首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five species of mangroves (Bruguiera gymnorrhiza, Excoecaria agallocha, Heritiera fomes, Phoenix paludosa and Xylocarpus granatum) were investigated with respect to their photosynthesis rate, chlorophyll content, mesophyll conductance, specific leaf area, stomatal conductance and photosynthetic nitrogen use efficiency under saline (15–27 PPT) and non-saline (1.8–2 PPT) conditions. Some inorganic elements were estimated from the leaf samples to compare the concentrations with change in salinity. Elevated assimilation rate coupled with increased chlorophyll content, more mesophyll and stomatal conductance and higher specific leaf area in non-saline condition indicates that these mangroves can grow well even with minimal salinity in soil. In B. gymnorrhiza, E. agallocha and P. paludosa the optimum PAR acquisition for photosynthesis was higher under salt stress, while the maximal rate of assimilation was lower even with minimal salinity. H. fomes and X. granatum followed the opposite trend, where the peak photosynthesis rate was lower under non-saline conditions even at a higher irradiance than in the saline forest. This indicates less affinity of H. fomes and X. granatum to high substrate salinity. Accumulation of Na+ increased in plants in saline substrate, while in most of the species, salinity imposed reduction in Ca+ and Mg+ uptake. Increased K+ content can be attributed to high substrate level K+ in non-saline soil. Trace amount of salinity induced Cu++ detected in leaves of H. fomes may impart some toxic effects. Photosynthetic nitrogen use efficiency increased in non-saline soil that can be attributed to higher photosynthetic peak in most of the species and/or lower nitrogen accumulation in plant samples.  相似文献   

2.
Five typical mangroves were taken (Bruguiera gymnorrhiza, Excoecaria agallocha, Heritiera fomes, Phoenix paludosa and Xylocarpus granatum) both from Sundarbans (in situ) and grown in a mesophytic environment (ex situ, in the Institute’s premises) for 12–15 years. A comparative account of PAR utilization for maximum photosynthesis, stomatal conductance and production of two antioxidant enzymes (peroxidase and Superoxide dismutase) were done between the in situ and ex situ habitats. The present work revealed that the average net photosynthesis was slightly higher in mangroves from non-saline habitats than that of the native ones. At the same time, stomatal conductances were remarkably reduced under salinity-stressed habitats when compared with those of the mesophytic counterparts, by 25–52%. Salinity imposed increase of antioxidant enzymes was observed. Both the investigated antioxidant enzymes showed considerable increase in saline-grown individuals and proved their efficient scavenging ability to evolve reactive oxygen species (ROS), but these increases were relatively lower in Heritiera and Xylocarpus even though the net photosynthesis was higher. This might be related to their lower adaptability under increased salinity stress than those of the other three species investigated.  相似文献   

3.
In the Mediterranean basin, Tamarix spp. constitute important populations along rivers and sea coasts, and might be primarily subjected to water level fluctuations and salinization, as a consequence of global climate change. Here, we analyze leaf gas exchange and xylem anatomy during a water level decrease below the soil surface after short-term flooding with fresh- and saline-water (200?mM) in order to predict Tamarix africana Poiret responses under future environmental conditions. Fresh-water level reduction negatively affected stomatal conductance (?56.3?%), but only when water decreased to the lowest level (15?cm below the soil surface). No effects on assimilation rates and xylem vessel dimensions occurred. Under saline conditions, the rate of the water level decrease was lower compared to the non-saline treatment, as stomatal conductance was negatively affected by salinity (?59.5?%) and significantly declined over time. Moreover, decreases in mean xylem vessel area (?51.3?%), assimilation rates (?52.2?%) and stomatal conductance (?76.0?%) were also observed compared to the control, indicating both an osmotic stress and a toxic effect of NaCl on leaf gas exchange. These leaf responses were probably induced by greater belowground-root salt absorption and transport compared to previous flooding conditions, as confirmed by the increase in salt excretion (+473.2?%). The results emphasize the survival risk of Tamarix spp. to water level variation under both saline and non-saline conditions, and the need of management practices focused on the conservation of these populations.  相似文献   

