首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bovine brain contains two calmodulin-dependent phosphodiesterase kinases which are separated on Sephacryl S-300 column. One of these kinases has been purified to homogeneity and shown to belong to the calmodulin-dependent protein kinase II family. Phosphorylation of the 63 kDa phosphodiesterase by this purified protein kinase results in the incorporation of 1.0 mol phosphate per mol subunit and an accompanying increase in Ca2+ concentrations required for the phosphodiesterase activation by calmodulin. The protein kinase undergoes autophosphorylation to incorporate 1.0 mol phosphate per mol of subunit of the enzyme and the autophosphorylated enzyme is active, independent of the presence of Ca2+. The autophosphorylation reaction as well as the protein kinase reaction are rendered Ca2+ independent in less than 15 seconds when approximately one mol phosphate per mol protein kinase is incorporated. The result suggests that activation of phosphodiesterase phosphorylation reaction may occur prior to the activation of phosphodiesterase and phosphatase during a cell Ca2+ flux via the protein kinase autophosphorylation mechanism.Abbreviations SDS sodium dodecyl sulfate - EGTA ethylene glycol bis (-aminoethyl ether) - N,N,N,N tetra acetic acid - EDTA ethylenediamine-tetraacetic acid - cAMP cyclic adenosine 35 monophosphate This work is supported by grants from the Medical Research Council of Canada (JHW), the Heart and Stroke Foundation of Alberta (JHW and RKS) and the Heart and Stroke Foundation of Saskatchewan (RKS)  相似文献   

2.
Bovine brain contains two major calmodulin (CaM) dependent phosphodiesterase isozymes which are homodimeric proteins with subunit molecular masses of 60 and 63 kilodaltons (kDa), respectively. The 60-kDa subunit isozyme can be phosphorylated by cAMP-dependent protein kinase, resulting in a decrease in the enzyme affinity towards CaM. The phosphorylation is blocked by Ca2+ and CaM and reversed by the CaM-stimulated phosphatase (calcineurin). The 63-kDa subunit isozymes can also be phosphorylated, but in this case by a CaM-dependent protein kinase(s). This phosphorylation is also accompanied by a decrease in the isozyme affinity towards CaM and can be reversed by the CaM-dependent phosphatase. Analysis of the complex regulatory properties of the phosphodiesterase isozymes has led to the suggestion that fluxes of cAMP and Ca2+ during cell activations are closely coupled and that the CaM-dependent phosphodiesterase isozymes play key roles in this signal coupling phenomenon.  相似文献   

3.
Absorbance measurements at 660 nm of calmodulin (CaM) dependent cyclic nucleotide phosphodiesterase activity under cell free conditions indicate that 30-min exposures to weak magnetostatic field intensities alters this activity, compared to zero magnetic field exposures. This effect depends nonlinearly on the concentration of free calcium, with maximum magnetic interaction apparently occurring at an optimal Ca(2+) concentration corresponding to 50% activation (EC(50)). If one regards Ca(2+)/CaM activation as a switching process, then increasing the magnetic field at Ca(2+) levels in excess of optimal acts to bias this switch towards lower calcium concentrations. A magnetic dependence has been previously reported by others in an homologous system, CaM dependent myosin light chain phosphorylation, implying that there may be an underlying magnetic interaction that involves the initial Ca(2+)/CaM binding process common to both enzymatic pathways. The level of magnetostatic intensity at which this effect is observed ( approximately 20 microT) implies that CaM activation may be functionally sensitive to the geomagnetic field.  相似文献   

4.
It has been reported that flunarizine, classified as calcium entry-blockers, is a potent brain protective drug without any heart depressant effect, contrasting with other drugs in this group. This paper presents evidence that through a competitive antagonism against calmodulin, a major intracellular calcium receptor, flunarizine inhibits the calcium X calmodulin-activated phosphodiesterase activity of bovine brain, but not of heart, whereas other calcium-entry blockers and calmodulin antagonists inhibit to the same extent, the activation of the enzyme from the two sources. It could be suggested that some of pharmacological effects by flunarizine and its differences from other calcium-entry blockers may be explained by its interaction with calmodulin.  相似文献   

