首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
We report evidence that adenylate kinase (AK) from Escherichia coli can be activated by the direct binding of a magnesium ion to the enzyme, in addition to ATP-complexed Mg2+. By systematically varying the concentrations of AMP, ATP, and magnesium in kinetic experiments, we found that the apparent substrate inhibition of AK, formerly attributed to AMP, was suppressed at low magnesium concentrations and enhanced at high magnesium concentrations. This previously unreported magnesium dependence can be accounted for by a modified random bi-bi model in which Mg2+ can bind to AK directly prior to AMP binding. A new kinetic model is proposed to replace the conventional random bi-bi mechanism with substrate inhibition and is able to describe the kinetic data over a physiologically relevant range of magnesium concentrations. According to this model, the magnesium-activated AK exhibits a 23- ± 3-fold increase in its forward reaction rate compared with the unactivated form. The findings imply that Mg2+ could be an important affecter in the energy signaling network in cells.Adenylate kinase (AK)2 is a ∼24-kDa enzyme involved in cellular metabolism that catalyzes the reversible phosphoryl transfer reaction (1) as in Reaction 1. Mg2+ATP+AMPreverseforwardMg2+ADP+ADPREACTION 1It is recognized to play an important role in cellular energetic signaling networks (2, 3). A deficiency in human AK function may lead to such illness as hemolytic anemia (48) and coronary artery disease (9); the latter is thought to be caused by a disruption of the AMP signaling network of AK (10). The ubiquity of AK makes it an ideal candidate for investigating evolutionary divergence and natural adaptation at a molecular level (11, 12). Indeed, extensive structure-function studies have been carried out for AK (reviewed in Ref. 13). Both structural and biophysical studies have suggested that large-amplitude conformational changes in AK are important for catalysis (1419). More recently, the functional roles of conformational dynamics have been investigated using NMR (2022), computer simulations (2327), and single-molecule spectroscopy (28). Given the critical role of AK in regulating cellular energy networks and its use as a model system for understanding the functional roles of conformational changes in enzymes, it is imperative that the enzymatic mechanism of AK be thoroughly characterized and understood.The enzymatic reaction of adenylate kinase has been shown to follow a random bi-bi mechanism using isotope exchange experiments (29). Isoforms of adenylate kinases characterized from a wide range of species have a high degree of sequence, structure, and functional conservation. Although all AKs appear to follow the same random bi-bi mechanistic framework (15, 2933), a detailed kinetic analysis reveals interesting variations among different isoforms. For example, one of the most puzzling discrepancies is the change in turnover rates with increasing AMP concentration between rabbit muscle AK and Escherichia coli AK. Although the reactivity of rabbit muscle AK is slightly inhibited at higher AMP concentrations (29, 32), E. coli AK exhibits its maximum turnover rate around 0.2 mm AMP followed by a steep drop, which plateaus at still higher AMP concentrations (3335). This observation has been traditionally attributed to greater substrate inhibition by AMP in E. coli AK compared with the rabbit isoform; yet, the issue of whether the reaction involves competitive or non-competitive inhibition by AMP at the ATP binding site remains unresolved (15, 33, 3537).Here, we report a comprehensive kinetic study of the forward reaction of AK, exploring concentrations of nucleotides and Mg2+ that are comparable to those inside E. coli cells, [Mg2+] ∼ 1–2 mm (38) and [ATP] up to 3 mm (39). We discovered a previously unreported phenomenon: an increase in the forward reaction rate of AK with increasing Mg2+ concentrations, where the stoichiometry of Mg2+ to the enzyme is greater than one. The new observation leads us to propose an Mg2+-activation mechanism augmenting the commonly accepted random bi-bi model for E. coli AK. Our model can fully explain AK’s observed kinetic behavior involving AMP, ATP, and Mg2+ as substrates, out-performing the previous model requiring AMP inhibition. The new Mg2+-activation model also explains the discrepancies in AMP inhibition behavior and currently available E. coli AK kinetic data. Given the central role of AK in energy regulation and our new experimental evidence, it is possible that Mg2+ and its regulation may participate in respiratory network through AK (4042), an exciting future research direction.  相似文献   

