首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The largest stable photosystem II (PSII) supercomplex in land plants (C2S2M2) consists of a core complex dimer (C2), two strongly (S2) and two moderately (M2) bound light-harvesting protein (LHCB) trimers attached to C2 via monomeric antenna proteins LHCB4–6. Recently, we have shown that LHCB3 and LHCB6, presumably essential for land plants, are missing in Norway spruce (Picea abies), which results in a unique structure of its C2S2M2 supercomplex. Here, we performed structure–function characterization of PSII supercomplexes in Arabidopsis (Arabidopsis thaliana) mutants lhcb3, lhcb6, and lhcb3 lhcb6 to examine the possibility of the formation of the “spruce-type” PSII supercomplex in angiosperms. Unlike in spruce, in Arabidopsis both LHCB3 and LHCB6 are necessary for stable binding of the M trimer to PSII core. The “spruce-type” PSII supercomplex was observed with low abundance only in the lhcb3 plants and its formation did not require the presence of LHCB4.3, the only LHCB4-type protein in spruce. Electron microscopy analysis of grana membranes revealed that the majority of PSII in lhcb6 and namely in lhcb3 lhcb6 mutants were arranged into C2S2 semi-crystalline arrays, some of which appeared to structurally restrict plastoquinone diffusion. Mutants without LHCB6 were characterized by fast induction of non-photochemical quenching and, on the contrary to the previous lhcb6 study, by only transient slowdown of electron transport between PSII and PSI. We hypothesize that these functional changes, associated with the arrangement of PSII into C2S2 arrays in thylakoids, may be important for the photoprotection of both PSI and PSII upon abrupt high-light exposure.

Photosystem II supercomplexes in Arabidopsis lacking antenna proteins LHCB3 and LHCB6 differ from their spruce counterparts and form potentially photoprotective semi-crystalline arrays in thylakoids.  相似文献   

2.
In higher plants a variable number of peripheral LHCII trimers can strongly (S), moderately (M) or loosely (L) associate with the dimeric PSII core (C2) complex via monomeric Lhcb proteins to form PSII–LHCII supercomplexes with different structural organizations. By solubilizing isolated stacked pea thylakoid membranes either with the α or β isomeric forms of the detergent n-dodecyl-D-maltoside, followed by sucrose density ultracentrifugation, we previously showed that PSII–LHCII supercomplexes of types C2S2M2 and C2S2, respectively, can be isolated [S. Barera et al., Phil. Trans. R Soc. B 67 (2012) 3389–3399]. Here we analysed their protein composition by applying extensive bottom-up and top-down mass spectrometry on the two forms of the isolated supercomplexes. In this way, we revealed the presence of the antenna proteins Lhcb3 and Lhcb6 and of the extrinsic polypeptides PsbP, PsbQ and PsbR exclusively in the C2S2M2 supercomplex. Other proteins of the PSII core complex, common to the C2S2M2 and C2S2 supercomplexes, including the low molecular mass subunits, were also detected and characterized. To complement the proteomic study with structural information, we performed negative stain transmission electron microscopy and single particle analysis on the PSII–LHCII supercomplexes isolated from pea thylakoid membranes solubilized with n-dodecyl-α-D-maltoside. We observed the C2S2M2 supercomplex in its intact form as the largest PSII complex in our preparations. Its dataset was further analysed in silico, together with that of the second largest identified sub-population, corresponding to its C2S2 subcomplex. In this way, we calculated 3D electron density maps for the C2S2M2 and C2S2 supercomplexes, approaching respectively 30 and 28 Å resolution, extended by molecular modelling towards the atomic level. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