5.
Smooth muscles are important constituents of vertebrate organisms that provide for contractile activity of internal organs and blood vessels. Basic molecular mechanism of both smooth and striated muscle contractility is the force-producing ATP-dependent interaction of the major contractile proteins, actin and myosin II molecular motor, activated upon elevation of the free intracellular Ca2+ concentration ([Ca2+]i). However, whereas striated muscles display a proportionality of generated force to the [Ca2+]i level, smooth muscles feature molecular mechanisms that modulate sensitivity of contractile machinery to [Ca2+]i. Phosphorylation of proteins that regulate functional activity of actomyosin plays an essential role in these modulatory mechanisms. This provides an ability for smooth muscle to contract and maintain tension within a broad range of [Ca2+]i and with a low energy cost, unavailable to a striated muscle. Detailed exploration of these mechanisms is required to understand the molecular organization and functioning of vertebrate contractile systems and for development of novel advances for treating cardiovascular and many other disorders. This review summarizes the currently known and hypothetical mechanisms involved in regulation of smooth muscle Ca2+-sensitivity with a special reference to phosphorylation of regulatory proteins of the contractile machinery as a means to modulate their activity.  相似文献   

6.
The effect of regucalcin, a calcium-binding protein isolated from rat liver cytosol, on Ca2+/calmodulin-dependent cyclic nucleotide (AMP) phosphodiesterase activity in rat liver cytosol was investigated. The addition of Ca2+ (50 µM) and calmodulin 160 U/ml in the enzyme reaction mixture caused a significant increase in cyclic AMP phosphodiesterase activity. This increase was inhibited by the presence of regucalcin (0.5-3.0 µM); the inhibitory effect was complete at 1.0 µM. Regucalcin (1.0 µM) did not have an appreciable effect on basal activity without Ca2+ and calmodulin. The inhibitory effect of regucalcin was still evident even at several fold higher concentrations of calmodulin (160–480 U/ml). However, regucalcin (1.0 µM) did not inhibit Ca2+/calmodulin-dependent cyclic AMP phosphodiesterase activity in the presence of 100 and 200 µM Ca2+ added. Meanwhile, Cd2 (25–100 µM)-induced decrease in Ca2+/calmodulin-dependent cyclic AMP phosphodiesterase activity was not reversed by the presence of regucalcin (1.0 µM). The present results suggest that regucalcin can regulate Ca2+/calmodulin-dependent cyclic AMP phosphodiesterase activity due to binding Ca2+ in liver cells.  相似文献   

7.
The effects of ethanol in vitro on calmodulin-dependent Ca2+-activated ATPase (CaM–Ca2+-ATPase) activity were studied in synaptic plasma membranes (SPM) prepared from the brain of normal and chronically ethanol-treated rats. In SPM from normal animals, ethanol at 50–200 mM inhibited the Ca2+-ATPase activity. Lineweaver-Burk analysis indicates that the inhibition was the result of a decreased affinity of the enzyme for calmodulin, whereas the maximum activity of the enzyme was not changed. Arrhenius analysis indicates that the enzyme activity was influenced by lipid transition of the membranes, and ethanol in vitro resulted in a shift of the transition temperature toward a lower value. From animals receiving chronic ethanol treatment (3 weeks), the SPM were resistant to the inhibitory effect of ethanol on the enzyme activity. The resistance to ethanol inhibition was correlated with a higher enzyme affinity for calmodulin and a higher transition temperature, as compared with normal SPM. Since the calmodulin-dependent Ca2+-ATPase in synaptic plasma membranes is believed to be the Ca2+ pump controlling free Ca2+ levels in synaptic terminals, its inhibition by ethanol could therefore lead to altered synaptic activity.Abbreviations used ATPase adenosine triphosphatase - CaM calmodulin - CaM–Ca2+-ATPase calmodulin-dependent Ca2+-activated ATPase - EGTA ethylene-bis(oxyethylenenitrilo)tetraacetic acid - EtOH ethanol - Hepes N—2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - SPM synaptic plasma membranes - TFP trifluoperazine - Tris tris(hydroxymethyl)aminomethane - Km Michaelis constant - Td transition temperature - Vmax maximum velocity  相似文献   