5.
The C termini of β-tubulin isotypes are regions of high sequence variability that bind to microtubule-associated proteins and motors and undergo various post-translational modifications such as polyglutamylation and polyglycylation. Crystallographic analyses have been unsuccessful in resolving tubulin C termini. Here, we used a stepwise approach to study the role of this region in microtubule assembly. We generated a series of truncation mutants of human βI and βIII tubulin. Transient transfection of HeLa cells with the mutants shows that mutants with deletions of up to 22 residues from βIII and 16 from βI can assemble normally. Interestingly, removal of the next residue (Ala428) results in a complete loss of microtubule formation without affecting dimer formation. C-terminal tail switching of human βI and βIII tubulin suggests that C-terminal tails are functionally equivalent. In short, residues outside of 1–429 of human β-tubulins make no contribution to microtubule assembly. Ala428, in the C-terminal sequence motif N-QQYQDA428, lies at the end of helix H12 of β-tubulin. We hypothesize that this residue is important for maintaining helix H12 structure. Deletion of Ala428 may lead to unwinding of helix H12, resulting in tubulin dimers incapable of assembly. Thr429 plays a more complex role. In the βI isotype of tubulin, Thr429 is not at all necessary for assembly; however, in the βIII isotype, its presence strongly favors assembly. This result is consistent with a likely more complex function of βIII as well as with the observation that evolutionary conservation is total for Ala428 and frequent for Thr429.Microtubules are involved in a great variety of cellular functions. Their constituent protein tubulin is an αβ heterodimer, both α- and β-tubulin existing as multiple isotypes, encoded by different genes and differing in amino acid sequence (1). The differences among the isotypes are highly conserved in evolution. In mammals, the β isotypes are βIa, βIb, βII, βIII, βIVa, βIVb, βV, and βVI. There is evidence that the isotype differences have functional significance. For instance, the βIV isotype is found in all axonemes (2).Structurally, both α- and β-tubulin consist of a globular region of 427 amino acids followed by a C-terminal region of 17–24 amino acids (35). The C-terminal region is highly negatively charged, being especially rich in glutamate residues and lacking in basic residues, and is likely to project outward from the rest of the molecule, because of its high negative charge and the electrostatic repulsion among the glutamate residues (3). The three-dimensional structure of the globular domain has been determined by electron and x-ray crystallography (4, 5). However, the C-terminal region has never been localized in the three-dimensional reconstructions except by computer modeling. The probable reasons for this are 1) that, if the C-terminal region projects out from the rest of molecule, it is likely to be very flexible with respect to the rest of the molecule and 2) the C-terminal region undergoes post-translational modification. Both of these can lead to structural heterogeneity and cause the C terminus to be invisible to crystallographic techniques.In this work, we examine the role of the C termini of human β-tubulins to determine the minimal sequence requirement for microtubule incorporation through structure/function analyses. The human βI and βIII tubulin isotypes were utilized based on their high degree of sequence variability clustered at the C terminus (Fig. 1) and the fact that βI is broadly distributed among normal tissues, whereas βIII has a very narrow tissue distribution. These two isotypes share 92% sequence identity, with differences among these isotypes occurring in both the globular domain and the C-terminal region (1).Open in a separate windowFIGURE 1.Sequence alignment of human βIa and βIII tubulin isotypes. Human βIa and βIII tubulin isotypes were aligned with ClustalX 1.83 and processed with BioEdit. Hyphens denote identical residues between sequences.

