共查询到20条相似文献,搜索用时 15 毫秒
1.
Background and Aims
Calotropis procera and Calotropis gigantea, originally from warm parts of Africa and Asia, are now pan-tropical and in ecological terms considered an indicator of overgrazed, disturbed lands; they grow successfully in dry areas. Variations in water relations, morphology and photosynthesis of the two species growing in the same habitat were studied to assess possible mechanisms of tolerance to drought and how these relate to their ecophysiological success. Also the hypothesis that their photosynthetic rate (A) under drought would be affected by stomatal and non-stomatal limitations was tested.Methods
Water relations, gas exchange, water use efficiency (WUE), fluorescence parameters, pubescence and specific leaf area (SLA) of Calotropis procera and C. gigantea plants growing in the field were evaluated during the wet (WS) and dry (DS) seasons.Results
The xylem water potential (ψ) was similar in both species during the WS and DS; drought caused a 28 % decrease of ψ. In C. procera, A, stomatal conductance (gs) and carboxylation efficiency (CE) were higher in the WS with half the values of those during the DS, this species being more affected by drought than C. gigantea. A high δ13C of C. gigantea (–26·2 ‰) in the WS indicated a higher integrated WUE, in agreement with its lower gs. Leaves of C. gigantea were more pubescent than C. procera. Relative stomatal and non-stomatal limitation of A increased with drought in both species; no changes in maximum quantum yield of photosystem II (PSII; Fv/Fm) were observed. The decrease in the relative quantum yield of PSII (φPSII) and in the photochemical quenching coefficient (qP) was more pronounced in C. procera than in C. gigantea.Conclusions
The photosynthetic capacity of C. procera was higher than that of C. gigantea. During the DS, A was regulated by stomatal and non-stomatal factors in a coordinated manner and drought did not cause chronic photoinhibition. A higher density of trichomes and leaf angle in C. gigantea may contribute to the maintenance of A and confer more efficient protection of photochemical activity in the DS. Ecophysiological traits such as high photosynthetic rate throughout the year even during the DS, and high WUE, highly pubescent leaves and low SLA observed in both species contribute to the establishment and growth of Calotropis in dry conditions. 相似文献2.
A comparative study of leaf anatomy and morphology and of CO2 exchange was conducted with Rhodiola rosea L., Hylotelephium triphyllum (Haw.) Holub., and Sedum acre L. as representative Crassulacean species occurring in the northeast European Russia. The leaf mesophyll in R. rosea was clearly differentiated into the palisade and spongy tissues, whereas the mesophyll of stonecrops (H. triphyllum and S. acre) was composed of round-shaped cells. The leaves of S. acre featured the largest volume of mesophyll cells and possessed water-retaining cells located around conducting bundles. The chloroplast volume in S. acre (50 μm3) was three times smaller and the number of chloroplasts per cell (170 cell?1) was three times higher than in R. rosea and H. triphyllum (50–55 cell?1). The content of chlorophylls (5–7 mg/g dry wt) and carotenoids (1.5–2.0 mg/g dry wt) in R. rosea leaves was 2–3 times higher than in leaves of stonecrops. The rate of CO2 net uptake in Crassulacean species depended on mesostructure and correlated with the content of pigments and soluble carbohydrates. The photosynthetic rate in R. rosea under optimal irradiance and temperature attained the value of 40 mg/(g dry wt), which is 3 and 8 times higher than in H. triphyllum and S. acre, respectively. The temperature optimum for photosynthesis of R. rosea was observed at 8–18°C, while the optimum for stonecrops was shifted towards higher temperatures by 3–5°C. At chilling temperatures (5–7°C), the leaves of R. rosea retained 50% of their maximal photosynthetic rate, while photosynthetic rates in H. triphyllum and S. acre leaves lowered to 25–30% of the maximal rate. The increase in temperature to 25–30°C led to depression of CO2 net uptake in leaves of Crassulacean species. In R. rosea and H. triphyllum, the rate of photosynthetic electron flow was depressed at high irradiances and temperatures that were supraoptimal for net photosynthesis. It is concluded that the photosynthetic apparatus of Crassulacean species is well adapted to moderate and chilling temperatures, which adjusts the plant metabolism to “life strategies” under conditions of cold climate. 相似文献
3.