8.
This review will focus on the recent advance in the study of effect of transmembrane Ca2+ gradient on the function of membrane proteins. It consits of two parts: 1. Transmembrane Ca2+ gradient and sarcoplasmic reticulum Ca2+-ATPase; 2. Effect of transmembrane Ca2+ gradient on the components and coupling of cAMP signal transduction pathway. The results obtained indicate that a proper transmembrane Ca2+ gradient may play an important role in modulating the conformation and activity of SR Ca2+-ATPase and the function of membrane proteins involved in the cAMP signal transduction by mediating the physical state change of the membrane phospholipids.Abbreviations Cai Ca2+ inside vesicles - Ca0 Ca2+ outside vesicles - SR sarcoplasmic reticulum - PC phosphatidylcholine - PS phosphatidylserine - PG phosphatidylglycerol - PE phosphatidylethanolamine - DPH 1,6-diphenyl-1,3,5-hexatriene - n-AS n-(9-anthroyloxy) fatty acids - TMA-DPH 1-(4-trimethylammoniumphenyl)-6)-phenyl-1,3,5-hexatriene - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - -AR -adrenergic receptors - DHA dihydroalprenolol - AC adenylate cyclase - AC·Lca+– higher Ca2+ inside vesicles - AC·Lca– – lower Ca2+ on both side of vesicles - AC·Lca++ higher Ca2+ on both side of vesicles - AC·Lca– + higher Ca2+ outside vesicles - cAMP cyclic adenosine monophosphate - Gs stimulatory GTP-binding protein - GTP guanosine triposphate - GTPS guanosine 50-(3-thiotriphosphate)  相似文献   

9.
We studied effects of calmodulin antagonists on osteoclastic activity and calmodulin-dependent HCl transport. The results were compared to effects on the calmodulin-dependent phosphodiesterase and antagonist-calmodulin binding affinity. Avian osteoclast degradation of labeled bone was inhibited ∼40% by trifluoperazine or tamoxifen with half-maximal effects at 1–3 μM. Four benzopyrans structurally resembling tamoxifen were compared: d-centchroman inhibited resorption 30%, with half-maximal effect at ∼100 nM, cischroman and CDRI 85/287 gave 15–20% inhibition, and l-centchroman was ineffective. No benzopyran inhibited cell attachment or protein synthesis below 10 μM. However, ATP-dependent membrane vesicle acridine transport showed that H+-ATPase activity was abolished by all compounds with 50% effects at 0.25–1 μM. All compounds also inhibited calmodulin-dependent cyclic nucleotide phosphodiesterase at micromolar calcium. Relative potency varied with assay type, but d- and l-centchroman, surprisingly, inhibited both H+-ATPase and phosphodiesterase activity at similar concentrations. However, d- and l-centchroman effects in either assay diverged at nanomolar calcium. Of benzopyrans tested, only the d-centchroman effects were calcium-dependent. Interaction of compounds with calmodulin at similar concentrations were confirmed by displacement of labeled calmodulin from immobilized trifluoperazine. Thus, the compounds tested all interact with calmodulin directly to varying degrees, and the observed osteoclast inhibition is consistent with calmodulin-mediated effects. However, calmodulin antagonist activity varies between specific reactions, and free calcium regulates specificity of some interactions. Effects on whole cells probably also reflect other properties, including transport into cells. J. Cell. Biochem. 66:358–369, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
Calmodulin and the regulation of smooth muscle contraction   总被引:8,自引:0,他引:8  
Calmodulin, the ubiquitous and multifunctional Ca2+-binding protein, mediates many of the regulatory effects of Ca2+, including the contractile state of smooth muscle. The principal function of calmodulin in smooth muscle is to activate crossbridge cycling and the development of force in response to a [Ca2+]i transientvia the activation of myosin light-chain kinase and phosphorylation of myosin. A distinct calmodulin-dependent kinase, Ca2+/calmodulin-dependent protein kinase II, has been implicated in modulation of smooth-muscle contraction. This kinase phosphorylates myosin light-chain kinase, resulting in an increase in the calmodulin concentration required for half-maximal activation of myosin light-chain kinase, and may account for desensitization of the contractile response to Ca2+. In addition, the thin filament-associated proteins, caldesmon and calponin, which inhibit the actin-activated MgATPase activity of smooth-muscle myosin (the cross-bridge cycling rate), appear to be regulated by calmodulin, either by the direct binding of Ca2+/calmodulin or indirectly by phosphorylation catalysed by Ca2+/calmodulin-dependent protein kinase II. Another level at which calmodulin can regulate smooth-muscle contraction involves proteins which control the movement of Ca2+ across the sarcolemmal and sarcoplasmic reticulum membranes and which are regulated by Ca2+/calmodulin, e.g. the sarcolemmal Ca2+ pump and the ryanodine receptor/Ca2+ release channel, and other proteins which indirectly regulate [Ca2+]i via cyclic nucleotide synthesis and breakdown, e.g. NO synthase and cyclic nucleotide phosphodiesterase. The interplay of such regulatory mechanisms provides the flexibility and adaptability required for the normal functioning of smooth-muscle tissues.  相似文献   