4.
Photosynthetic electron flux allocation, stomatal conductance, and the activities of key enzymes involved in photosynthesis were investigated in Rumex K-1 leaves to better understand the role of nitric oxide (NO) in photoprotection under osmotic stress caused by polyethylene glycol. Gas exchange and chlorophyll fluorescence were measured simultaneously with a portable photosynthesis system integrated with a pulse modulated fluorometer to calculate allocation of photosynthetic electron fluxes. Osmotic stress decreased stomatal conductance, photosynthetic carbon assimilation, and nitrate assimilation, increased Mehler reaction, and resulted in photoinhibition. Addition of external NO enhanced the stomatal conductance, photosynthetic rate, activities of glutamine synthetase and nitrate reductase, and reduced Mehler reaction and photoinhibition. These results demonstrated that osmotic stress reduced CO2 assimilation, decreasing the use of excited energy via CO2 assimilation which caused significant photoinhibition. Improving stomatal conductance by the addition of external NO enhanced the use of excited energy via CO2 assimilation. As a result, less excited energy was allocated to Mehler reaction, which reduced production of reactive oxygen species via this pathway. We suppose that Mehler reaction is not promoted unless photosynthesis and nitrogen metabolism are prominently inhibited.  相似文献   

5.
盐胁迫对不同生境白榆生理特性与耐盐性的影响   总被引:7,自引:0,他引:7  
以中强度盐土、轻度盐土和非盐土3种生境白榆种子实生苗为试验材料,研究了不同程度盐胁迫(CK、2、4、6、8和10 g·kg-1)条件下3种生境白榆幼苗的耐盐阈值及生理特性.结果表明:随着土壤盐浓度的增加,中强度和轻度盐土生境白榆幼苗叶片的细胞膜透性、Na+含量和Na+/K+增幅低于非盐土生境;叶片的脯氨酸、可溶性糖和K+含量增幅高于非盐土生境;叶片淀粉含量、净光合速率、蒸腾速率、胞间CO2浓度和气孔导度降幅小于非盐土生境.不同生境白榆耐盐性的强弱顺序为:中强度盐土生境(7.76 g·kg-1)>轻度盐土生境(7.37g·kg-1)>非盐土生境(6.95 g·kg-1).与非盐土生境相比,中强度和轻度盐土生境白榆各项生理指标对盐土环境的适应能力更强.  相似文献   

6.
The relationship between single leaf photosynthesis and conductance was examined in cotton (Gossypium hirsutum L.) across a range of environmental conditions. The purpose of this research was to separate and define the degree of stomatal and nonstomatal limitations in the photosynthetic process of field-grown cotton.

Photosynthetic rates were related to leaf conductance of upper canopy leaves in a curvilinear manner. Increases in leaf conductance of CO2 in excess of 0.3 to 0.4 mole per square meter per second did not result in significant increases in gross or net photosynthetic rates. No tight coupling between environmental influences on photosynthetic rates and those affecting conductance levels was evident, since photosynthesis per unit leaf conductance did not remain constant. Slowly developing water stress caused greater reductions in photosynthesis than in leaf conductance, indicating nonstomatal limitations of photosynthesis.

Increases in external CO2 concentration to levels above ambient did not produce proportional increases in photosynthesis even though substomatal or intercellular CO2 concentration increased. The lack of a linear increase in photosynthetic rate in response to increases in leaf conductance and in response to increases in external CO2 concentration demonstrated that nonstomatal factors are major photosynthetic rate determinants of cotton under field conditions.