Sheri A. Shiflett Julie C. Zinnert Donald R. Young 《Trees - Structure and Function》2014,28(6):1635-1644
Key message
Reduced leaf longevity, N-fixation, and enhanced hydraulic capacity combined support greater shifts in seasonal photosynthetic capacity of an expansive understory evergreen woody species relative to co-occurring less expansive evergreen species.Abstract
Physiological functioning typically declines with increased leaf life span. While an evergreen leaf habit is generally associated with reduced leaf N, physiological capacity, and slower growth, most expansive woody species are evergreens and/or N fixers. An evergreen leaf habit enables year-round activity and less investment in carbon and nutrients, while N-fixation enhances photosynthetic capacity. Our objective was to compare anatomy and physiology of three woody evergreens Ilex opaca Aiton (Aquifoliaceae), Kalmia latifolia L. (Ericaceae), and Myrica cerifera (Myricaceae) of varying leaf longevity, N-fixation capability, and known expansive potential in a deciduous forest understory to determine if seasonal physiological performance integrated these factors. We hypothesized that I. opaca (non-expansive) and K. latifolia (moderately expansive), which have longer leaf longevities, would have reduced physiological performance compared to M. cerifera (expansive), which has shorter leaf longevity, and symbiotically fixes atmospheric N. Stomatal conductance to water vapor, photosynthetic and hydraulic capacities, specific leaf area, and leaf %N decreased with increasing leaf life span; however, trends among species were not consistent seasonally. While hydraulic capacity remained constant throughout the year, photosynthetic capacity did not. During the growing season, M. cerifera displayed photosynthetic capacity similar to deciduous species, yet, during the winter, photosynthetic capacity was similar to the slower-growing evergreens. Reduced leaf life span, enhanced hydraulic capacity, and nitrogen fixation support the seasonal shift in photosynthetic capacity observed in M. cerifera. This “hybrid” strategy enables M. cerifera to maximize productivity during months of optimal conditions, thereby promoting rapid growth and expansion in the understory. 相似文献4.
Xanthophyll-cycle pigments and photosynthetic capacity (PSmax) were analyzed in 25 species from different light environments (canopy, gap, understory) within a Panamanian tropical forest. (1) Sun-exposed leaves of canopy tree species showed the highest photosynthetic capacities and largest xanthophyll-cycle pools (violaxanthin, antheraxanthin, zeaxanthin) of about 87 mmol mol-1 chlorophyll with only small amounts of -carotene [about 7 mmol mol-1 chlorophyll = 8% of total (+) carotene pool]. Under high natural photon flux densities (PFDs) canopy leaves rapidly converted up to 96% of the xanthophyll-cycle pool into zeaxanthin. The back reaction to violaxanthin occurred much faster in low light than in complete darkness. At the end of the night, zeaxanthin still accounted for, on average, 14% of the total xanthophyll-cycle pigments. (2) Leaves of gap plants had intermediate values of PSmax and a 43% lower total carotenoid content than canopy leaves. The average size of the xanthophyll-cycle pool was 35 mmol mol-1 chlorophyll, and -carotene accounted for up to 66% of the total (+) carotene pool. Under high light conditions gap plants converted, on average, 86% of the xanthophyll-cycle pigments into zeaxanthin. The back reaction, following a decrease in ambient PFD, was slower than the forward reaction. At the end of the night, zeaxanthin accounted for, on average, 7% of the xanthophyll-cycle pigments in gap plants. (3) Understory plants showed the lowest values of PSmax and the smallest xanthophyll-cycle pool of about 22 mmol mol-1 chlorophyll. -Carotene accounted for up to 70% of total carotene. The conversion of xanthophyll-cycle pigments into zeaxanthin was negligible during short sunflecks of 1–2 min duration and PFDs up to about 400 mol m-2 s-1. At predawn, leaves of understory plants rarely contained any detectable zeaxanthin. Aechmea magdalenae, an understory CAM plant, showed exceptionally high rates of PSmax per unit leaf area compared to sympatric C3 understory species. 相似文献
5.