11.
A protein, identifiable as calmodulin (CaM), has been isolated from the seedling tissue of Pharbitis nil. The method has been developed to isolate a high quality protein from plant tissue containing the high content of polyphenols. This protein was relatively heat-stable and bound to hydrophobic resin in calcium-dependent manner. It was recognized by the antibody against pea and carrot, but did not bind to antibody against Dictyostelium discoideum. This protein had Mr of 15 kDa and 18.5 kDa in the presence and absence of Ca2+, respectively, and was able to stimulate calmodulin-deficient cAMP phosphodiesterase. Based on its migration on SDS-PAGE gels, Mr and binding to anti-CaM antibodies it was deduced that calmodulin from P. nil is essentially identical to calmodulin isolated from other plants.  相似文献   

12.
DEAE-cellulose column chromatography of Neurospora crassa soluble mycelial extracts leads to the resolution of three major protein kinase activity peaks designated PKI, PKII, and PKIII.PKII activity is stimulated by Ca2+ and Neurospora or brain calmodulin. Maximal stimulation was observed at 2 µM-free Ca2+ and 1 µg/ml of the modulator. The stimulatory effect of the Ca2+-calmodulin complex was blocked by EGTA and by some calmodulin antagonists such as phenothiazine drugs or compound 48/80.PKII phosphorylates different proteins, among which histone II-A at a low concentration and CDPKS, the synthetic peptide specific for Ca2+-calmodulin dependent protein kinases, are the best substrates. Some phosphorylation can be detected in the absence of any exogenous acceptor. PKII activity assayed in the presence of histone II-A or in the absence of exogenous phosphate acceptor (autophosphorylation) co-elute in a DEAE-cellulose column at 0.28 M NaCl. As result of the autophosphorylation reaction of the purified enzyme a main phosphorylated component of 70 kDa was resolved by SDS-polyacrylamide gel electrophoresis. It is possible that this component is an active part of this enzyme.  相似文献   

13.
Pretreatment of isolated rat liver plasma membranes by washing with NaHCO3 buffer or by exposure to the chelator ethyleneglycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) with or without the ionophore A23187, produced a decrease in the sensitivity of adenylate cyclase (ATP pyrophosphate-lyase (cyclizing) EC 4.6.1.1) to subsequent stimulation by NaF or guanosine 5′-(β-γ-imino)triphosphate (GPP(NH)P). Sensitivity to activation by the nucleotide could be restored by addition of the lyophilized and ashed wash or by addition of Ca2+, Mg2+ or Mn2+. The factor extracted from the membranes by these various treatments which was responsible for loss of stimulation was identified as Ca2+. Determination of the metal ion content of isolated membranes by atomic absorption spectrometry indicated that Ca2+ was the only divalent cation present in sufficient concentration to support persistent activation by either NaF or GPP(NH)P.Pretreatment of liver plasma membranes with trifluoperazine, which inhibits the action of Ca2+-dependent regulator protein in other enzyme systems, reduced GPP(NH)P activation of adenylate cyclase and caused marked depletion of membrane Ca2+. The effects of low concentrations (less than 100 μM) of the phenothiazine could be reversed totally by Ca2+ and partly by regulator protein. At higher concentrations of trifluoperazine, slight restoration of enzyme activation was seen with either agent. The hypothesis is presented that Ca+ interacts with the nucleotide (GTP or GDP) regulatory site(s) of the adenylate cyclase. This interaction may be regulator-protein-dependent and may be important in determining the sensitivity of the enzyme to nucleotide activation in vivo.  相似文献   

