map of the homologous region in B. subtilis W23. With this information, DNA from the terminus region of W23 was cloned and the sequence was determined for a 1,499-base-pair segment spanning the expected terC site. The position of the site was then located more precisely. Use of the cloned DNA from strain W23 as a probe for digests of DNA from exponentially growing cells of the same strain established the presence of the slowly migrating replication termination intermediate (forked DNA). The orientation and dimensions of the forked molecule were consistent with arrest of the clockwise fork at the terC site in W23, as has been shown to occur in strain 168. Thus, despite significant differences between the two strains, the same termination mechanism appears to be used. The DNA sequences spanning the terC site in strains 168 and W23 showed a high level of homology (90.2%) close to the site but very little at a distance of approximately 250 base pairs from the site in one particular direction. The overall sequence comparison emphasised the importance of the open reading frame for a 122-amino-acid protein adjacent to terC. Although there were 22 base differences in the open reading frames between the strains, the amino acid sequence of the encoded protein was completely conserved. It is suggested that the amino acid sequence conservation reflects a role for the protein in the clockwise fork arrest mechanism as proposed earlier (M.T. Smith and R.G. Wake, J. Bacteriol. 170:4083-4090, 1988).  相似文献   

14.
The Escherichia coli strain PLK1427 (Henson, Kopp, Kuempel, 1984) was used in this work. It carries a deletion of 60 thousand pairs of nucleotides in the chromosomal region 30-31 min and a partially deleted prophage lambda rev cI875Sam7 integrated into the 30 min region, instead of the rac prophage. Among the mutants of PLK1427 strain selected for resistance to 42 degrees C, deletions extending about 4 min and affecting the loci nirR (29.3 min), zdc235::Tn10 (32.3 min) and zdd230::Tn9 (33.3 min) were found. Although the deletion mutants obtained affect the region of replication termination (terC) of the chromosome, they have no alterations in the growth rate. It was demonstrated that some deletions may be transferred and are capable of recombination, giving the wild type in transductional experiments with the mutant phage T4.  相似文献   

15.
16.
The terminus regions of the chromosomes of three strains of Bacillus subtilis 168 were radioactively labelled by supplying [3H]thymine towards the end of a round of replication. These strains lacked or contained the prophage SP beta c2. Following restriction endonuclease digestion of the purified DNA and fluorography, an SP beta c2-related perturbation of the terminus-labelling profile was observed, which was completely consistent with the previously suggested existence of an impediment to replication fork movement (terC) within a BamHI 24.8 X 10(3) base fragment (Weiss & Wake, 1983). The present data suggest that terC is located within the 11.4 X 10(3) base BamHI + SalI double-digest portion of this BamHI fragment.  相似文献   

17.
T Kobayashi  M Hidaka    T Horiuchi 《The EMBO journal》1989,8(8):2435-2441
Activity binding specifically to the 22 bp of the DNA replication terminus (ter) sequence on plasmid R6K and the Escherichia coli genome was detected in the crude extract of E. coli cells. This activity was inactivated by heat or by protease but not by RNase treatments. Overproduction of the ter binding activity was observed when the extract was prepared from the cell carrying a plasmid with a chromosomal-derived 5.0 kb EcoRI fragment, on which one of the four terC sites, terC2, was also located. By mutagenesis of the 5.0 kb fragment on the plasmid with transposon Tn3 and subsequent replacement of the corresponding chromosomal region with the resulting mutant alleles, we isolated tau- mutants completely defective in ter binding activity. These mutants simultaneously lost the activity to block the progress of the DNA replication fork at any ter site, on the genome or the plasmid. It would thus appear that the ter binding protein plays an essential role in the termination reaction, at the ter sites.  相似文献   

18.
The DNA sequence limits of the leading and lagging strands in the arrested clockwise replication fork at the terminus of the Bacillus subtilis chromosome have been investigated. On the basis of hybridization to synthetic oligonucleotides corresponding to known positions in the terminus region sequence it has been shown that neither the leading nor lagging strands, as they approach terC, traverse the distal inverted repeat, IRI. But a small fraction of the leading strands pass through the proximal inverted repeat, IRII. This is consistent with IRI being the functional inverted repeat in arresting the clockwise fork. But most of the forks appear to stop at least 100 nucleotides short of IRI, and at various positions extending over a distance of at least 100 nucleotides.  相似文献   

19.
We investigated the Escherichia coli mutants carrying the parB, parA, and gyrB mutations, all of which display faulty chromosome partitioning at the nonpermissive temperature, to see whether their phenotype reflected a defect in the termination of DNA replication. In the parB strain DNA synthesis slowed down at 42 degrees C and the SOS response was induced, whereas in the parA strain DNA synthesis continued normally for 120 min and there was no SOS induction. To see whether replication forks accumulated in the vicinity of terC at the nonpermissive temperature, the mutants were incubated for 60 min at 42 degrees C and then returned to low temperature and pulse-labeled with [3H]thymidine. In all cases the restriction pattern of the labeled DNA was incompatible with that of the terC region, suggesting that replication termination was normal. In the parA mutant no DNA sequences were preferentially labeled, whereas in the parB and gyrB strains there was specific labeling of sequences whose restriction pattern resembled that of oriC. In the case of parB this was confirmed by DNA-DNA hybridization with appropriate probes. This test further revealed that the parB mutant over initiates at oriC after the return to the permissive temperature. Like dna(Ts) strains, the parB mutant formed filaments at 42 degrees C in the absence of SOS-associated division inhibition, accompanied by the appearance of anucleate cells of nearly normal size (28% of the population after 3 h), as revealed by autoradiography. The DNA in the filaments was either centrally located or distributed throughout. The parB mutation lies at 67 min, and the ParB- phenotype is corrected by a cloned dnaG gene or by a plasmid primase, strongly suggesting that parB is an allele of dnaG, the structural gene of the E. coli primase. It is thus likely that the parB mutant possesses an altered primase which does not affect replication termination but causes a partial defect in replication initiation and elongation and in chromosome distribution.  相似文献   

20.
Bacterial cells are much smaller and have a much simpler overall structure and organization than eukaryotes. Several prominent differences in cell organization are relevant to the mechanisms of chromosome segregation, particularly the lack of an overt chromosome condensation/decondensation cycle and the lack of a microtubule-based spindle. Although bacterial chromosomes have a rather dispersed appearance, they nevertheless have an underlying high level of spatial organization. During the DNA replication cycle, early replicated (oriC) regions are localized towards the cell poles, whereas the late replicated terminus (terC) region is medially located. This spatial organization is thought to be driven by an active segregation mechanism that separates the sister chromosomes continuously as replication proceeds. Comparisons of various well-characterized bacteria suggest that the mechanisms of chromosome segregation are likely to be diverse, and that in many bacteria, multiple overlapping mechanisms may contribute to efficient segregation. One system in which the molecular mechanisms of chromosome segregation are beginning to be elucidated is that of sporulating cells of Bacillus subtilis. The key components of this system have been identified, and their functions are understood, in outline. Although this system appears to be specialized, most of the functions are conserved widely throughout the bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号