  相似文献   

7.
Detached leaf is in the state of increasing water deficit; it is a good experimental model for looking into the hardening effect of adaptation of eight-day-old maize (Zea mays L.) seedlings to short-term drought (five days without watering). The light stage of photosynthesis and photosynthetic CO2/H2O exchange in detached leaves were studied. Specific surface density of leaf tissue (SSDL), the content of chlorophylls a and b, proline, MDA as well as photosynthetic parameters: quantum yield of photosystem II fluorescence, assimilation of CO2, and transpiration at room temperature and light saturation (density of PAR quantum flux of 2000 μmol/(m2 s)) at normal and half atmospheric CO2 concentration were determined. The leaves of seedlings exposed to short-term drought differed from control material by a greater SSDL and higher content of proline. The hardening effect of the stress agent on the dark stage of photosynthesis was detected; it was expressed in the maintenance of the higher photosynthetic CO2 assimilation against control material due to the elevation of stomatal conductance for CO2 diffusing into the leaf. Judging from the lack of differences in the MDA content, short-term drought did not injure photosynthetic membranes. In detached leaves of experimental maize seedlings, photosynthesis was maintained on a higher level than in control material.  相似文献   

8.
Salicylic acid (SA) is known to affect photosynthesis under normal conditions and induces tolerance in plants to biotic and abiotic stresses through influencing physiological processes. In this study, physiological processes were compared in salt-tolerant (Pusa Vishal) and salt-sensitive (T44) cultivars of mungbean and examined how much these processes were induced by SA treatment to alleviate decrease in photosynthesis under salt stress. Cultivar T44 accumulated higher leaf Na+ and Cl content and exhibited greater oxidative stress than Pusa Vishal. Activity of antioxidant enzymes, ascorbate peroxidase (APX) and glutathione reductase (GR) was greater in Pusa Vishal than T44. Contrarily, activity of superoxide dismutase (SOD) was greater in T44. The greater accumulation of leaf nitrogen and sulfur through higher activity of their assimilating enzymes, nitrate reductase (NR) and ATP-sulfurylase (ATPS) increased reduced glutathione (GSH) content more conspicuously in Pusa Vishal than T44. Application of 0.5 mM SA increased nitrogen and sulfur assimilation, GSH content and activity of APX and GR. This resulted in the increase in photosynthesis under non-saline condition and alleviated the decrease in photosynthesis under salt stress. It also helped in restricting Na+ and Cl content in leaf, and maintaining higher efficiency of PSII, photosynthetic N-use efficiency (NUE) and water relations in Pusa Vishal. However, application of 1.0 mM SA resulted in inhibitory effects. The effect of SA was more pronounced in Pusa Vishal than T44. These results indicate that SA application alleviates the salt-induced decrease in photosynthesis mainly through inducing the activity of NR and ATPS, and increasing antioxidant metabolism to a greater extent in Pusa Vishal than T44.  相似文献   

9.
Treatment of plants by phytohormones is a perspective method of regulation of the plant stress resistance and productivity. However, the mechanisms of phytohormone effects on physiological processes require investigations. The aim of this work was the analysis of the influence of exogenous abscisic acid (ABA) on photosynthesis in seedlings of pea and wheat, and in particular, an estimation of the involvement of the mesophyll conductance to CO2 in the realization of the ABA effects. A standard system for recording of photosynthetic parameters and a system for intracellular measurements of electrical activity were used in the experiments. It was shown that the effect of exogenous ABA on photosynthesis was most prominent 1 day after spraying of a plant. A detailed analysis of photosynthetic processes showed that ABA decreased photosynthetic assimilation of CO2 and increased cyclic electron flow in plants under study; these processes were interconnected. A decrease of the mesophyll conductance to CO2 was probably a mechanism of the decrease in the photosynthetic assimilation of CO2, because ABA did not significantly influence water conductance of a leaf and parameters of the CO2 fixation in Calvin–Benson cycle. It is likely that the decrease of the mesophyll conductance to CO2 was related with a decrease of the plasma membrane conductance to carbon dioxide. Inactivation of H+-ATP-ase and changes in extracellular pH can be a mechanism of this decrease. A decrease of the metabolic component of the electrical resting potential after the ABA treatment testifies in favor of this possibility.  相似文献   