The effect of leaf age on photosynthetic capacity, a critical parameter in the theory of optimal leaf longevity, was studied for two tropical pioneer tree species, Cecropia longipes and Urera caracasana, in a seasonally dry forest in Panama. These species continuously produce short-lived leaves (74 and 93 d, respectively) during the rainy season (May-December) on orthotropic branches. However, they differ in leaf production rate, maximum number of leaves per branch, light environment experienced by the leaves, leaf mass per unit area, and nitrogen content. Light-saturated photosynthetic rates for marked leaves of known ages (±1 wk) were measured with two contrasting schemes (repeated measurements vs. chronosequence within branch), which overall produced similar results. In both species, photosynthetic rates and nitrogen use efficiency were negatively correlated with leaf age and positively correlated with light availability. Photosynthetic rates declined faster with leaf age in Cecropia than in Urera as predicted by the theory. The rate of decline was faster for leaves on branches with faster leaf turnover rates. Nitrogen per unit leaf area decreased with leaf age only for Urera. Leaf mass per unit area increased with leaf age, either partly (in Cecropia) or entirely (in Urera) due to ash accumulation. 相似文献
6.
Overaccumulation of glycine betaine enhances tolerance of the photosynthetic apparatus to drought and heat stress in wheat 总被引:3,自引:0,他引:3
To investigate the role of glycine betaine in photosynthesis under stress, a transgenic wheat (Triticum aestivum L.) line T6 overaccumulating glycine betaine and its wild type Shi4185 were used. Seedlings were exposed to conditions of
drought (30%, PEG-6000), heat (40°C) and their combination. The results revealed ultrastructural damage to the chloroplast
and thylakoid lamellae with the withered phenotype by both drought and heat stress, and the damage was exacerbated by the
combination of drought and heat. The appearance of a K step in the typical O-J-I-P curve and the decrease of Hill activity
indicated a reduction of oxygen evolving complex function caused by stress. The greater damage was found in wild type than
T6. Overaccumulation of glycine betaine in T6 could protect lipids in the thylakoid membrane from damage and stabilize the
index of unsaturated fatty acids under stress. A lower ratio of monogalactosyl diacylglycerol/digalactosyl diacylglycerol
and higher phosphatidylglycerol content in the thylakoid membrane of T6 were also observed under stress. These effects can
promote stability of the thylakoid membrane. Otherwise, glycine betaine overaccumulation decreased photoinhibition of PSII
under stress. The results also suggest that xanthophyll cycle-dependent non-radiative energy dissipation may be involved in
the GB-mediated effects on PSII function under stress conditions. 相似文献
7.
Mineral oil-based emulsifiable preparations of Beauveria bassiana (Bb) and Paecilomyces fumosoroseus (Pfr) conidia were separately applied alone or together with low rates of imidacloprid 10% WP at 4.7% (Im 1), 14.0% (Im 2), and 23.3% (Im 3) of its recommended application rate, respectively, against the greenhouse whitefly, Trialeurodes vaporariorum, on lettuce grown in the greenhouse. Besides eight fungal treatments, the three low application rates of imidacloprid in the oil-based carrier and a blank control (CK) were also included as treatments of the trials conducted in 2002 and 2003. For the 12 treatments of each trial with three replicates, 1,000-fold aqueous dilutions were sprayed twice on transplanted lettuce at a 15-day interval at a rate of ∼1.43×1013 conidia ha-1 for each fungal treatment or at one of the low rates of imidacloprid using a backpack hand-operated hydraulic sprayer. Based on whitefly densities, mortalities, relative efficacies and percent density declines estimated from whitefly counts made at 5-day intervals, all B. bassiana and P. fumosoroseus sprays were highly effective against T. vaporariorum compared to CK and Im 1-3 in both trials. In trial 1, the estimates of whitefly density decline and relative efficacy ranged from 44 and 72% (Bb) to 79 and 90% (Pfr+Im 2-3) on day 10 after the first spray and exceeded 94% for all fungal treatments 10 days after the second spray. Similar trends in whitefly control were also achieved in the corresponding treatments of trial 2. A more desirable and faster control resulted from fungal sprays containing more imidacloprid, but none of the three low imidacoprid rates alone suppressed the whitefly population more effectively than any fungal treatment despite a varying degree of efficacy. Moreover, P. fumosoroseus tended to be more effective against T. vaporariorum than B. bassiana when applied alone or together with the same low rate of imidacloprid but the difference in whitefly control eventually achieved was not significant between the two fungal agents. Thus, the emulsifiable preparations of both fungal agents can be considered as alternatives for whitefly management and for a slightly faster control can be applied together with imidacloprid at around 15% of its common application rate. An economic balance between the efficacy of whitefly control and the ease and cost of conidial production is needed when both fungi are incorporated into whitefly management. 相似文献
8.