TABLE 1

The C-terminal amino acid sequences of the human β-tubulin isotypes
Human β-tubulin isotypeC-terminal tail sequence
βIaQQYQDATAEEEEDFGEEAEEEA
βIbQQYQDATAEEEEDFGEEAEEEA
βIIQQYQDATADEQGEFEEEEGEDEA
βIIIQQYQDATAEEEGEMYEDDEEESEAQGPK
βIVaQQYQDATAEQGEFEEEAEEEVA
βIVbQQYQDATAEEEGEFEEEAEEEVA
βVQQYQDATANDGEEAFEDEEEEIDG
βVIQQFQDAKAVLEEDEEVTEEAEMEPEDKGH
βVIIQQYQDATAEGEGV
Open in a separate windowThree attributes of potential functional significance have been assigned to the C-terminal regions of tubulin. First, the fact that it projects outward makes it likely that it can serve as a signal. For example, elegant experiments by Popodi et al. (6), working with β-tubulin isotypes from Drosophila, indicate that the C terminus is the region that determines which isotype goes into axonemal microtubules. In Tetrahymena thermophila, Duan and Gorovsky (7) demonstrated that α- and β-tubulin C-terminal tails (CTT)2 are interchangeable, and their functions are indistinguishable. In addition, a duplicated β-tubulin CTT rescued the lethal mutant lacking post-translational modification sites on β-tubulin but did not rescue the mutant lacking a 17-amino acid deletion from the β-tubulin tail (7). A significant amount of research on C-terminal tail function has utilized proteolytic digestion with a number of different endoproteinases such as subtilisin, proteinase K, and chymotrypsin among others (810). For example, subtilisin-digested αsβs-tubulin was found to have a higher capacity for generating microtubules than undigested (9). A single drawback to using these proteases is their site-specific nature, which limits us to distinct digestion sites in proteolysis experiments. Furthermore, the proteolyzed tail fragment could still interact with the globular body without being really separated. Thus, to elucidate the importance of amino acids flanking these digestion sites, alternative approaches must be utilized.Second, MAPs and motor proteins such as MAP2, MAP4, tau, DMAP-85, OP18/stathmin, dynein, and kinesin have been shown to bind the C-terminal region (1122). These proteins are known to play very important roles in cellular processes including intracellular transport and modulation of microtubule dynamics. Third, the C terminus is subject to a large number of post-translational modifications, some of which are known to have functional significance (1). These include phosphorylation (β) (2325), poly-glutamylation (α, β) (2630), polyglycylation (α, β) (3134), detyrosination (α) (3537), and deglutamylation (α) (38).In this paper we present evidence for a fourth function for the C-terminal region, namely, that it plays a major role in controlling the conformation of the globular region of the tubulin molecule such that microtubules can form. We have found that all of the amino acid residues necessary for assembly of the βI isotype of tubulin are contained within the first 428 amino acids, ending in N-QQYQDA428; C-terminal truncations lacking Ala428 yield tubulins that are not compatible with microtubule formation. We demonstrate that the C-terminal region does not contribute to intradimer formation. Furthermore, we find that β-tubulin C-terminal tail switching does not affect incorporation and that the presence of the full chimeric tail is not necessary for functional microtubules. Finally, we have observed that residue Thr429 plays an important but not critical role in the βIII isotype becoming assembly-competent but is not at all necessary for the βI isotype to form microtubules.  相似文献   

6.
7.
Background:Rates of imaging for low-back pain are high and are associated with increased health care costs and radiation exposure as well as potentially poorer patient outcomes. We conducted a systematic review to investigate the effectiveness of interventions aimed at reducing the use of imaging for low-back pain.Methods:We searched MEDLINE, Embase, CINAHL and the Cochrane Central Register of Controlled Trials from the earliest records to June 23, 2014. We included randomized controlled trials, controlled clinical trials and interrupted time series studies that assessed interventions designed to reduce the use of imaging in any clinical setting, including primary, emergency and specialist care. Two independent reviewers extracted data and assessed risk of bias. We used raw data on imaging rates to calculate summary statistics. Study heterogeneity prevented meta-analysis.Results:A total of 8500 records were identified through the literature search. Of the 54 potentially eligible studies reviewed in full, 7 were included in our review. Clinical decision support involving a modified referral form in a hospital setting reduced imaging by 36.8% (95% confidence interval [CI] 33.2% to 40.5%). Targeted reminders to primary care physicians of appropriate indications for imaging reduced referrals for imaging by 22.5% (95% CI 8.4% to 36.8%). Interventions that used practitioner audits and feedback, practitioner education or guideline dissemination did not significantly reduce imaging rates. Lack of power within some of the included studies resulted in lack of statistical significance despite potentially clinically important effects.Interpretation:Clinical decision support in a hospital setting and targeted reminders to primary care doctors were effective interventions in reducing the use of imaging for low-back pain. These are potentially low-cost interventions that would substantially decrease medical expenditures associated with the management of low-back pain.Current evidence-based clinical practice guidelines recommend against the routine use of imaging in patients presenting with low-back pain.13 Despite this, imaging rates remain high,4,5 which indicates poor concordance with these guidelines.6,7Unnecessary imaging for low-back pain has been associated with poorer patient outcomes, increased radiation exposure and higher health care costs.8 No short- or long-term clinical benefits have been shown with routine imaging of the low back, and the diagnostic value of incidental imaging findings remains uncertain.912 A 2008 systematic review found that imaging accounted for 7% of direct costs associated with low-back pain, which in 1998 translated to more than US$6 billion in the United States and £114 million in the United Kingdom.13 Current costs are likely to be substantially higher, with an estimated 65% increase in spine-related expenditures between 1997 and 2005.14Various interventions have been tried for reducing imaging rates among people with low-back pain. These include strategies targeted at the practitioner such as guideline dissemination,1517 education workshops,18,19 audit and feedback of imaging use,7,20,21 ongoing reminders7 and clinical decision support.2224 It is unclear which, if any, of these strategies are effective.25 We conducted a systematic review to investigate the effectiveness of interventions designed to reduce imaging rates for the management of low-back pain.  相似文献   