10.
Bongi G  Loreto F 《Plant physiology》1989,90(4):1408-1416
The effects of two levels of salinity on photosynthetic properties of olive (Olea europea L.) leaves were observed either in low or in high H2O vapor pressure deficit (vpd). Under moderate salt stress, stomata were found to be less open and responsive both to light and vpd, but the predominant limitation of photosynthesis was due to the mesophyll capacity of CO2 fixation. We elaborate a procedure to correlate mesophyll capacity and liquid phase diffusive conductance. The estimated liquid phase diffusive conductance was reduced by salt and especially by high vpd; morphological and physiological changes could be responsible for this reduction. As a result, the chloroplast CO2 partial pressure was found to decrease both under salt and vpd stress, thus resulting in a ribulose-1,5-bisphosphate carboxylase limitation of assimilation. However, under combined salt and vpd stress, O2 sensitivity of assimilation increased, as would be expected under conditions of limiting ribulose 1,5-bisphosphate regeneration. Fluorescence induction measurements indicated that, under these conditions, energy supply may become limiting. When Cl concentration exceeded 80 millimolar in tissue water, zero growth and 50% leaf drop was observed. Fluorescence induction showed irreversible damage at Cl levels higher than 200 millimolar and basal leaves reached this concentration earlier than the apical ones.  相似文献   

11.
Optimal allocation of leaf nitrogen maximizes daily CO2 assimilation for a given leaf nitrogen concentration. According to the hypothesis of optimization, this condition occurs when the partial derivative of assimilation rate with respect to leaf nitrogen concentration is constant. This hypothesis predicts a linear increase of assimilation rate with leaf nitrogen concentration under constant conditions. Plants of Amaranthus powellii Wats. were grown at 1, 5, 10, or 45 millimolar nitrate to obtain leaves with different nitrogen concentrations. Assimilation rate at 340 microbar CO2/bar, stomatal conductance, CO2- and light-saturated net photosynthetic rate, the initial slope of the CO2 response of photosynthesis, ribulose-1,5′-bisphosphate carboxylase activity, and phosphoenolpyruvate carboxylase activity were linearly related to estimated or actual leaf nitrogen concentration. The data are consistent with the optimal use of leaf nitrogen. This hypothesis and the hypothesis of optimal stomatal conductance were combined to determine the relationship between conductance and leaf nitrogen concentration. The slope of conductance versus leaf nitrogen concentration was not significantly different than the slope predicted by the combination of the two hypotheses. Stomatal conductance was linearly related to leaf nitrogen in the field and the slope decreased with lower xylem pressure potentials in a manner consistent with the hypotheses. Finally, apparent maximum stomatal aperture of isolated abaxial epidermal strips was linearly related to leaf nitrogen suggesting stomatal conductance and assimilation rate are controlled in parallel by leaf nitrogen concentration or some factor correlated with leaf nitrogen.  相似文献   

12.
A pot experiment was carried out to explore the role of glycinebetaine (GB) as foliar spray foliar on two pea (Pisum sativum L.) varieties (Pea 09 and Meteor Fsd) under saline and non-saline conditions. Thirty-two-day-old plants were subjected to two levels 0 and 150 mM of NaCl stress. Salt treatment was applied in full strength Hoagland’s nutrient solution. Three levels 0, 5 and 10 mM of GB were applied as foliar treatment on 34-day-old pea plants. After 2 weeks of foliar treatment with GB data for various growth and physiochemical attributes were recorded. Rooting-medium applied salt (150 mM NaCl) stress decreased growth, photosynthesis, chlorophyll, chlorophyll fluorescence and soluble protein contents, while increasing the activities of enzymatic (POD and CAT) and non-enzymatic (ascorbic acid and total phenolics) antioxidant enzymes. Foliar application of GB decreased root and shoot Na+ under saline conditions, while increasing shoot dry matter, root length, root fresh weight, stomatal conductance (g s), contents of seed ascorbic acid, leaf phenolics, and root and shoot Ca2+ contents. Of three GB (0, 5, 10 mM) levels, 10 mM proved to be more effective in mitigating the adverse effects of salinity stress. Overall, variety Pea 09 showed better performance in comparison to those of var. Meteor Fsd under both normal and salinity stress conditions. GB-induced modulation of seed ascorbic acid, leaf phenolics, g s, and root Ca2+ values might have contributed to the increased plant biomass, reduction of oxidative stress, increased osmotic adjustment and better photosynthetic performance of pea plants under salt stress.  相似文献   

