首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Free access to a common pool of resource in a country may lead to over-exploitation and sacrifice future opportunities of harvesting. As such, the protection of a common fishery resource is worth investigating. In this paper we develop a two-period model and a multi-period model to analyze the optimal inter-temporal utilization of a finite resource of stock and propose to impose a tax on the harvest rate as an efficient mechanism with an aim at economic sustainability by incorporating the future opportunity of harvesting into the models as a major component of social objectives. The sensitivity analysis of the two-period model shows that (1) labor inputs for harvesting in Period 1 should be reduced, the biomass of fishery stock will increase, but the harvesting in Period 2 should be amplified and the biomass of fishery stock in Period 2 will not be affected if the current generation owns a higher valuation on the future opportunity of harvesting; (2) a higher internal regeneration rate leads to higher harvesting in each period and a higher level of fishery stock in Period 1, but an uncertain level of fishery stock in Period 2; (3) with a higher discount rate the harvesting in Period 1 should increase, but the harvesting in Period 2 should fall and the level of fishery stock in each period will be reduced; (4) a higher fish price in Period 1 leads to higher harvesting in Period 1, but reduced harvesting in Period 2. As a consequence, the level of fishery stock in each period will be reduced; (5) the effect of a change in fish prices in Period 2 on the harvesting and the level of fishery stock in Period 1 is uncertain, but the change in fish prices in Period 2 gives a positive effect on harvesting in Period 2 and a negative effect on the level of fishery stock in Period 2; (6) higher labor wages in Period 1 lead to lower harvesting, but a higher level of fishery stock in Period 1. This encourages an increase in harvesting in Period 2 and leads to a higher level of fishery stock in Period 2; and (7) a change of the labor wage in Period 2 affects the harvesting and the level of fishery stock in Period 1 indecisively, but it gives negative effects on the harvesting in Period 2 and positive effects on the level of fishery stock in Period 2.  相似文献   

2.
Theory and analyses of fisheries data sets indicate that harvesting can alter population structure and destabilise non-linear processes, which increases population fluctuations. We conducted a factorial experiment on the population dynamics of Daphnia magna in relation to size-selective harvesting and stochasticity of food supply. Harvesting and stochasticity treatments both increased population fluctuations. Timeseries analysis indicated that fluctuations in control populations were non-linear, and non-linearity increased substantially in response to harvesting. Both harvesting and stochasticity induced population juvenescence, but harvesting did so via the depletion of adults, whereas stochasticity increased the abundance of juveniles. A fitted fisheries model indicated that harvesting shifted populations towards higher reproductive rates and larger-magnitude damped oscillations that amplify demographic noise. These findings provide experimental evidence that harvesting increases the non-linearity of population fluctuations and that both harvesting and stochasticity increase population variability and juvenescence.  相似文献   

3.
黄土高原集水农业研究进展   总被引:48,自引:4,他引:44  
肖国举  王静 《生态学报》2003,23(5):1003-1011
回顾了黄土高原集水农业理论与技术体系的研究成果.分析评价了集水农业的研究进展。随着黄土高原集水农业研究方法的改进、研究内容的深入、研究领域的扩充.提出了广义性集水农业研究范畴。在黄土高原集水农业理论研究的基础上.应加强微集雨微灌溉应用技术、现代集雨技术、计算机控制技术与集雨网络等高新技术手段的技术集成.以提高雨水汇集与利用效率。同时.黄土高原集水农业的研究已经从微生境条件下的农业生态系统延伸至区域生态环境保育。利用汇集雨水合理调配生态用水.进行小流域综合治理。农林牧综合发展。生态环境重建的集水型生态农业是黄土高原集水农业的发展趋势。  相似文献   

4.
Optimal harvesting of an age-structured population   总被引:11,自引:0,他引:11  
Here we investigate the optimal harvesting of an age-structured population. We use the McKendrick model of population dynamics, and optimize a discounted yield on an infinite time horizon. The harvesting function is allowed to depend arbitrarily on age and time and its magnitude is unconstrained. We obtain, in addition to existence, the qualitative result that an optimal harvesting policy consists of harvesting at no more than three distinct ages.  相似文献   