8.

Background:

The gut microbiota is essential to human health throughout life, yet the acquisition and development of this microbial community during infancy remains poorly understood. Meanwhile, there is increasing concern over rising rates of cesarean delivery and insufficient exclusive breastfeeding of infants in developed countries. In this article, we characterize the gut microbiota of healthy Canadian infants and describe the influence of cesarean delivery and formula feeding.

Methods:

We included a subset of 24 term infants from the Canadian Healthy Infant Longitudinal Development (CHILD) birth cohort. Mode of delivery was obtained from medical records, and mothers were asked to report on infant diet and medication use. Fecal samples were collected at 4 months of age, and we characterized the microbiota composition using high-throughput DNA sequencing.

Results:

We observed high variability in the profiles of fecal microbiota among the infants. The profiles were generally dominated by Actinobacteria (mainly the genus Bifidobacterium) and Firmicutes (with diverse representation from numerous genera). Compared with breastfed infants, formula-fed infants had increased richness of species, with overrepresentation of Clostridium difficile. Escherichia–Shigella and Bacteroides species were underrepresented in infants born by cesarean delivery. Infants born by elective cesarean delivery had particularly low bacterial richness and diversity.

Interpretation:

These findings advance our understanding of the gut microbiota in healthy infants. They also provide new evidence for the effects of delivery mode and infant diet as determinants of this essential microbial community in early life.The human body harbours trillions of microbes, known collectively as the “human microbiome.” By far the highest density of commensal bacteria is found in the digestive tract, where resident microbes outnumber host cells by at least 10 to 1. Gut bacteria play a fundamental role in human health by promoting intestinal homeostasis, stimulating development of the immune system, providing protection against pathogens, and contributing to the processing of nutrients and harvesting of energy.1,2 The disruption of the gut microbiota has been linked to an increasing number of diseases, including inflammatory bowel disease, necrotizing enterocolitis, diabetes, obesity, cancer, allergies and asthma.1 Despite this evidence and a growing appreciation for the integral role of the gut microbiota in lifelong health, relatively little is known about the acquisition and development of this complex microbial community during infancy.3Two of the best-studied determinants of the gut microbiota during infancy are mode of delivery and exposure to breast milk.4,5 Cesarean delivery perturbs normal colonization of the infant gut by preventing exposure to maternal microbes, whereas breastfeeding promotes a “healthy” gut microbiota by providing selective metabolic substrates for beneficial bacteria.3,5 Despite recommendations from the World Health Organization,6 the rate of cesarean delivery has continued to rise in developed countries and rates of breastfeeding decrease substantially within the first few months of life.7,8 In Canada, more than 1 in 4 newborns are born by cesarean delivery, and less than 15% of infants are exclusively breastfed for the recommended duration of 6 months.9,10 In some parts of the world, elective cesarean deliveries are performed by maternal request, often because of apprehension about pain during childbirth, and sometimes for patient–physician convenience.11The potential long-term consequences of decisions regarding mode of delivery and infant diet are not to be underestimated. Infants born by cesarean delivery are at increased risk of asthma, obesity and type 1 diabetes,12 whereas breastfeeding is variably protective against these and other disorders.13 These long-term health consequences may be partially attributable to disruption of the gut microbiota.12,14Historically, the gut microbiota has been studied with the use of culture-based methodologies to examine individual organisms. However, up to 80% of intestinal microbes cannot be grown in culture.3,15 New technology using culture-independent DNA sequencing enables comprehensive detection of intestinal microbes and permits simultaneous characterization of entire microbial communities. Multinational consortia have been established to characterize the “normal” adult microbiome using these exciting new methods;16 however, these methods have been underused in infant studies. Because early colonization may have long-lasting effects on health, infant studies are vital.3,4 Among the few studies of infant gut microbiota using DNA sequencing, most were conducted in restricted populations, such as infants delivered vaginally,17 infants born by cesarean delivery who were formula-fed18 or preterm infants with necrotizing enterocolitis.19Thus, the gut microbiota is essential to human health, yet the acquisition and development of this microbial community during infancy remains poorly understood.3 In the current study, we address this gap in knowledge using new sequencing technology and detailed exposure assessments20 of healthy Canadian infants selected from a national birth cohort to provide representative, comprehensive profiles of gut microbiota according to mode of delivery and infant diet.  相似文献   