3.
Photosystem II (PSII) is a large multiprotein complex, which catalyses water splitting and plastoquinone reduction necessary to transform sunlight into chemical energy. Detailed functional and structural studies of the complex from higher plants have been hampered by the impossibility to purify it to homogeneity. In this work, homogeneous preparations ranging from a newly identified particle composed by a monomeric core and antenna proteins to the largest C2S2M2 supercomplex were isolated. Characterization by biochemical methods and single particle electron microscopy allowed to relate for the first time the supramolecular organization to the protein content. A projection map of C2S2M2 at 12 Å resolution was obtained, which allowed determining the location and the orientation of the antenna proteins. Comparison of the supercomplexes obtained from WT and Lhcb‐deficient plants reveals the importance of the individual subunits for the supramolecular organization. The functional implications of these findings are discussed and allow redefining previous suggestions on PSII energy transfer, assembly, photoinhibition, state transition and non‐photochemical quenching.  相似文献   

4.
We performed picosecond fluorescence measurements on well-defined Photosystem II (PSII) supercomplexes from Arabidopsis with largely varying antenna sizes. The average excited-state lifetime ranged from 109 ps for PSII core to 158 ps for the largest C2S2M2 complex in 0.01% α-DM. Excitation energy transfer and trapping were investigated by coarse-grained modeling of the fluorescence kinetics. The results reveal a large drop in free energy upon charge separation (>700 cm−1) and a slow relaxation of the radical pair to an irreversible state (∼150 ps). Somewhat unexpectedly, we had to reduce the energy-transfer and charge-separation rates in complexes with decreasing size to obtain optimal fits. This strongly suggests that the antenna system is important for plant PSII integrity and functionality, which is supported by biochemical results. Furthermore, we used the coarse-grained model to investigate several aspects of PSII functioning. The excitation trapping time appears to be independent of the presence/absence of most of the individual contacts between light-harvesting complexes in PSII supercomplexes, demonstrating the robustness of the light-harvesting process. We conclude that the efficiency of the nonphotochemical quenching process is hardly dependent on the exact location of a quencher within the supercomplexes.  相似文献   

5.
Phosphatidylglycerol (PG), containing the unique fatty acid Δ3, trans-16:1-hexadecenoic acid, is a minor but ubiquitous lipid component of thylakoid membranes of chloroplasts and cyanobacteria. We investigated its role in electron transfers and structural organization of Photosystem II (PSII) by treating Arabidopsis thaliana thylakoids with phospholipase A2 to decrease the PG content. Phospholipase A2 treatment of thylakoids (a) inhibited electron transfer from the primary quinone acceptor QA to the secondary quinone acceptor QB, (b) retarded electron transfer from the manganese cluster to the redox-active tyrosine Z, (c) decreased the extent of flash-induced oxidation of tyrosine Z and dark-stable tyrosine D in parallel, and (d) inhibited PSII reaction centres such that electron flow to silicomolybdate in continuous light was inhibited. In addition, phospholipase A2 treatment of thylakoids caused the partial dissociation of (a) PSII supercomplexes into PSII dimers that do not have the complete light-harvesting complex of PSII (LHCII); (b) PSII dimers into monomers; and (c) trimers of LHCII into monomers. Thus, removal of PG by phospholipase A2 brings about profound structural changes in PSII, leading to inhibition/retardation of electron transfer on the donor side, in the reaction centre, and on the acceptor side. Our results broaden the simple view of the predominant effect being on the QB-binding site.  相似文献   

6.
The effects of drought on photosynthesis have been extensively studied, whereas those on thylakoid organization are limited. We observed a significant decline in gas exchange parameters of pea (Pisum sativum) leaves under progressive drought stress. Chl a fluorescence kinetics revealed the reduction of photochemical efficiency of photosystem (PS)II and PSI. The non-photochemical quenching (NPQ) and the levels of PSII subunit PSBS increased. Furthermore, the light-harvesting complexes (LHCs) and some of the PSI and PSII core proteins were disassembled in drought conditions, whereas these complexes were reassociated during recovery. By contrast, the abundance of supercomplexes of PSII-LHCII and PSII dimer were reduced, whereas LHCII monomers increased following the change in the macro-organization of thylakoids. The stacks of thylakoids were loosely arranged in drought-affected plants, which could be attributed to changes in the supercomplexes of thylakoids. Severe drought stress caused a reduction of both LHCI and LHCII and a few reaction center proteins of PSI and PSII, indicating significant disorganization of the photosynthetic machinery. After 7 days of rewatering, plants recovered well, with restored chloroplast thylakoid structure and photosynthetic efficiency. The correlation of structural changes with leaf reactive oxygen species levels indicated that these changes were associated with the production of reactive oxygen species.  相似文献   