13.
《Acta Oecologica》2001,22(4):187-200
Phenotypic plasticity may allow organisms to cope with variation in the environmental conditions they encounter in their natural habitats. Salt adaptation appears to be an excellent example of such a plastic response. Many plant species accumulate organic solutes in response to saline conditions. Comparative and molecular studies suggest that this is an adaptation to osmotic stress. However, evidence relating the physiological responses to fitness parameters is rare and requires assessing the potential costs and benefits of plasticity. We studied the response of thirty families derived from plants collected in three populations of Plantago coronopus in a greenhouse experiment under saline and non-saline conditions. We indeed found a positive selection gradient for the sorbitol percentage under saline conditions: plant families with a higher proportion of sorbitol produced more spikes. No effects of sorbitol on fitness parameters were found under non-saline conditions.Populations also differed genetically in leaf number, spike number, sorbitol concentration and percentages of different soluble sugars. Salt treatment led to a reduction of vegetative biomass and spike production but increased leaf dry matter percentage and leaf thickness. Both under saline and non-saline conditions there was a negative trade-off between vegetative growth and reproduction. Families with a high plasticity in leaf thickness had a lower total spike length under non-saline conditions. This would imply that natural selection under predominantly non-saline conditions would lead to a decrease in the ability to change leaf morphology in response to exposure to salt. All other tests revealed no indication for any costs of plasticity to saline conditions.  相似文献   

14.
Photosynthetic responses of intact leaves of the desert shrub Encelia farinosa were measured during a long term drought cycle in order to understand the responses of stomatal and nonstomatal components to water stress. Photosynthetic rate at high irradiance and leaf conductance to water vapor both decreased linearly with declining leaf water potential. The intercellular CO2 concentration (ci) remained fairly constant as a function of leaf water potential in plants subjected to a slow drought cycle of 25 days, but decreased in plants exposed to a 12-day drought cycle. With increasing water stress, the slope of the dependence of photosynthesis on ci (carboxylation efficiency) decreased, the maximum photosynthetic rates at high ci became saturated at lower values, and water use efficiency increased. Both the carboxylation efficiency and photosynthetic rates were positively correlated with leaf nitrogen content. Associated with lower leaf conductances, the calculated stomatal limitation to photosynthesis increased with water stress. However, because of simultaneous changes in the dependence of photosynthesis on ci with water stress, increased leaf conductance alone in water-stressed leaves would not result in an increase in photosynthetic rates to prestressed levels. Both active osmotic adjustment and changes in specific leaf mass occurred during the drought cycle. In response to increased water stress, leaf specific mass increased. However, the increases in specific leaf mass were associated with the production of a reflective pubescence and there were no changes in specific mass of the photosynthetic tissues. The significance of these responses for carbon gain and water loss under arid conditions are discussed.  相似文献   

15.
The present study evaluated the effects of inoculation with arbuscular mycorrhizal fungi (AMF; Glomus iranicum var. tenuihypharum sp. nova) on the physiological performance and production of lettuce plants grown under greenhouse conditions and supplied with reclaimed water (RW; urban-treated wastewater with high electrical conductivity; 4.19 dS m?1). Four treatments, fresh water, fresh water plus AMF inoculation, RW and RW plus AMF inoculation, were applied and their effects, over time, analyzed. Root mycorrhizal colonization, plant biomass, leaf-ion content, stomatal conductance and net photosynthesis were assessed. Overall, our results highlight the significance of the AMF in alleviation of salt stress and their beneficial effects on plant growth and productivity. Inoculated plants increased the ability to acquire N, Ca, and K from both non-saline and saline media. Moreover, mycorrhization significantly reduced Na plant uptake. Under RW conditions, inoculated plants also showed a better performance of physiological parameters such as net photosynthesis, stomatal conductance and water-use efficiency than non-mycorrhizal plants. Additionally, the high concentration of nutrients already dissolved in reclaimed water suggested that adjustments in the calculation of the fertigation should be conducted by farmers. Finally, this experiment has proved that mycorrhization could be a suitable way to induce salt stress resistance in iceberg lettuce crops as plants supplied with reclaimed water satisfied minimum legal commercial size thresholds. Moreover, the maximum values of Escherichia coli in the reclaimed water were close to but never exceeded the international thresholds established (Spanish Royal Decree 1620/2007; Italian Decree, 2003) and hence lettuces were apt for sale.  相似文献   