9.
Nitric-oxide synthase (NOS) catalyzes nitric oxide (NO) synthesis via a two-step process: l-arginine (l-Arg) →N-hydroxy-l-arginine →citrulline + NO. In the active site the heme is coordinated by a thiolate ligand, which accepts a H-bond from a nearby tryptophan residue, Trp-188. Mutation of Trp-188 to histidine in murine inducible NOS was shown to retard NO synthesis and allow for transient accumulation of a new intermediate with a Soret maximum at 420 nm during the l-Arg hydroxylation reaction (Tejero, J., Biswas, A., Wang, Z. Q., Page, R. C., Haque, M. M., Hemann, C., Zweier, J. L., Misra, S., and Stuehr, D. J. (2008) J. Biol. Chem. 283, 33498–33507). However, crystallographic data showed that the mutation did not perturb the overall structure of the enzyme. To understand how the proximal mutation affects the oxygen chemistry, we carried out biophysical studies of the W188H mutant. Our stopped-flow data showed that the 420-nm intermediate was not only populated during the l-Arg reaction but also during the N-hydroxy-l-arginine reaction. Spectroscopic data and structural analysis demonstrated that the 420-nm intermediate is a hydroxide-bound ferric heme species that is stabilized by an out-of-plane distortion of the heme macrocycle and a cation radical centered on the tetrahydrobiopterin cofactor. The current data add important new insights into the previously proposed catalytic mechanism of NOS (Li, D., Kabir, M., Stuehr, D. J., Rousseau, D. L., and Yeh, S. R. (2007) J. Am. Chem. Soc. 129, 6943–6951).Nitric-oxide synthase (NOS) is a heme-containing flavoenzyme that synthesizes nitric oxide (NO) from l-arginine (l-Arg) in a two-step process (Scheme 1). In the first step of the reaction, one molecule of O2 and two electrons from NADPH are consumed for the conversion of l-Arg to N-hydroxy-l-arginine (NOHA).2 In the second step of the reaction, another molecule of O2 and an additional electron from NADPH are used to convert NOHA to l-citrulline and NO. Previous studies suggest that the two steps of the reaction follow distinct mechanisms meditated by a compound I (Cmpd I) type of ferryl intermediate and a peroxyl intermediate, respectively (17). These mechanisms, however, remain elusive, as none of the putative intermediates have been experimentally observed under solution conditions, although (hydro)peroxo intermediates have been identified at cryogenic temperatures by radiolytic reduction methods (8, 9); in addition, a Cmpd I intermediate has been observed after peroxyacid treatment (10).Three isoforms of NOS have been identified in mammals: neuronal NOS, endothelial NOS, and inducible NOS (iNOS). Similar to the P450 class of enzymes, the heme prosthetic group in all three isoforms of NOS is coordinated by a thiolate sidechain group of an intrinsic cysteine residue in the proximal heme pocket. In P450s, the thiolate ligand forms a H-bond with a peptide NH group (11), whereas in NOSs the analogous thiolate ligand accepts a H-bond from the side chain of a conserved tryptophan residue (Trp-188 in iNOS). It is believed that the H-bonding interaction with the tryptophan residue reduces the electron donating capability of the thiolate ligand in NOSs, thereby modulating the oxygen chemistry occurring in the distal heme pocket of the enzymes (1, 1215). The mutation of the conserved tryptophan (Trp-409) in neuronal NOS to Phe or Tyr was shown to increase the rate of NO synthesis during multiple turnover conditions by decreasing the heme reduction rate and the degree of NO autoinhibition (15, 16). Comparable mutants of iNOS, W188F, and W188Y, could not be overexpressed as stable recombinant forms (17); however, the W188H mutant was successfully expressed, purified, and studied (18).It was shown that the W188H mutation slowed down the l-Arg hydroxylation reaction by stabilizing a new intermediate with a Soret maximum at 420 nm, which had never been observed during the wild type reaction, and that the formation of the 420-nm intermediate coincides with the disappearance of the ternary complex of the enzyme and the formation of a H4B radical, whereas its decay was concurrent with the recovery of the resting ferric enzyme. Tejero et al. (18) postulated that the 420-nm species is a catalytically competent oxygen-containing intermediate, such as a Cmpd I type of ferryl species. Regardless of the identity of the intermediate, the data demonstrated that the mutation modulates the structural properties and biochemical reactivity of the enzyme. However, the crystallographic data of the W188H mutant of the oxygenase domain of iNOS (iNOSoxy) revealed that its active site structure is strikingly similar to that of the wild type enzyme (18). In particular, the side chain of His-188, like that of Trp-188 in the wild type enzyme, formed a H-bond with the thiolate ligand of the heme.Open in a separate windowTo determine how the W188H mutation modulates the oxygen chemistry of iNOSoxy without significantly perturbing the active site structure of the enzyme, we carried out a series of studies of the W188H mutant with optical absorption, resonance Raman, and EPR spectroscopic methods under steady-state and single turnover conditions. We discovered that the mutation introduced a unique out-of-plane distortion to the heme macrocycle that stabilizes the 420-nm intermediate populated during both the l-Arg and NOHA reactions and at the same time destabilizes the NO bound to the ferric heme during the NOHA reaction. The results are summarized and discussed in the context of the previously postulated NOS mechanism (1).  相似文献   