7.
《BBA》2022,1863(5):148555
In land plants, both efficient light capture and photoprotective dissipation of chlorophyll excited states in excess require proper assembly of Photosystem II supercomplexes PSII-LHCs. These include a dimeric core moiety and a peripheral antenna system made of trimeric LHCII proteins connected to the core through monomeric LHC subunits. Regulation of light harvesting involves re-organization of the PSII supercomplex, including dissociation of its LHCII-CP24-CP29 domain under excess light. The Chl a603-a609-a616 chromophore cluster within CP29 was recently identified as responsible for the fast component of Non-Photochemical Quenching of chlorophyll fluorescence. Here, we pinpointed a chlorophyll-protein domain of CP29 involved in the macro-organization of PSII-LHCs. By complementing an Arabidopsis knock-out mutant with CP29 sequences deleted in the residue binding chlorophyll b614/b3-binding, we found that the site is promiscuous for chlorophyll a and b. By plotting NPQ amplitude vs. CP29 content we observed that quenching activity was significantly reduced in mutants compared to the wild type. Analysis of pigment-binding supercomplexes showed that the missing Chl did hamper the assembly of PSII-LHCs supercomplexes, while observation by electron microscopy of grana membranes highlighted the PSII particles were organized in two-dimensional arrays in mutant grana partitions. As an effect of such array formation electron transport rate between QA and QB reduced, likely due to restricted plastoquinone diffusion. We conclude that chlorophyll b614, rather being part of pigment cluster responsible for quenching, is needed to maintain full rate of electron flow in the thylakoids by controlling protein-protein interactions between PSII units in grana partitions.  相似文献   

8.
The Arabidopsis thaliana subunit PsbS of photosystem II (PSII) is essential for the non-photochemical quenching of chlorophyll fluorescence and thus for ΔpH-dependent energy dissipation (qE). As a result of the excision of an En-transposon, a frameshift mutation in the psbS gene was obtained, which results in the complete absence of the PsbS protein and of qE. Two-dimensional gel analyses of thylakoid membranes indicated that the depletion of PsbS has no effect on PSII composition, excluding a structural role for PsbS in the organization of the PSII antenna. The susceptibility of mutant plants to photoinactivation of PSII was significantly increased during exposure to high light for up to 8 h. Divergence of mutant plants from wild-type levels of photoinactivation were most pronounced during the first 2 h of illumination, while after longer exposure times the rate of PSII inactivation were similar in both genotypes. The increased PSII inactivation in the mutant was not accompanied by an increased rate of D1 protein degradation, and recovery of PSII activity in the mutant under low light was similar or even faster in comparison to wild-type plants. However, growth under high light intensities resulted in decreased growth rates of psbs mutant plants. We conclude that energy dissipation in PSII related to qE is not primarily required for the protection of PSII against light-induced destruction, but may rather be involved in reducing the electron pressure on the photosynthetic electron transport chain at saturating light intensities.  相似文献   

9.
The PsbP protein is an extrinsic subunit of photosystem II (PSII) specifically found in land plants and green algae. Using PsbP-RNAi tobacco, we have investigated effects of PsbP knockdown on protein supercomplex organization within the thylakoid membranes and photosynthetic properties of PSII. In PsbP-RNAi leaves, PSII dimers binding the extrinsic PsbO protein could be formed, while the light-harvesting complex II (LHCII)-PSII supercomplexes were severely decreased. Furthermore, LHCII and major PSII subunits were significantly dephosphorylated. Electron microscopic analysis showed that thylakoid grana stacking in PsbP-RNAi chloroplast was largely disordered and appeared similar to the stromally-exposed or marginal regions of wild-type thylakoids. Knockdown of PsbP modified both the donor and acceptor sides of PSII; In addition to the lower water-splitting activity, the primary quinone QA in PSII was significantly reduced even when the photosystem I reaction center (P700) was noticeably oxidized, and thermoluminescence studies suggested the stabilization of the charged pair, S2/QA. These data indicate that assembly and/or maintenance of the functional MnCa cluster is perturbed in absence of PsbP, which impairs accumulation of final active forms of PSII supercomplexes.  相似文献   