14.
We isolated cDNA clones for novel protein kinases by expression screening of a cDNA library from the basidiomycetous mushroom Coprinus cinereus. One of the isolated clones was found to encode a calmodulin (CaM)-binding protein consisting of 488 amino acid residues with a predicted molecular weight of 53,906, which we designated CoPK12. The amino acid sequence of the catalytic domain of CoPK12 showed 46% identity with those of rat Ca2+/CaM-dependent protein kinase (CaMK) I and CaMKIV. However, a striking difference between these kinases is that the critical Thr residue in the activating phosphorylation site of CaMKI/IV is replaced by a Glu residue at the identical position in CoPK12. As predicted from its primary sequence, CoPK12 was found to behave like an activated form of CaMKI phosphorylated by an upstream CaMK kinase, indicating that CoPK12 is a unique CaMK with different properties from those of the well-characterized CaMKI, II, and IV. CoPK12 was abundantly expressed in actively growing mycelia and phosphorylated various proteins, including endogenous substrates, in the presence of Ca2+/CaM. Treatment of mycelia of C. cinereus with KN-93, which was found to inhibit CoPK12, resulted in a significant reduction in growth rate of mycelia. These results suggest that CoPK12 is a new type of multifunctional CaMK expressed in C. cinereus, and that it may play an important role in the mycelial growth.  相似文献   

15.
Pituitaries were collected from a common carp,yprinss carpi, belonging to vitellogenic phase and cells were disaggregated by using 0.3% collagenase and 0.05% tsypsin. Enzymatically dispersed cells were incubatedin vitro in Ca2+-free medium to observe the effect ofCanna punctatus GnRH (cGnRH) and Ca2+ on pituitary cell cAMP accumulation. Addition of cGnRH (20 Big) to pituitary cell incubation (6 × 104 cells/well) containing 4 mM theophylline, a phosphodiesterase inhibitor, caused two-fold increase of cAMP accumulation in comparison to control, Addition of Ca2+ (2 mM) to cGnRH further augmented cAMP accumulation, i.e., four-fold as compared to control. Increasing concentrations of cGnRH in the presence of Ca2+ resulted in a dose-dependent increase in cAMP accumulation. To examine the specificity of Ca2+ augmentory effect on cGnRH-stimulated pituitary cell cAMP accumulation, a specific Ca2+-channel blocker, verapamil was used, At 3 μM dose verapamil completely waived Ca2+-augmentation of cGnRH stimulatory effect on cAMP. Interestingly, verapamil also significantly inhibited cGnRH stimulation of cAMP in the Ca2+-free medium. Extent of Ca2+ plus cGnRH stimulatory effect on cAMP was further increased by the addition of 25 pmol of calmodulin, a Ca2+-carrier protein, Addition of verapamil to this system strongly inhibited Ca2+ and ealmodulin augnientory effect on cGnRH. Reduced level of cAMP in the pituitary cell due to verapamil was even lower than that of cGnRH plus ealmodulin incubation. Data indicates a contamination of Ca2+ in an apparently Ca2+-free medium, Results suggest that in lower vertebrate, i.e., fish, GnRH stimulation of pituitary cell cAMP is dependent on extracellulnr Ca2+ and incubation of pituitary cell in Ca2+-free medium is truly not free of Ca2+.  相似文献   