5.
Wild edible plants, ecological foodstuffs obtained from forest ecosystems, grow in natural fields, and their productivity depends on their response to harvesting by humans. Addressing exactly how wild edible plants respond to harvesting is critical because this knowledge will provide insights into how to obtain effective and sustainable ecosystem services from these plants. We focused on bamboo shoots of Sasa kurilensis, a popular wild edible plant in Japan. We examined the effects of harvesting on bamboo shoot productivity by conducting an experimental manipulation of bamboo shoot harvesting. Twenty experimental plots were prepared in the Teshio Experimental Forest of Hokkaido University and were assigned into two groups: a harvest treatment, in which newly emerged edible bamboo shoots were harvested (n = 10); and a control treatment, in which bamboo shoots were maintained without harvesting (n = 10). In the first year of harvesting (2013), bamboo shoot productivities were examined twice; i.e., the productivity one day after harvesting and the subsequent post-harvest productivity (2–46 days after harvesting), and we observed no difference in productivity between treatments. This means that there was no difference in original bamboo shoot productivity between treatments, and that harvesting did not influence productivity in the initial year. In contrast, in the following year (2014), the number of bamboo shoots in the harvested plots was 2.4-fold greater than in the control plots. These results indicate that over-compensatory growth occurred in the harvested plots in the year following harvesting. Whereas previous research has emphasized the negative impact of harvesting, this study provides the first experimental evidence that harvesting can enhance the productivity of a wild edible plant. This suggests that exploiting compensatory growth, which really amounts to less of a decline in productivity, may be s a key for the effective use of wild edible plants.  相似文献   

6.
Human harvesting is often a major mortality factor and, hence, an important proximate factor driving the population dynamics of large mammals. Several selective harvesting regimes focus on removing animals with low reproductive value, such as “antlered” harvests in North America and juvenile harvesting in many European countries. Despite its widespread use and assumed impact, the scientific basis of juvenile harvesting is scattered in the literature and not empirically well-documented. We give the first overview of demographic, evolutionary and practical management arguments for selective harvesting of juveniles. Furthermore, we empirically test two demographic arguments based on harvest statistics of Red Deer (Cervus elaphus) in seven European countries. P1: Harvesting juveniles has little influence on harvest growth compared with harvesting adult females due to the lower reproductive value of juveniles than adult females; P2: Harvesting of juveniles dampens variance in harvest due to lower and more variable natural survival rates of juveniles compared with adults. We found that harvesting juveniles has little effect on harvest growth rate, while harvesting adult females has a significant negative effect (consistent with P1), but that increasing the proportion of juveniles in the harvest did not decrease the variability in harvest between years (P2 not supported). Based on our empirical findings and overview of arguments, we discuss how the merits of juvenile harvesting may vary over time as populations move from a low density to a very high density state.  相似文献   

7.
The adoption of mechanical harvesting of green cane gives rise to concerns as to whether systems developed under burnt cane harvesting are applicable to a green cane harvesting system. In particular, tillage, which is an integral part of the burnt cane system, may no longer be necessary, and the nitrogen fertilizer rates required may need to be replaced due to the large amounts of organic matter being returned to the soil after green cane harvesting. Mechanical harvesting is relatively new in Brazil and little is known about its effect on other sugarcane production strategies. This work aimed to evaluate sugarcane performance under not only different harvesting and cultivation systems, but also different nitrogen fertilizer rates over a 3-year period. The experimental design was a split plot with harvesting systems (burnt vs. green) as main plots, cultivation (interrow vs. no cultivation) as sub plots, and nitrogen rates as sub-sub plots. The harvesting systems produced similar sugarcane yields throughout the experimental period, which demonstrates that the harvest systems do not influence sugarcane yield. Mechanical tillage practices in interrow after harvesting had no impact on stalk yield or sugar quality, indicating no necessity for this operation in the following crop. Ratoon nitrogen fertilization promoted an increase of stalk and sugar yield, with highest yields obtained at the rate of 130 kg ha?1 N. However, there was no interaction between harvesting system and nitrogen rate.  相似文献   

8.
The effect of optimal stationary harvesting at a constant harvest rate on the dynamics of a two-age population is considered. It has been shown analytically that harvesting a fixed rate of the population size of only one age cohort is optimal. As has been observed, the maximum of revenue function is unattainable in the case of concurrent harvesting of both age cohorts. It has been demonstrated that the direction of natural selection does not explicitly change when unselectively harvesting individuals; however, the adaptive genetic diversity of an unharvested population can be lost due to harvesting.  相似文献   