10.
It was the work of Jan Anderson, together with Keith Boardman, that showed it was possible to physically separate photosystem I (PSI) from photosystem II (PSII), and it was Jan Anderson who realized the importance of this work in terms of the fluid-mosaic model as applied to the thylakoid membrane. Since then, there has been a steady progress in the development of biochemical procedures to isolate PSII and PSI both for physical and structural studies. Dodecylmaltoside (DM) has emerged as an effective mild detergent for this purpose. DM is a glucoside-based surfactant with a bulky hydrophilic head group composed of two sugar rings and a non-charged alkyl glycoside chain. Two isomers of this molecule exist, differing only in the configuration of the alkyl chain around the anomeric centre of the carbohydrate head group, axial in α-DM and equatorial in β-DM. We have compared the use of α-DM and β-DM for the isolation of supramolecular complexes of PSII by a single-step solubilization of stacked thylakoid membranes isolated from peas. As a result, we have optimized conditions to obtain homogeneous preparations of the C2S2M2 and C2S2 supercomplexes following the nomenclature of Dekker & Boekema (2005 Biochim. Biophys. Acta 1706, 12–39). These PSII–LHCII supercomplexes were subjected to biochemical and structural analyses.  相似文献   

11.
The unicellular, diazotrophic cyanobacterium Cyanothece sp. ATCC 51142 demonstrated important modifications to photosystem II (PSII) centers when grown under light/dark N2-fixing conditions. The properties of PSII were studied throughout the diurnal cycle using O2-flash-yield and pulse-amplitude-modulated fluorescence techniques. Nonphotochemical quenching (qN) of PSII increased during N2 fixation and persisted after treatments known to induce transitions to state 1. The qN was high in cells grown in the dark, and then disappeared progressively during the first 4 h of light growth. The photoactivation probability, ε, demonstrated interesting oscillations, with peaks near 3 h of darkness and 4 and 10 h of light. Experiments and calculations of the S-state distribution indicated that PSII displays a high level of heterogeneity, especially as the cells prepare for N2 fixation. We conclude that the oxidizing side of PSII is strongly affected during the period before and after the peak of nitrogenase activity; changes include a lowered capacity for O2 evolution, altered dark stability of PSII centers, and substantial changes in qN.  相似文献   

12.
Photoautotrophic organisms efficiently regulate absorption of light energy to sustain photochemistry while promoting photoprotection. Photoprotection is achieved in part by triggering a series of dissipative processes termed non-photochemical quenching (NPQ), which depend on the re-organization of photosystem (PS) II supercomplexes in thylakoid membranes. Using atomic force microscopy, we characterized the structural attributes of grana thylakoids from Arabidopsis thaliana to correlate differences in PSII organization with the role of SOQ1, a recently discovered thylakoid protein that prevents formation of a slowly reversible NPQ state. We developed a statistical image analysis suite to discriminate disordered from crystalline particles and classify crystalline arrays according to their unit cell properties. Through detailed analysis of the local organization of PSII supercomplexes in ordered and disordered phases, we found evidence that interactions among light-harvesting antenna complexes are weakened in the absence of SOQ1, inducing protein rearrangements that favor larger separations between PSII complexes in the majority (disordered) phase and reshaping the PSII crystallization landscape. The features we observe are distinct from known protein rearrangements associated with NPQ, providing further support for a role of SOQ1 in a novel NPQ pathway. The particle clustering and unit cell methodology developed here is generalizable to multiple types of microscopy and will enable unbiased analysis and comparison of large data sets.  相似文献   