16.
Summary The Ca2+ channel blockers felodipine and bepridil are known to affect selectively functions of calmodulin. We studied their effects on calmodulin binding and ATPase activities of calmodulin-containing and calmodulin-depleted rabbit heart sarcolemma. Both drugs as well as the specific anti-calmodulin drug calmidazolium at a concentration of 50 µM, inhibited the Ca2+-stimulated calmodulin binding to calmodulin-depleted sarcolemma. Within the concentration range of 3 to 100 µM all three drugs also progressively inhibited Ca2+ pumping ATPase in calmodulin containing sarcolemma, although the enzyme was assayed at saturating Ca2+ (100 µM). The inhibitory potency of calmidazolium and bepridil, but not that of felodipine, increased when the membrane protein concentration in the ATPase assay was lowered. At low membrane protein concentration 30 µM calmidazolium completely blocked calmodulin-dependent Ca2+ pumping ATPase, whereas the inhibition caused by 30 µM felodipine or bepridil remained partially. A similar inhibition pattern of the drugs was found in the calmodulin binding experiments. Within a concentration range of 3 to 30 µM, all three drugs had negligible effects on the basal Ca2+ pumping ATPase which was measured in calmodulin-depleted sarcolemma. In conclusion, the characteristics of the anti-calmodulin action of felodipine on the rabbit heart sarcolemmal Ca2+ pumping ATPase are not different from those of bepridil. Both drugs may inhibit the enzyme by interference with the Ca2+-stimulated binding of calmodulin.Abbreviations Ca2+ pumping ATPase Ca2+ stimulated Mg2+-dependent ATP hydrolyzing activity - Na+ pumping ATPase Na+-stimulated K+- and Mg2+-dependent ATP hydrolyzing activity - Tris-maleate tris (hydroxymethyl) aminomethane hydrogen maleate - Hepes N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - Mes 2-(N-morpholino) ethane sulfonic acid and Egta, ethylene glycol bis (p-amino ethylether)-N,N,N,N tetraacetic acid  相似文献   

17.
Starling's Law and the well-known end-systolic pressure-volume relationship (ESPVR) of the left ventricle reflect the effect of sarcomere length (SL) on stress (sigma) development and shortening by myocytes in the uniform ventricle. We show here that tetanic contractions of rat cardiac trabeculae exhibit a sigma-SL relationship at saturating [Ca2+] that depends on sarcomere geometry in a manner similar to skeletal sarcomeres and the existence of opposing forces in cardiac muscle shortened below slack length. The sigma-SL-[Ca2+]free relationships (sigma-SL-CaR) at submaximal [Ca2+] in intact and skinned trabeculae were similar, albeit that the sensitivity for Ca2+ of intact muscle was higher. We analyzed the mechanisms underlying the sigma-SL-CaR using a kinetic model where we assumed that the rates of Ca2+ binding by Troponin-C (Tn-C) and/or cross-bridge (XB) cycling are determined by SL, [Ca2+] or stress. We analyzed the correlation between the model results and steady state stress measurements at varied SL and [Ca2+] from skinned rat cardiac trabeculae to test the hypotheses that: (i) the dominant feedback mechanism is SL, stress or [Ca2+]-dependent; and (ii) the feedback mechanism regulates: Tn-C-Ca2+ affinity, XB kinetics or, unitary XB-force. The analysis strongly suggests that feedback of the number of strong XBs to cardiac Tn-C-Ca2+ affinity is the dominant mechanism that regulates XB recruitment. Application of this concept in a mathematical model of twitch-stress accurately reproduced the sigma-SL-CaR and the time course of twitch-stress as well as the time course of intracellular [Ca2+]i. Modeling of the response of the cardiac twitch to rapid stress changes using the above feedback model uniquely predicted the occurrence of [Ca2+]i transients as a result of accelerated Ca2+ dissociation from Tn-C. The above concept has important repercussions for the non-uniformly contracting heart in which arrhythmogenic Ca2+ waves arise from weakened areas in cardiac muscle. These Ca2+ waves can reversibly be induced in muscle with non-uniform excitation contraction coupling (ECC) by the cycle of stretch and release in the border zone between the damaged and intact regions. Stimulus trains induced propagating Ca2+ waves and reversibly induced arrhythmias. We hypothesize that rapid force loss by sarcomeres in the border zone during relaxation causes Ca2+ release from Tn-C and initiates Ca2+ waves propagated by the sarcoplasmic reticulum (SR). These observations suggest the unifying hypothesis that force feedback to Ca2+ binding by Tn-C is responsible for Starling's Law and the ESPVR in uniform myocardium and leads in non-uniform myocardium to a surge of Ca2+ released by the myofilaments during relaxation, which initiates arrhythmogenic propagating Ca2+ release by the SR.  相似文献   