9.
我国双季茭白品种资源及育种研究   总被引:3,自引:0,他引:3  
在对我国双季茭白资源进行系统调查,整理及研究的基础上,将双季茭白分为两大类;夏茭型和夏秋兼用型,其中夏秋兼用型中又分为两个品种群,对茭白育种的现状,目标及方法进行了讨论,并对今后双季茭白资源及育种研究提出了建议。  相似文献   

10.
1.?The effect of selective exploitation of certain age, stage or sex classes (e.g., trophy hunting) on population dynamics is relatively well studied in fisheries and sexually dimorphic mammals. 2.?Harvesting of terrestrial species with no morphological differences visible between the different age and sex classes (monomorphic species) is usually assumed to be nonselective because monomorphicity makes intentionally selective harvesting pointless and impractical. But harvesting of the red grouse (Lagopus lagopus scoticus), a monomorphic species, was recently shown to be unintentionally selective. This study uses a sex- and age-specific model to explore the previously unresearched effects of unintentional harvesting selectivity. 3.?We examine the effects of selectivity on red grouse dynamics by considering models with and without selectivity. Our models include territoriality and parasitism, two mechanisms known to be important for grouse dynamics. 4.?We show that the unintentional selectivity of harvesting that occurs in red grouse decreases population yield compared with unselective harvesting at high harvest rates. Selectivity also dramatically increases extinction risk at high harvest rates. 5.?Selective harvesting strengthens the 3- to 13-year red grouse population cycle, suggesting that the selectivity of harvesting is a previously unappreciated factor contributing to the cycle. 6.?The additional extinction risk introduced by harvesting selectivity provides a quantitative justification for typically implemented 20-40% harvest rates, which are below the maximum sustainable yield that could be taken, given the observed population growth rates of red grouse. 7.?This study shows the possible broad importance of investigating in future research whether unintentionally selective harvesting occurs on other species.  相似文献   

11.
Harvesting for food or sport is often non‐random with respect to demographic state, such as size or life stage. The population‐level consequences of such selective harvesting depend upon which states are harvested and how those states contribute to population dynamics. We focused on a form of selective harvesting that has not previously been investigated in an experimental context: sex‐selective harvesting, a common feature of exploited, dioecious populations. Using simple metapopulations (two patches connect by dispersal) of sexually dimorphic Bruchid beetles in the laboratory, we contrasted the effects of female‐selective, male‐selective, and non‐selective harvesting over six generation of population dynamics. We also tested the ability of a harvest refuge (one patch of the metapopulation free from harvesting) to mitigate the effects of harvesting, and whether refuge effects interacted with sex selectivity. Sex‐selective harvesting significantly perturbed operational sex ratios and harvest refuges dampened these perturbations. Metapopulations assigned to male‐selective and non‐selective treatments were able to fully compensate for harvesting, such that their dynamics did not differ from non‐harvested controls. Only female‐selective harvesting led to significant reductions in population size and this effect was completely offset by dispersal from a harvest refuge. A two‐sex model confirmed that population dynamics are more sensitive to female vs. male harvesting, but suggested that higher levels of male harvest than included in our experiment would cause population decline. We discuss the roles of density‐dependent competition and frequency‐dependent sexual processes in the population response to sex‐selective harvesting.  相似文献   

12.
The paper analyzes optimal harvesting of age-structured populations described by the Lotka-McKendrik model. It is shown that the optimal time- and age-dependent harvesting control involves only one age at natural conditions. This result leads to a new optimization problem with the time-dependent harvesting age as an unknown control. The integral Lotka model is employed to explicitly describe the time-varying age of harvesting. It is proven that in the case of the exponential discounting and infinite horizon the optimal strategy is a stationary solution with a constant harvesting age. A numeric example on optimal forest management illustrates the theoretical findings. Discussion and interpretation of the results are provided.  相似文献   