13.
In Chlamydomonas reinhardtii, the LIGHT-HARVESTING COMPLEX STRESS-RELATED PROTEIN3 (LHCSR3) protein is crucial for efficient energy-dependent thermal dissipation of excess absorbed light energy and functionally associates with photosystem II-light-harvesting complex II (PSII-LHCII) supercomplexes. Currently, it is unknown how LHCSR3 binds to the PSII-LHCII supercomplex. In this study, we investigated the role of PHOTOSYSTEM II SUBUNIT R (PSBR) an intrinsic membrane-spanning PSII subunit, in the binding of LHCSR3 to PSII-LHCII supercomplexes. Down-regulation of PSBR expression diminished the efficiency of oxygen evolution and the extent of nonphotochemical quenching and had an impact on the stability of the oxygen-evolving complex as well as on PSII-LHCII-LHCSR3 supercomplex formation. Its down-regulation destabilized the PSII-LHCII supercomplex and strongly reduced the binding of LHCSR3 to PSII-LHCII supercomplexes, as revealed by quantitative proteomics. PHOTOSYSTEM II SUBUNIT P deletion, on the contrary, destabilized PHOTOSYSTEM II SUBUNIT Q binding but did not affect PSBR and LHCSR3 association with PSII-LHCII. In summary, these data provide clear evidence that PSBR is required for the stable binding of LHCSR3 to PSII-LHCII supercomplexes and is essential for efficient energy-dependent quenching and the integrity of the PSII-LHCII-LHCSR3 supercomplex under continuous high light.Plant photosynthetic electron transfer is conducted by a series of reactions at the chloroplast thylakoid membrane, resulting in light-dependent water oxidation, NADP reduction, and ATP formation (Whatley et al., 1963). Two separate photosystems (PSI and PSII) and an ATP synthase catalyze these reactions. PSI and PSII are multiprotein complexes that are mainly embedded in unstacked and stacked regions of the thylakoid membrane, respectively. PSI consists of more than 10 subunits and a number of cofactors such as chlorophyll a, β-carotene, phylloquinone, and three iron-sulfur (4Fe-4S) clusters (Busch and Hippler, 2011). PSI catalyzes light-driven electron transfer from luminal plastocyanin to stromal ferredoxin. The latter reduces the ferredoxin-NADP reductase that, in turn, leads to the formation of NADPH. PSII catalyzes light-induced electron transfer from water to the plastoquinone pool by using chlorophyll a, carotenoids, as well as redox-active cofactors, causing the release of oxygen and protons (Pagliano et al., 2013). The core complex is organized as a dimer. Monomers are composed of the reaction center subunits PSBA (D1) and PSBD (D2), the inner antenna proteins PSBB (CP47) and PSBC (CP43), the α- and β-subunits (PSBE and PSBF) of cytochrome b559, as well as a number of intrinsic low-molecular-mass subunits. The core monomer is further associated with an inorganic Mn4O5Ca cluster and a few chloride ions (Rivalta et al., 2011; Umena et al., 2011) required for photosynthetic water oxidation. To optimize this process, the oxygen-evolving complex is formed at the luminal side by the extrinsic polypeptides PSBO, PSBP, PSBQ, and PSBR (for review, see Pagliano et al., 2013).To enhance the light-harvesting capacity of PSII, various light-harvesting proteins bind to dimeric PSII core complexes (Dekker and Boekema, 2005). A common structure found for vascular plants and green algae is the C2S2 supercomplex, where two copies of monomeric Lhcb4 and Lhcb5 and two LHCII trimers (S-trimer; Boekema et al., 1995) bind to the dimeric PSII core. In vascular plants, larger but less stable PSII supercomplexes, known as C2S2M2, are composed of two extra copies of the monomeric