Nevo R Charuvi D Tsabari O Reich Z 《The Plant journal : for cell and molecular biology》2012,70(1):157-176
The process of oxygenic photosynthesis enabled and still sustains aerobic life on Earth. The most elaborate form of the apparatus that carries out the primary steps of this vital process is the one present in higher plants. Here, we review the overall composition and supramolecular organization of this apparatus, as well as the complex architecture of the lamellar system within which it is harbored. Along the way, we refer to the genetic, biochemical, spectroscopic and, in particular, microscopic studies that have been employed to elucidate the structure and working of this remarkable molecular energy conversion device. As an example of the highly dynamic nature of the apparatus, we discuss the molecular and structural events that enable it to maintain high photosynthetic yields under fluctuating light conditions. We conclude the review with a summary of the hypotheses made over the years about the driving forces that underlie the partition of the lamellar system of higher plants and certain green algae into appressed and non-appressed membrane domains and the segregation of the photosynthetic protein complexes within these domains. 相似文献
9.
10.
D. Stoyanova-Koleva M. Stefanova M. Zhiponova V. Kapchina-Toteva 《Biologia Plantarum》2012,56(4):607-612
The leaf structure and chloroplast ultrastructure of kidney tea (Orthosiphon stamineus Benth.) was studied in in vitro culture on standard MS medium supplemented with or without plant growth regulators (PGRs). The cytokinin N6-benzyladenine (BA) negatively affected the structure of the palisade parenchyma and chloroplast ultrastructure and increased the stomatal frequency of the adaxial epidermis. The auxin indole-3-butyric acid (IBA) did not modify the morphology of regenerated leaf tissues as well as the chloroplast ultrastructure. The effect of both PGRs applied in combination was manifested in well-differentiated mesophyll parenchyma, typical chloroplast ultrastructure and increased stomatal frequency on both leaf surfaces. This protocol can be suggested for further ex vitro propagation. 相似文献
11.
Nutrient-limited productivity of calcareous versus fleshy macroalgae in a eutrophic,carbonate-rich tropical marine environment 总被引:4,自引:0,他引:4
The results of a study of nutrient enrichment with nitrogen (N) and phosphorus (P) on productivity and calcification of fleshy and calcareous algae are reported in this study. Plants were collected from a nearshore eutrophic site in the Florida Keys (USA) and experimentally pulsed during the night with combinations of N and P. After several days of pulsing (7–10 days), net productivity, calcification, and alkaline phosphatase activity (APA), were measured. Productivity of fleshy algae were frequently enhanced by N, P, and N+P, during both summer and winter. Phosphorus limited the productivity of Hydroclathrus clathratus during winter and Ulva spp. during summer, whereas nitrogen limited the productivity of Laurencia intricata during both seasons. During summer, Dictyota cervicornis productivity was not enhanced by any nutrient enrichment. Nitrogen limited the productivity of the three calcareous species Penicillus capitatus, Penicillus dumetosus and Halimeda opuntia during winter and that of H. opuntia during summer. Neither N nor P enrichment increased calcification of calcareous species, and P enrichment greatly inhibited calcification of P. dumetosus during winter. Nutrient enrichment enhanced the productivity of the fleshy species to a greater extent than that of calcareous algae. The seawater DIN:SRP molar ratio was low at our eutrophic study site (molar ratio average of 3:1 during winter and 9:1 during summer) compared to more oligotrophic sites in the Florida Keys, suggesting that in carbonate-rich environments, eutrophication shifts nutrient regulation of productivity from P to N. APA activities of fleshy macroalage were higher than calcareous algae, and rates of all macro algae were 2- to 7-fold higher in summer compared to winter. Productivity was also about 3-fold higher in fleshy compared to calcareous species and about 2-fold higher in summer compared to winter. These results suggest that nutrient enrichment enhances productivity of fleshy algae to a greater extent than that of calcareous algae. Thus, overgrowth of calcareous algae by more opportunistic fleshy forms could reduce carbonate accretion in tropical coastlines experiencing increased eutrophication. 相似文献
12.