18.
Influence of exercise on cardiac and skeletal muscle myofibrillar proteins   总被引:3,自引:0,他引:3  
The purpose of this study was to examine the Ca2+-Mg2+ myofibrillar ATPase and protein composition of cardiac and skeletal muscle following strenuous activity to voluntary exhaustion. Sprague-Dawley rats (200 g) were assigned to a control and exercised group, with the run group completing 25 m·min–1 and 8% grade for 1 hour. Following activity, the myocardial Ca2+–Mg2+ myofibrillar ATPase activity -pCa relationship had undergone a rightward shift in the curve. Electrophoretic analysis revealed a change in the pattern of cardiac myofibrillar protein bands, particularly in the 38–42 Kdalton region. Enzymatic analysis of myofibrillar proteins from plantaris muscle, revealed no change in Ca2+ regulation following exercise. Electronmicrographic and electrophoretic analysis revealed extensively disrupted sarcomeric structure and a change in the ratio of several plantaris myofibrillar proteins. No difference was observed for myosin: Actin: tropomyosin ratios; however a dramatic reduction in 58 and 95 Kdalton proteins were evident. The results indicate that prolonged running is associated with similar responses in cardiac and skeletal muscle myofibrillar protein compositions. The abnormalities in myofibrillar ultrastructure may implicate force transmission failure as a factor in exercised-induced muscle damage and/or fatigue.  相似文献   

19.
Oxidized low density lipoprotein (oxLDL) has been identified as a potentially important atherogenic factor. Atherosclerosis is characterized by the accumulation of lipid and calcium in the vascular wall. OxLDL plays a significant role in altering calcium homeostasis within different cell types. In our previous study, chronic treatment of vascular smooth muscle cells (VSMC) with oxLDL depressed Ca2+ i homeostasis and altered two Ca2+ release mechanisms in these cells (IP3 and ryanodine sensitive channels). The purpose of the present study was to further define the effects of chronic treatment with oxLDL on the smooth muscle sarcoplasmic reticulum (SR) Ca2+ pump. One of the primary Ca2+ uptake mechanisms in VSMC is through the SERCA2 ATPase calcium pump in the sarcoplasmic reticulum. VSMC were chronically treated with 0.005-0.1 mg/ml oxLDL for up to 6 days in culture. Cells treated with oxLDL showed a significant increase in the total SERCA2 ATPase content. These changes were observed on both Western blot and immunocytochemical analysis. This increase in SERCA2 ATPase is in striking contrast to a significant decrease in the density of IP3 and ryanodine receptors in VSMC as the result of chronic treatment with oxLDL. This response may suggest a specific adaptive mechanism that the pump undergoes to attempt to maintain Ca2+ homeostasis in VSMC chronically exposed to atherogenic oxLDL.  相似文献   

20.
Sheep olfactory epithelium contains an adenylyl cyclase which is stimulated by many but not all odorants. Here we report that this enzyme is activated by calmodulin in a dose-dependent manner, and that calcium ions are required for this response. Odorant stimulation of adenylyl cyclase is unaffected by the complex Ca2+/calmodulin, as suggested by the results obtained both in Ca2+/calmodulin-depleted membranes and under calmodulin antagonist treatment; this confirms the prediction that the Ca2+ binding protein and odorants stimulate the olfactory adenylyl cyclase through parallel mechanisms. The persistent activation of the regulatory component of adenylyl cyclase by GppNHp does not alter the response of the enzyme to either odorant or Ca2+/calmodulin. In sheep olfactory epithelium a cAMP-phosphodiesterase activity is also present, which is highly inhibited by IBMX and aminophylline, searcely by RO 20-1724, and unaffected by Ca2+/calmodulin. The modulatory role exerted by calcium on cAMP system in sheep olfactory signal transduction is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号