10.
Background:Otitis media with effusion is a common problem that lacks an evidence-based nonsurgical treatment option. We assessed the clinical effectiveness of treatment with a nasal balloon device in a primary care setting.Methods:We conducted an open, pragmatic randomized controlled trial set in 43 family practices in the United Kingdom. Children aged 4–11 years with a recent history of ear symptoms and otitis media with effusion in 1 or both ears, confirmed by tympanometry, were allocated to receive either autoinflation 3 times daily for 1–3 months plus usual care or usual care alone. Clearance of middle-ear fluid at 1 and 3 months was assessed by experts masked to allocation.Results:Of 320 children enrolled, those receiving autoinflation were more likely than controls to have normal tympanograms at 1 month (47.3% [62/131] v. 35.6% [47/132]; adjusted relative risk [RR] 1.36, 95% confidence interval [CI] 0.99 to 1.88) and at 3 months (49.6% [62/125] v. 38.3% [46/120]; adjusted RR 1.37, 95% CI 1.03 to 1.83; number needed to treat = 9). Autoinflation produced greater improvements in ear-related quality of life (adjusted between-group difference in change from baseline in OMQ-14 [an ear-related measure of quality of life] score −0.42, 95% CI −0.63 to −0.22). Compliance was 89% at 1 month and 80% at 3 months. Adverse events were mild, infrequent and comparable between groups.Interpretation:Autoinflation in children aged 4–11 years with otitis media with effusion is feasible in primary care and effective both in clearing effusions and improving symptoms and ear-related child and parent quality of life. Trial registration: ISRCTN, No. 55208702.Otitis media with effusion, also known as glue ear, is an accumulation of fluid in the middle ear, without symptoms or signs of an acute ear infection. It is often associated with viral infection.13 The prevalence rises to 46% in children aged 4–5 years,4 when hearing difficulty, other ear-related symptoms and broader developmental concerns often bring the condition to medical attention.3,5,6 Middle-ear fluid is associated with conductive hearing losses of about 15–45 dB HL.7 Resolution is clinically unpredictable,810 with about a third of cases showing recurrence.11 In the United Kingdom, about 200 000 children with the condition are seen annually in primary care.12,13 Research suggests some children seen in primary care are as badly affected as those seen in hospital.7,9,14,15 In the United States, there were 2.2 million diagnosed episodes in 2004, costing an estimated $4.0 billion.16 Rates of ventilation tube surgery show variability between countries,1719 with a declining trend in the UK.20Initial clinical management consists of reasonable temporizing or delay before considering surgery.13 Unfortunately, all available medical treatments for otitis media with effusion such as antibiotics, antihistamines, decongestants and intranasal steroids are ineffective and have unwanted effects, and therefore cannot be recommended.2123 Not only are antibiotics ineffective, but resistance to them poses a major threat to public health.24,25 Although surgery is effective for a carefully selected minority,13,26,27 a simple low-cost, nonsurgical treatment option could benefit a much larger group of symptomatic children, with the purpose of addressing legitimate clinical concerns without incurring excessive delays.Autoinflation using a nasal balloon device is a low-cost intervention with the potential to be used more widely in primary care, but current evidence of its effectiveness is limited to several small hospital-based trials28 that found a higher rate of tympanometric resolution of ear fluid at 1 month.2931 Evidence of feasibility and effectiveness of autoinflation to inform wider clinical use is lacking.13,28 Thus we report here the findings of a large pragmatic trial of the clinical effectiveness of nasal balloon autoinflation in a spectrum of children with clinically confirmed otitis media with effusion identified from primary care.  相似文献   