Salinity is one of the major environmental factors limiting plant growth and productivity. An H(+)-PPase gene, TsVP from Thellungiella halophila, was transferred into cotton (Gossypium hirsutum) in sense and antisense orientations under control of the cauliflower mosaic virus (CaMV) 35S promoter. Southern and Northern blotting analysis showed that the sense or antisense TsVP were integrated into the cotton genome and expressed. Transgenic plants overexpressing the vacuolar H(+)-PPase were much more resistant to 150 and 250 mM NaCl than the isogenic wild-type plants. In contrast, the plants from the antisense line (L-2), with lower H(+)-PPase activity, were more sensitive to salinity than the wild-type plants. Overexpressing TsVP in cotton improved shoot and root growth and photosynthetic performance. These transgenic plants accumulated more Na(+), K(+), Ca(2+), Cl(-) and soluble sugars in their root and leaf tissues under salinity conditions compared with the wild-type plants. The lower membrane ion leakage and malondialdehyde (MDA) level in these transgenic plants suggest that overexpression of H(+)-PPase causes the accumulation of Na(+) and Cl(-) in vacuoles instead of in the cytoplasm, thus reducing their toxic effects. On the other hand, the increased accumulation of ions and sugars decreases the solute potential in cells, and facilitates water uptake under salinity, which is an important mechanism for the increased salt tolerance in TsVP-overexpressing cotton. 相似文献
13.
Flux balancing of light and nutrients in a biofilm photobioreactor for maximizing photosynthetic productivity
下载免费PDF全文

This article reports a combined experimental and numerical study on the efficient operation of Porous Substrate Bioreactors. A comprehensive model integrating light transport, mass transport, and algal growth kinetics was used to understand the productivity of photosynthetic biofilms in response to delivery rates of photons and nutrients. The reactor under consideration was an evaporation driven Porous Substrate Bioreactor (PSBR) cultivating the cyanobacteria Anabaena variabilis as a biofilm on a porous substrate which delivers water and nutrients to the cells. In an unoptimized experimental case, this reactor was operated with a photosynthetic efficiency of 2.3%, competitive with conventional photobioreactors. Moreover, through a scaling analysis, the location at which the phosphate delivery rate decreased the growth rate to half of its uninhibited value was predicted as a function of microorganism and bioreactor properties. The numerical model along with the flux balancing techniques presented herein can serve as tools for designing and selecting operating parameters of biofilm based cultivation systems for maximum productivity. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:348–359, 2014 相似文献
14.
We examined the characteristics of ascorbic acid (ASC) level, dehydroascorbate (DHA) level, and the ASC–DHA redox status in
the leaflets of two soybean cultivars grown in a field environment and exposed to elevated ozone (O3) levels. These two cultivars, one that preliminary evidence indicated to be O3-tolerant (cv Essex), and one that was indicated to be O3-sensitive (cv Forrest), were grown in open-top chambers during the summer of 1997. The plants were exposed daily to a controlled,
moderately high O3 level (≈58 nl l−1 air) in the light, beginning at the seedling stage and continuing to bean maturity. Concurrently, control plants were exposed
to carbon-filtered, ambient air containing a relatively low O3 level (≈24 nl l−1 air) during the same period. Elevated O3 did not affect biomass per plant, mature leaf area accretion, or bean yield per plant of cv Essex. In contrast, elevated
O3 level decreased the biomass and bean yield per plant of cv Forrest by approximately 20%. Daily leaflet photosynthesis rate
and stomatal conductance per unit area did not decrease in either cultivar as a result of prolonged O3 exposure. A 10% lower mature leaflet area in O3-treated cv Forrest plants contributed to an ultimate limitation in long-term photosynthetic productivity (vegetative and
bean yield). Possible factors causing cv Essex to be more O3 tolerant than cv Forrest were: 1) mature leaflets of control and O3-treated cv Essex plants consistently maintained a higher daily ASC level than leaflets of cv Forrest plants, and 2) mature
leaflets of cv Essex plants maintained a higher daily ASC–DHA redox status than leaflets of cv Forrest plants.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
15.