Lhcb6 with two additional LHCII trimers (M-trimer) bound through Lhcb4 and Lhcb5 (Dekker and Boekema, 2005; Caffarri et al., 2009). Even larger complexes containing two additional LHCII trimers (L-trimer), bound via Lhcb6, are found and are known as C2S2M2L1–2 (Boekema et al., 1999). A recent study in Chlamydomonas reinhardtii identified PSII-LHCII supercomplexes with three LHCII trimers attached to each side of the core (C2S2M2L2; Tokutsu et al., 2012). Interestingly, such PSII-LHCII supercomplexes associate with LIGHT-HARVESTING COMPLEX STRESS-RELATED PROTEIN3 (LHCSR3; Tokutsu and Minagawa, 2013), an ancient light-harvesting protein required for efficient energy-dependent (qE) quenching in the alga (Peers et al., 2009). The qE component of nonphotochemical quenching (NPQ) is an energy-dependent constituent of NPQ and regulates the thermal dissipation of excess absorbed light energy (Li et al., 2000; Peers et al., 2009). The qE capacity in C. reinhardtii increases proportionally to the light-dependent accumulation of the LHCSR3 protein (Peers et al., 2009). In contrast, in vascular plants, qE is constitutively active and dependent on PSBS, a PSII polypeptide (Li et al., 2000). Mass spectrometric analyses of isolated C2S2M2 PSII supercomplexes revealed the presence of extrinsic subunits PSBP, PSBQ, and PSBR, while PSBS was not identified, suggesting that PSBS does not influence the association of the PSII core with the outer light-harvesting complex system (Pagliano et al., 2014). In line with the proteomic findings, recent data suggest that subunits PSBP, PSBQ, and PSBR contribute to the stability of PSII-LHCII supercomplexes in vascular plants (Caffarri et al., 2009; Ifuku et al., 2011; Allahverdiyeva et al., 2013). A recent quantitative proteomic study performed with C. reinhardtii identified PSBR as the only PSII subunit to be induced upon the shift from photoheterotrophic to photoautotrophic growth conditions similar to LHCSR3 (Höhner et al., 2013).In vascular plants and green algae, PSBR is nucleus encoded and has a mass of about 10 kD. The mature protein has a predicted 70-amino acid luminal N-terminal part and a C-terminal transmembrane span (Ljungberg et al., 1986; Lautner et al., 1988; Webber et al., 1989). An association of PSBR with the oxygen-evolving complex has been suggested, as its presence is required for the stable assembly of PSBP with the PSII core and its absence also impacts the binding of PSBQ to the core (Suorsa et al., 2006; Liu et al., 2009). For stable association with the PSII core complex, PSBR needs the presence of PSBJ (Suorsa et al., 2006). Functionally, the depletion of PSBR protein expression decreased rates of oxygen evolution (Allahverdiyeva et al., 2007, 2013) and quinone reoxidation (Allahverdiyeva et al., 2007). PSBR phosphorylation is known for Arabidopsis (Arabidopsis thaliana; Reiland et al., 2009, 2011; Nakagami et al., 2010) and in the green alga C. reinhardtii (Turkina et al., 2006), although phosphorylation sites are not conserved between the alga and the vascular plant.In this work, we addressed the question of whether down-regulation of PSBR expression would affect LHCSR3 binding to the PSII-LHCII supercomplex in C. reinhardtii. To this end, we took advantage of artificial microRNA (amiRNA) technology to down-regulate PSBR expression and investigated the impact of PSBR down-regulation on photosynthetic performance as well as on PSII-LHCII-LHCSR3 supercomplex formation. Our data provide evidence that PSBR is required for the stable binding of LHCSR3 to PSII-LHCII supercomplexes.  相似文献   