16.
Tambussi EA  Nogués S  Araus JL 《Planta》2005,221(3):446-458
The photosynthetic characteristics of the ear and flag leaf of well-watered (WW) and water-stressed (WS) durum wheat (Triticum turgidum L. var. durum) were studied in plants grown under greenhouse and Mediterranean field conditions. Gas exchange measurements simultaneously with modulated chlorophyll fluorescence were used to study the response of the ear and flag leaf to CO2 and O2 during photosynthesis. C4 metabolism was identified by assessing the sensitivity of photosynthetic rate and electron transport to oxygen. The presence of CAM metabolism was assessed by measuring daily patterns of stomatal conductance and net CO2 assimilation. In addition, the histological distribution of Rubisco protein in the ear parts was studied by immunocytochemical localisation. Relative water content (RWC) and osmotic adjustment (osmotic potential at full turgor) were also measured in these organs. Oxygen sensitivity of the assimilation rate and electron transport, the lack of Rubisco compartmentalisation in the mesophyll tissues and the gas-exchange pattern at night indicated that neither C4 nor CAM metabolism occurs in the ear of WW or WS plants. Nevertheless, photosynthetic activity of the flag leaf was more affected by WS conditions than that of the ear, under both growing conditions. The lower sensitivity under water stress of the ear than of the flag leaf was linked to higher RWC and osmotic adjustment in the ear bracts and awns. We demonstrate that the better performance of the ear under water stress (compared to the flag leaf) is not related to C4 or CAM photosynthesis. Rather, drought tolerance of the ear is explained by its higher RWC in drought. Osmotic adjustment and xeromorphic traits of ear parts may be responsible.  相似文献   

17.
Leaf gas‐exchange regulation plays a central role in the ability of trees to survive drought, but forecasting the future response of gas exchange to prolonged drought is hampered by our lack of knowledge regarding potential acclimation. To investigate whether leaf gas‐exchange rates and sensitivity to drought acclimate to precipitation regimes, we measured the seasonal variations of leaf gas exchange in a mature piñon–juniper Pinus edulisJuniperus monosperma woodland after 3 years of precipitation manipulation. We compared trees receiving ambient precipitation with those in an irrigated treatment (+30% of ambient precipitation) and a partial rainfall exclusion (?45%). Treatments significantly affected leaf water potential, stomatal conductance and photosynthesis for both isohydric piñon and anisohydric juniper. Leaf gas exchange acclimated to the precipitation regimes in both species. Maximum gas‐exchange rates under well‐watered conditions, leaf‐specific hydraulic conductance and leaf water potential at zero photosynthetic assimilation all decreased with decreasing precipitation. Despite their distinct drought resistance and stomatal regulation strategies, both species experienced hydraulic limitation on leaf gas exchange when precipitation decreased, leading to an intraspecific trade‐off between maximum photosynthetic assimilation and resistance of photosynthesis to drought. This response will be most detrimental to the carbon balance of piñon under predicted increases in aridity in the southwestern USA.  相似文献   

18.
Photosynthesis, transpiration, stomatal conductance and chlorophyll fluorescence characteristics were examined in kidney bean plants, with developing gradually water stress for several days after watering and then permitted to recover by re-watering. The photosynthetic rate, transpiration rate, and stomatal conductance decreased rapidly by withholding water for 2 days. The Fv/Fm of chlorophyll fluorescence characteristics slightly decreased when the water was withheld for 7 days. After re-watering the rate of recovery of photosynthesis, transpiration, and stomatal conductance decreased gradually as the days without watering became longer. The differences existed in rates of recovery of photosynthesis, transpiration, and stomatal conductance following drought stress. Among the fractional recoveries the highest was photosynthesis, and the lowest was stomatal conductance. Photosynthesis rate following drought stress was rapidly recovered until 2 days after re-watering, then recovered slowly. The critical time for the recovery of photosynthesis was recognized. The results show clearly a close correlation between the leaf water potential and the recovery level and speed of photosynthesis, transpiration, and stomatal conductance.  相似文献   