Spatial and temporal variations in photosynthetic capacity of a temperate deciduous-evergreen forest
Shuko Hamada Tomo’omi Kumagai Kiyotaka Kochi Nakako Kobayashi Tetsuya Hiyama Yoshiyuki Miyazawa 《Trees - Structure and Function》2016,30(4):1083-1093
Key message
The understory evergreen trees showed maximal photosynthetic capacity in winter, while the overstory deciduous trees showed this capacity in spring. The time lag in productive ecophysiologically active periods between deciduous overstory and evergreen understory trees in a common temperate forest was clearly related to the amount of overstory foliage.Abstract
In temperate forests, where deciduous canopy trees and evergreen understory trees coexist, understory trees experience great variation in incident radiation corresponding to canopy dynamics represented by leaf-fall and leaf-out. It is generally thought that changes in the light environment affect understory plants’ ecophysiological traits. Thus, to project and estimate annual energy, water, and carbon exchange between forests and the atmosphere, it is necessary to investigate seasonal variation in the ecophysiological activities of both evergreen trees in the understory and deciduous trees that make up the canopy/overstory. We conducted leaf-scale gas-exchange measurements and nitrogen content analyses for six tree species along their heights throughout a complete year. Photosynthetic capacity as represented by the maximum carboxylation rate (V cmax25) and photosynthetic nitrogen use efficiency (PNUE) of deciduous canopy trees peaked immediately after leaf-out in late May, declined and stabilised during the mid-growing season, and drastically decreased just before leaf-fall. On the other hand, the timing of lowest V cmax25 and PNUE for evergreen understory trees coincided with that of the highest values for canopy trees. Furthermore, understory trees’ highest values appeared just before canopy tree leaf-out, when incident radiation in the understory was highest. This implies that failing to consider seasonal variation in leaf ecophysiological traits for both canopy and understory trees could lead to serious errors in estimating ecosystem productivity and energy balance for temperate forests.16.
《Journal of plant physiology》2014,171(12):1091-1098
We studied the physiological acclimation of growth, photosynthesis and CO2-concentrating mechanism (CCM) in Cylindrospermopsis raciborskii exposed to low (present day; L-CO2) and high (1300 ppm; H-CO2) pCO2. Results showed that under H-CO2 the cell specific division rate (μc) was higher and the CO2- and light-saturated photosynthetic rates (Vmax and Pmax) doubled. The cells’ photosynthetic affinity for CO2 (K0.5CO2) was halved compared to L-CO2 cultures. However, no significant differences were found in dark respiration rates (Rd), pigment composition and light harvesting efficiency (α). In H-CO2 cells, non-photochemical quenching (NPQ), associated with state transitions of the electron transport chain (ETC), was negligible. Simultaneously, a reorganisation of PSII features including antenna connectivity (JconPSIIα), heterogeneity (PSIIα/β) and effective absorption cross sectional area (σPSIIα/β) was observed. In relation to different activities of the CCM, our findings suggest that for cells grown under H-CO2: (1) there is down-regulation of CCM activity; (2) the ability of cells to use the harvested light energy is altered; (3) the occurrence of state transitions is likely to be associated with changes of electron flow (cyclic vs linear) through the ETC; (4) changes in PSII characteristics are important in regulating state transitions. 相似文献
17.
Ivanova LA Ronzhina DA Ivanov LA Stroukova LV Peuke AD Rennenberg H 《Plant biology (Stuttgart, Germany)》2011,13(4):649-659
Recent studies of transgenic poplars over‐expressing the genes gsh1 and gsh2 encoding γ‐glutamylcysteine synthetase (γ‐ECS) and glutathione synthetase, respectively, provided detailed information on regulation of GSH synthesis, enzymes activities and mRNA expression. In this experiment, we studied quantitative parameters of leaves, assimilating tissues, cells and chloroplasts, mesophyll resistance for CO2 diffusion, chlorophyll and carbohydrate content in wild‐type poplar and transgenic plants over‐expressing gsh1 in the cytosol after 3 years of growth in relatively clean (control) or heavy metal‐contaminated soil in the field. Over‐expression of gsh1 in the cytosol led to a twofold increase of intrafoliar GSH concentration and influenced the photosynthetic apparatus at different levels of organisation, i.e., leaves, photosynthetic cells and chloroplasts. At the control site, transgenic poplars had a twofold smaller total leaf area per plant and a 1.6‐fold leaf area per leaf compared to wild‐type controls. Annual aboveground biomass gain was reduced by 50% in the transgenic plants. The reduction of leaf area of the transformants was accompanied by a significant decline in total cell number per leaf, indicating suppression of cell division. Over‐expression of γ‐ECS in the cytosol also caused changes in mesophyll structure, i.e., a 20% decrease in cell and chloroplast number per leaf area, but also an enhanced volume share of chloroplasts and intercellular airspaces in the leaves. Transgenic and wild poplars did not exhibit differences in chlorophyll and carotenoid content of leaves, but transformants had 1.3‐fold fewer soluble carbohydrates. Cultivation on contaminated soil caused a reduction of palisade cell volume and chloroplast number, both per cell and leaf area, in wild‐type plants but not in transformants. Biomass accumulation of wild‐type poplars decreased in contaminated soil by more than 30‐fold, whereas transformants showed a twofold decrease compared to the control site. Thus, poplars over‐expressing γ‐ECS in the cytosol were more tolerant to heavy metal stress under field conditions than wild‐type plants according to the parameters analysed. Correlation analysis revealed strong dependence of cell number per leaf area unit, chloroplast parameters and mesophyll resistance with the GSH level in poplar leaves. 相似文献
18.