14.
Leaves of Kalanchoë pinnata were exposed in the dark to air (allowing the fixation of CO2 into malic acid) or 2% O2, 0% CO2 (preventing malic acid accumulation). They were then exposed to bright light in the presence or absence of external CO2 and light dependent inhibition of photosynthetic properties assessed by changes in 77 K fluorescence from photosystem II (PSII), light response curves and quantum yields of O2 exchange, rates of electron transport from H2O through QB (secondary electron acceptor from the PSII reaction center) in isolated thylakoids, and numbers of functional PSII centers in intact leaf discs. Sun leaves of K. pinnata experienced greater photoinhibition when exposed to high light in the absence of CO2 if malic acid accumulation had been prevented during the previous dark period. Shade leaves experienced a high degree of photoinhibition when exposed to high light regardless of whether malic acid had been allowed to accumulate in the previous dark period or not. Quantum yields were depressed to a greater degree than was 77 K fluorescence from PSII following photoinhibition.  相似文献   

15.
Tobacco rbcL deletion mutant, which lacks the key enzyme Rubisco for photosynthetic carbon assimilation, was characterized with respect to thylakoid functional properties and protein composition. The ΔrbcL plants showed an enhanced capacity for dissipation of light energy by non-photochemical quenching which was accompanied by low photochemical quenching and low overall photosynthetic electron transport rate. Flash-induced fluorescence relaxation and thermoluminescence measurements revealed a slow electron transfer and decreased redox gap between QA and QB, whereas the donor side function of the Photosystem II (PSII) complex was not affected. The 77 K fluorescence emission spectrum of ΔrbcL plant thylakoids implied a presence of free light harvesting complexes. Mutant plants also had a low amount of photooxidisible P700 and an increased ratio of PSII to Photosystem I (PSI). On the other hand, an elevated level of plastid terminal oxidase and the lack of F0 ‘dark rise’ in fluorescence measurements suggest an enhanced plastid terminal oxidase-mediated electron flow to O2 in ΔrbcL thylakoids. Modified electron transfer routes together with flexible dissipation of excitation energy through PSII probably have a crucial role in protection of PSI from irreversible protein damage in the ΔrbcL mutant under growth conditions. This protective capacity was rapidly exceeded in ΔrbcL mutant when the light level was elevated resulting in severe degradation of PSI complexes.  相似文献   

16.
When far red light preincubated cells of Euglena gracilis are transferred to dark or light, chlorophyll fluorescence (F0 and Fm) decreases. Non-photochemical quenching in the dark is suggested to be induced partly by chlororespiration and partly by changes in the distribution of excitation energy between the photosystems. Depending on the light intensities it was possible to resolve the non-photochemical quenching into at least three different components. The slowest relaxation phase of non-photochemical quenching occurred only after exposure to high light and was assigned to photoinhibition. The other two components were an energy-dependent quenching (qE), and the one which we attribute to a spill over mechanism. We suggest that both photosystems use a common antenna system consisting of LHC I and LHC II proteins. In contrast to higher plants, qE in Euglena gracilis is independent of the xanthophyll cycle and an aggregation of LHC II. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
About 475 million years ago, plants originated from an ancestral green alga and evolved first as non‐vascular and later as vascular plants, becoming the primary producers of biomass on lands. During that time, the light‐harvesting complex II (LHCII), responsible for sunlight absorption and excitation energy transfer to the photosystem II (PSII) core, underwent extensive differentiation. Lhcb4 is an ancestral LHCII that, in flowering plants, differentiated into up to three isoforms, Lhcb4.1, Lhcb4.2 and Lhcb4.3. The pivotal position of Lhcb4 in the PSII‐LHCII supercomplex (PSII‐LHCIIsc) allows functioning as linker for either S‐ or M‐trimers of LHCII to the PSII core. The increased accumulation of Lhcb4.3 observed in PSII‐LHCIIsc of plants acclimated to moderate and high light intensities induced us to investigate, whether this isoform has a preferential localization in a specific PSII‐LHCIIsc conformation that might explain its light‐dependent accumulation. In this work, by combining an improved method for separation of different forms of PSII‐LHCIIsc from thylakoids of Pisum sativum L. grown at increasing irradiances with quantitative proteomics, we assessed that Lhcb4.3 is abundant in PSII‐LHCIIsc of type C2S2, and, interestingly, similar results were found for the PsbR subunit. Phylogenetic comparative analysis on different taxa of the Viridiplantae lineage and structural modeling further pointed out to an effect of the evolution of different Lhcb4 isoforms on the light‐dependent modulation of the PSII‐LHCIIsc organization. This information provides new insight on the properties of the Lhcb4 and its isoforms and their role on the structure, function and regulation of PSII.  相似文献   