19.
《Aquatic Botany》2005,81(4):285-299
The water stress tolerance of Phragmites australis (Cav.) Trin ex. Steud. grown in the laboratory were investigated by examining effects of different levels of imposed water deficits on growth, photosynthesis and various physiological traits related to water stress. Individual plants were grown under conditions of unrestricted water supply and compared with groups of plants receiving 60, 30, 15 or 5% of previous daily water requirements, respectively.Water deficit was found to reduce the leaf area and the leaf biomass per plant due to decreased production of new leaves, increased leaf shedding and reduced average leaf size. Leaf production and leaf expansion growth were very sensitive to water availability and were reduced when plants were subjected to fairly mild water deficit. Osmolality in sap expressed from leaves and the concentration of proline in leaves were only significantly increased in severely stressed plants, indicating that osmotic adjustment was of minor importance until a critical stress level was reached. Photosynthetic parameters were rather unaffected until the water availability was very low and led to the assertion that reduced CO2 assimilation was mainly due to stomatal closure and not biochemical changes. Water stress had no effect on the activity of Rubisco. The CO2 assimilation rate and stomatal conductance decreased in such a way that the intrinsic water use efficiency (A/gs) increased, indicating efficient CO2 utilization in water stressed plants. The apparent quantum yield (φi) was reduced in leaves of the most stressed plants, probably due to a decrease in the CO2 molar fraction in the chloroplasts following stomatal closure.The initial response of P. australis to water deficit is a reduction in leaf area, the remaining leaves staying physiological rather well functioning until they are severely stressed. A high intrinsic water use efficiency and the ability to maintain some capacity for photosynthesis under severe water stress can undoubtedly contribute to the survival of P. australis under dry conditions. Taken together with its well-developed adaptations to flooding, P. australis seems very well adapted to grow in wetland areas with a widely fluctuating hydroperiod. P. australis grows very well in rather deep water, but can also tolerate extensive periods of drought with reduced availability of water.  相似文献   

20.

Key message

Stomatal regulation involves beneficial effects of pruning mulch and irrigation on leaf photosynthesis in Prunus yedoensis and Ginkgo biloba under moderate drought. G. biloba showed conservative water use under drought.

Abstract

Leaf photosynthesis is highly sensitive to soil water stress via stomatal and/or biochemical responses, which markedly suppress the growth of landscape trees. Effective irrigation management to maintain leaf photosynthesis and information on species-specific photosynthetic responses to soil water stress are essential for the sustainable management of landscape trees in Japan, in which summer drought often occurs. In order to investigate effective irrigation management, we used plants with moderate soil water stress as controls, and examined the effects of daily irrigation and pruning mulch on leaf photosynthesis in container-grown Ginkgo biloba and Prunus yedoensis, which are the first and second main tall roadside trees in Japan. Stomatal conductance was significantly increased by pruning mulch and daily irrigation, with similar increases in leaf photosynthesis being observed in P. yedoensis and G. biloba. In order to obtain information on species-specific photosynthetic responses to soil water stress, we compared the responses of leaf photosynthesis and leaf water status to reductions in soil water content (SWC) between the two species. G. biloba maintained a constant leaf water potential, leaf water content, maximum carboxylation rate, and electron transport rate with reductions in SWC, whereas reductions were observed in P. yedoensis. We concluded that pruning mulch and irrigation effectively offset the negative impact of moderate water stress on leaf photosynthesis in summer in P. yedoensis and G. biloba via stomatal regulation, and also that G. biloba maintained its photosynthetic biochemistry and leaf water status better than P. yedoensis under severe water stress.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号