13.
A review of the harvesting of micro-algae for biofuel production   总被引:2,自引:0,他引:2  
Many researchers consider efficient harvesting is the major challenge of commercialising micro-algal biofuel. Although micro-algal biomass can be ‘energy rich’, the growth of algae in dilute suspension at around 0.02–0.05 % dry solids poses considerable challenges in achieving a viable energy balance in micro-algal biofuel process operations. Additional challenges of micro-algae harvesting come from the small size of micro-algal cells, the similarity of density of the algal cells to the growth medium, the negative surface charge on the algae and the algal growth rates which require frequent harvesting compared to terrestrial plants. Algae can be harvested by a number of methods; sedimentation, flocculation, flotation, centrifugation and filtration or a combination of any of these. This paper reviews the various methods of harvesting and dewatering micro-algae for the production of biofuel. There appears to be no one method or combination of harvesting methods suited to all micro-algae and harvesting method will have a considerable influence on the design and operation of both upstream and downstream processes in an overall micro-algal biofuel production process.  相似文献   

14.
Although populations ofAscophyllum nodosum are harvested commercially, little is known about the effects on demographic vital rates (growth, reproduction, survival). This study examines the effects of harvesting season and harvesting intensity on growth, reproduction and mortality of intact fronds in four size classes and in fronds truncated by the harvest. Knowledge of size-specific vital rates was used to evaluate the response of the population to harvesting.Harvesting season and harvesting intensity did not exert a significant effect on growth. Growth in plots not subject to harvesting was less than in harvested plots. No major differences in growth, reproduction and survival between intact and severed fronds emerged. The number of fronds attaining reproduction was enhanced by increased harvesting intensity and by cutting in summer. Harvesting did not seem to induce breakage, and breakage appeared higher in the uncut plots. Most harvesting treatments did not influence survivorship and survivorship was similar among all size classes. Growth rates were inversely related to sizes of fronds.Assessment of variation across size classes yielded more accurate estimates of growth rates than those of previously used methods. Accurate size class specific-growth rates will be a useful criterion when regulating intervals between harvests. Furthermore, assessment of size-specific vital rates allows identification of the frond size classes most relevant to the preservation of resources. Because of their fast growth rates and abundance, fronds in class 1, and, to a lesser extent, class 2, are responsible for most of the population regrowth after harvest. In contrast, classes 3 and 4 contribute little to recovery. This finding provides a strong basis for a harvesting strategy that targets the largest fronds.Author for correspondence  相似文献   

15.
Various solutions are utilized widely for the isolation, harvesting, sorting, testing and transplantation of neural stem cells (NSCs), whereas the effects of harvesting media on the biological characteristics and repair potential of NSCs remain unclear. To examine some of these effects, NSCs were isolated from cortex of E14.5 mice and exposed to the conventional harvesting media [0.9% saline (Saline), phosphate-buffered saline (PBS) or artificial cerebrospinal fluid (ACSF)] or the proliferation culture medium (PCM) for different durations at 4°C. Treated NSCs were grafted by in situ injection into the lesion sites of traumatic brain injury (TBI) mice. In vitro, harvesting media-exposed NSCs displayed time-dependent reduction of viability and proliferation. S phase entry decreased in harvesting media-exposed cells, which was associated with upregulation of p53 protein and downregulation of cyclin E1 protein. Moreover, harvesting media exposure induced the necrosis and apoptosis of NSCs. The levels of Fas-L, cleaved caspase 3 and 8 were increased, which suggests that the death receptor signaling pathway is involved in the apoptosis of NSCs. In addition, exposure to Saline did not facilitate the neuronal differentiation of NSCs, suggesting that Saline exposure may be disadvantageous for neurogenesis. In vivo, NSC-mediated functional recovery in harvesting media-exposed NSC groups was notably attenuated in comparison with the PCM-exposed NSC group. In conclusion, harvesting media exposure modulates the biological characteristics and repair potential of NSCs after TBI. Our results suggest that insight of the effects of harvesting media exposure on NSCs is critical for developing strategies to assure the successful long-term engraftment of NSCs.  相似文献   

16.
提升森林质量、修复生态功能是东北阔叶红松林生态修复的核心,而阐明林木与林分生长对采伐干扰的响应机理是其中的关键。森林对采伐干扰的响应会受到空间尺度、时间尺度以及干扰程度等因素的综合影响。以往的研究侧重于比较不同采伐处理下林木生长的相对大小,而忽视了不同恢复时间下,林木和林分生长随干扰程度的变化。以吉林蛟河阔叶红松林采伐样地为对象,基于连续四次样地调查数据(2011、2013、2015、2018年),分别探讨了林木和林分生长在不同恢复阶段对不同程度采伐干扰的响应,并通过构建分段模型确定采伐干扰阈值。结果显示:林木和林分生长对采伐干扰的响应并不一致,采伐促进了林木生长,并且林木生长量随采伐强度的升高而升高;采伐降低了林分生产力,林分生产力随采伐强度的升高而降低。林木和林分生长对采伐干扰的响应存在时滞效应:林木和林分生长在采伐后两年内并无显著变化,而在采伐三年后才发生明显变化。此外,分段模型的结果显示:当保留木断面积为21.6 m2/hm2时,林分生产力最高,表明通过密度调整使阔叶红松林胸高断面积维持在21.6 m2/hm2附近,可使林分处于较高的生产力水平、促进森林恢复。研究结果能够为制定科学的阔叶红松林生态修复策略提供技术支撑。  相似文献   