11.

Background

The pathogenesis of appendicitis is unclear. We evaluated whether exposure to air pollution was associated with an increased incidence of appendicitis.

Methods

We identified 5191 adults who had been admitted to hospital with appendicitis between Apr. 1, 1999, and Dec. 31, 2006. The air pollutants studied were ozone, nitrogen dioxide, sulfur dioxide, carbon monoxide, and suspended particulate matter of less than 10 μ and less than 2.5 μ in diameter. We estimated the odds of appendicitis relative to short-term increases in concentrations of selected pollutants, alone and in combination, after controlling for temperature and relative humidity as well as the effects of age, sex and season.

Results

An increase in the interquartile range of the 5-day average of ozone was associated with appendicitis (odds ratio [OR] 1.14, 95% confidence interval [CI] 1.03–1.25). In summer (July–August), the effects were most pronounced for ozone (OR 1.32, 95% CI 1.10–1.57), sulfur dioxide (OR 1.30, 95% CI 1.03–1.63), nitrogen dioxide (OR 1.76, 95% CI 1.20–2.58), carbon monoxide (OR 1.35, 95% CI 1.01–1.80) and particulate matter less than 10 μ in diameter (OR 1.20, 95% CI 1.05–1.38). We observed a significant effect of the air pollutants in the summer months among men but not among women (e.g., OR for increase in the 5-day average of nitrogen dioxide 2.05, 95% CI 1.21–3.47, among men and 1.48, 95% CI 0.85–2.59, among women). The double-pollutant model of exposure to ozone and nitrogen dioxide in the summer months was associated with attenuation of the effects of ozone (OR 1.22, 95% CI 1.01–1.48) and nitrogen dioxide (OR 1.48, 95% CI 0.97–2.24).