Leaf age effects on photosynthetic rate, transpiration rate and nitrogen content in a tropical dry forest 总被引:2,自引:0,他引:2
M. A. Sobrado 《Physiologia plantarum》1994,90(1):210-215
This study examines the effect of leaf age on photosynthesis, transpiration and nitrogen concentration in four deciduous (DC) and two evergreen (EG) species coexisting in a tropical dry forest of Venezuela. Leaf age was characterized on the basis of leaf chorophyll, nitrogen content, and construction and maintenance costs. The mean leaf area-based nitrogen concentration (N) in EG was about twice that in DC species. A leaf age effect was observed in both DC and EG species, with largest N concentration in mature leaves. Fractional leaf N allocation to chlorophyll was higher in the DC than in the EG species. Differences in the construction costs of leaf mass between the youngest and the oldest leaves averaged from 2.14 to 1.55 g glucose g−1 dry weight. Although variation in area-based leaf maintenance and construction costs between DC and EG species existed, they were, nevertheless, positively correlated. Individual data sets, for each species, indicated that leaf N and maximum rate of photosynthesis (Amax ) were linearly related. Nitrogen use efficiency (NUE) and water use efficiency (WUE) tended to be higher in mature leaves than in expanding and old leaves. Moreover, DC species always had higher NUE than EG species. Intercellular to ambient pressures of CO2 (Pi /Pa ) were related to WUE in a negative manner. Higher Pi /Pa values were observed in expanding and old leaves. Leaf age effect on photosynthesis was, therefore, due to greater decline of carbon fixation capacity by mesophyll tissue relative to the decline in stomatal conductance in youngest and oldest leaves. 相似文献
19.
20.
Although the beneficial role of Fe, Zn, and Mn on many physiological and biochemical processes is well established, effects of each of these elements on chlorophyll (Chl) a fluorescence and photosynthetic pigment contents is not well studied. The objective of this study was to evaluate effects of Fe, Zn, and Mn deficiency in two lettuce cultivars. The parameters investigated could serve also as physiological and biochemical markers in order to identify stress-tolerant cultivars. Our results indicated that microelement shortage significantly decreased contents of photosynthetic pigments in both lettuce cultivars. Chl a fluorescence parameters including maximal quantum yield of PSII photochemistry and performance index decreased under micronutrient deficiency, while relative variable fluorescence at J-step and minimal fluorescence yield of the dark-adapted state increased under such conditions in both cultivars. Micronutrient deficiency also reduced all parameters of quantum yield and specific energy fluxes excluding quantum yield of energy dissipation, quantum yield of reduction of end electron acceptors at the PSI, and total performance index for the photochemical activity. Osmoregulators, such as proline, soluble sugar, and total phenols were enhanced in plants grown under micronutrient deficiency. Fe, Zn, and Mn deficiency led to a lesser production of dry mass. The Fe deficiency was more destructive than that of Zn and Mn on the efficiency of PSII in both lettuce cultivars. Our results suggest that the leaf lettuce, which showed a higher efficiency of PSII, electron transport, quantum yield, specific energy fluxes, and osmoregulators under micronutrient deficiency, was more tolerant to stress conditions than crisphead lettuce. 相似文献