17.
We analyse the effect of harvesting in a resource dependent age structured population model, deriving the conditions for the existence of a stable steady state as a function of fertility coefficients, harvesting mortality and carrying capacity of the resources. Under the effect of proportional harvest, we give a sufficient condition for a population to extinguish, and we show that the magnitude of proportional harvest depends on the resources available to the population. We show that the harvesting yield can be periodic, quasi-periodic or chaotic, depending on the dynamics of the harvested population. For populations with large fertility numbers, small harvesting mortality leads to abrupt extinction, but larger harvesting mortality leads to controlled population numbers by avoiding over consumption of resources. Harvesting can be a strategy in order to stabilise periodic or quasi-periodic oscillations in the number of individuals of a population.  相似文献   

18.
小兴安岭森林采伐对河川径流的影响   总被引:1,自引:0,他引:1  
采用大流域径流测定与小流域对比实验相结合的方法,利用35年的径流和森林资源变化资料,对小兴安岭林区森林采伐后河川径流发生的一系列变化进行了全面系统的研究.结果表明,森林采伐后营造落叶松人工林,造林初期10年内,河川径流量表现为增加趋势;随着落叶松人工林的不断生长和郁闭成林,采伐流域的径流量逐渐减少,并趋于采伐前水平或低于采伐前水平(与对照流域相比).河川年径流量与年降水量、森林采伐面积及更新造林面积密切相关.森林采伐面积与年径流量呈正相关,森林采伐能增加河川年径流量;更新造林面积与年径流量呈负相关,更新造林能减少年径流量.而森林采伐对洪峰流量和融雪径流量均有显著增加作用.  相似文献   

19.
We investigate how model populations respond to stochastic harvesting in a stochastic environment. In particular, we show that the effects of variable harvesting on the variance in population density and yield depend critically on the autocorrelation of environmental noise and on whether the endogenous dynamics of the population display over- or undercompensation to density. These factors interact in complicated ways; harvesting shifts the slope of the renewal function, and the net effect of this shift will depend on the sign and magnitude of the other influences. For example, when environmental noise exhibits a positive autocorrelation, the relative importance of a variable harvest to the variance in density increases with overcompensation but decreases with undercompensation. For a fixed harvesting level, an increasing level of autocorrelation in environmental noise will decrease the relative variation in population density when overcompensation would otherwise occur. These and other intricate interactions have important ramifications for the interpretation of time series data when no prior knowledge of demographic or environmental details exists. These effects are important whenever the harvesting rate is sufficiently high or variable, conditions likely to occur in many systems, whether the harvesting is caused by commercial exploitation or by any other strong agent of density-independent mortality.  相似文献   

20.
The interaction between environmental variation and population dynamics is of major importance, particularly for managed and economically important species, and especially given contemporary changes in climate variability. Recent analyses of exploited animal populations contested whether exploitation or environmental variation has the greatest influence on the stability of population dynamics, with consequences for variation in yield and extinction risk. Theoretical studies however have shown that harvesting can increase or decrease population variability depending on environmental variation, and requested controlled empirical studies to test predictions. Here, we use an invertebrate model species in experimental microcosms to explore the interaction between selective harvesting and environmental variation in food availability in affecting the variability of stage‐structured animal populations over 20 generations. In a constant food environment, harvesting adults had negligible impact on population variability or population size, but in the variable food environments, harvesting adults increased population variability and reduced its size. The impact of harvesting on population variability differed between proportional and threshold harvesting, between randomly and periodically varying environments, and at different points of the time series. Our study suggests that predicting the responses to selective harvesting is sensitive to the demographic structures and processes that emerge in environments with different patterns of environmental variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号