18.
The relaxation of the non-photochemical quenching of chlorophyll fluorescence has been investigated in cells of the green alga Dunaliella following illumination. The relaxation after the addition of DCMU or darkening was strongly biphasic. The uncoupler NH4Cl induced rapid relaxation of both phases, which were therefore both energy-dependent quenching, qE. The proportion of the slow phase of qE increased at increasing light intensity. In the presence of the inhibitors rotenone and antimycin the slow phase of qE was stabilised for in excess of 15 min. NaN3 inhibited the relaxation of almost all the qE. The implications of these results are discussed in terms of the interpretation of the non-photochemical quenching of chlorophyll fluorescence in vivo and the mechanism of qE.Abbreviations PS II Photosystem II - qQ photochemical quenching of chlorophyll fluorescence - qNP non-photochemical quenching of chlorophyll fluorescence - qE energy-dependent quenching of chlorophyll fluorescence - F m maximum level of chlorophyll fluorescence for dark adapted cells - F m level of fluorescence at any time when qQ is zero  相似文献   

19.
《BBA》2020,1861(4):148035
Proper assembly of plant photosystem II, in the appressed region of thylakoids, allows for both efficient light harvesting and the dissipation of excitation energy absorbed in excess. The core moiety of wild type supercomplex is associated with monomeric antennae that, in turn, bind peripheral trimeric LHCII complexes. Acclimation to light environment dynamics involves structural plasticity within PSII-LHCs supercomplexes, including depletion in LHCII and CP24. Here, we report on the acclimation of NoM, an Arabidopsis mutant lacking monomeric LHCs but retaining LHCII trimer. Lack of monomeric LHCs impaired the operation of both photosynthetic electron transport and state transitions, despite the fact that NoM underwent a compensatory over-accumulation of the LHCII complement compared to the wild type. Mutant plants displayed stunted growth compared to the wild type when probed over a range of light conditions. When exposed to short-term excess light, NoM showed higher photosensitivity and enhanced singlet oxygen release than the wild type, whereas long-term acclimation under stress conditions was unaffected. Analysis of pigment-binding supercomplexes showed that the absence of monomeric LHCs did affect the macro-organisation of photosystems: large PSI-LHCII megacomplexes were more abundant in NoM, whereas the assembly of PSII-LHCs supercomplexes was impaired. Observation by electron microscopy (EM) and image analysis of thylakoids highlighted impaired granal stacking and membrane organisation, with a heterogeneous distribution of PSII and LHCII compared to the wild type. It is concluded that monomeric LHCs are critical for the structural and functional optimisation of the photosynthetic apparatus.  相似文献   

20.
The functional state of the Photosystem (PS) II complex in Arabidopsis psbR T-DNA insertion mutant was studied. The ΔPsbR thylakoids showed about 34% less oxygen evolution than WT, which correlates with the amounts of PSII estimated from YDox radical EPR signal. The increased time constant of the slow phase of flash fluorescence (FF)-relaxation and upshift in the peak position of the main TL-bands, both in the presence and in the absence of DCMU, confirmed that the S2QA and S2QB charge recombinations were stabilized in ΔPsbR thylakoids. Furthermore, the higher amount of dark oxidized Cyt-b559 and the increased proportion of fluorescence, which did not decay during the 100s time span of the measurement thus indicating higher amount of YD+QA recombination, pointed to the donor side modifications in ΔPsbR. EPR measurements revealed that S1-to-S2-transition and S2-state multiline signal were not affected by mutation. The fast phase of the FF-relaxation in the absence of DCMU was significantly slowed down with concomitant decrease in the relative amplitude of this phase, indicating a modification in QA to QB electron transfer in ΔPsbR thylakoids. It is concluded that the lack of the PsbR protein modifies both the donor and the acceptor side of the PSII complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号