Interpretation

Our findings suggest that some cases of appendicitis may be triggered by short-term exposure to air pollution. If these findings are confirmed, measures to improve air quality may help to decrease rates of appendicitis.Appendicitis was introduced into the medical vernacular in 1886.1 Since then, the prevailing theory of its pathogenesis implicated an obstruction of the appendiceal orifice by a fecalith or lymphoid hyperplasia.2 However, this notion does not completely account for variations in incidence observed by age,3,4 sex,3,4 ethnic background,3,4 family history,5 temporal–spatial clustering6 and seasonality,3,4 nor does it completely explain the trends in incidence of appendicitis in developed and developing nations.3,7,8The incidence of appendicitis increased dramatically in industrialized nations in the 19th century and in the early part of the 20th century.1 Without explanation, it decreased in the middle and latter part of the 20th century.3 The decrease coincided with legislation to improve air quality. For example, after the United States Clean Air Act was passed in 1970,9 the incidence of appendicitis decreased by 14.6% from 1970 to 1984.3 Likewise, a 36% drop in incidence was reported in the United Kingdom between 1975 and 199410 after legislation was passed in 1956 and 1968 to improve air quality and in the 1970s to control industrial sources of air pollution. Furthermore, appendicitis is less common in developing nations; however, as these countries become more industrialized, the incidence of appendicitis has been increasing.7Air pollution is known to be a risk factor for multiple conditions, to exacerbate disease states and to increase all-cause mortality.11 It has a direct effect on pulmonary diseases such as asthma11 and on nonpulmonary diseases including myocardial infarction, stroke and cancer.1113 Inflammation induced by exposure to air pollution contributes to some adverse health effects.1417 Similar to the effects of air pollution, a proinflammatory response has been associated with appendicitis.1820We conducted a case–crossover study involving a population-based cohort of patients admitted to hospital with appendicitis to determine whether short-term increases in concentrations of selected air pollutants were associated with hospital admission because of appendicitis.  相似文献   

12.

Background

Fractures have largely been assessed by their impact on quality of life or health care costs. We conducted this study to evaluate the relation between fractures and mortality.

Methods

A total of 7753 randomly selected people (2187 men and 5566 women) aged 50 years and older from across Canada participated in a 5-year observational cohort study. Incident fractures were identified on the basis of validated self-report and were classified by type (vertebral, pelvic, forearm or wrist, rib, hip and “other”). We subdivided fracture groups by the year in which the fracture occurred during follow-up; those occurring in the fourth and fifth years were grouped together. We examined the relation between the time of the incident fracture and death.

Results

Compared with participants who had no fracture during follow-up, those who had a vertebral fracture in the second year were at increased risk of death (adjusted hazard ratio [HR] 2.7, 95% confidence interval [CI] 1.1–6.6); also at risk were those who had a hip fracture during the first year (adjusted HR 3.2, 95% CI 1.4–7.4). Among women, the risk of death was increased for those with a vertebral fracture during the first year (adjusted HR 3.7, 95% CI 1.1–12.8) or the second year of follow-up (adjusted HR 3.2, 95% CI 1.2–8.1). The risk of death was also increased among women with hip fracture during the first year of follow-up (adjusted HR 3.0, 95% CI 1.0–8.7).

Interpretation

Vertebral and hip fractures are associated with an increased risk of death. Interventions that reduce the incidence of these fractures need to be implemented to improve survival.Osteoporosis-related fractures are a major health concern, affecting a growing number of individuals worldwide. The burden of fracture has largely been assessed by the impact on health-related quality of life and health care costs.1,2 Fractures can also be associated with death. However, trials that have examined the relation between fractures and mortality have had limitations that may influence their results and the generalizability of the studies, including small samples,3,4 the examination of only 1 type of fracture,410 the inclusion of only women,8,11 the enrolment of participants from specific areas (i.e., hospitals or certain geographic regions),3,4,7,8,10,12 the nonrandom selection of participants311 and the lack of statistical adjustment for confounding factors that may influence mortality.3,57,12We evaluated the relation between incident fractures and mortality over a 5-year period in a cohort of men and women 50 years of age and older. In addition, we examined whether other characteristics of participants were risk factors for death.  相似文献   

13.

Background:

Recent warnings from Health Canada regarding codeine for children have led to increased use of nonsteroidal anti-inflammatory drugs and morphine for common injuries such as fractures. Our objective was to determine whether morphine administered orally has superior efficacy to ibuprofen in fracture-related pain.

Methods:

We used a parallel group, randomized, blinded superiority design. Children who presented to the emergency department with an uncomplicated extremity fracture were randomly assigned to receive either morphine (0.5 mg/kg orally) or ibuprofen (10 mg/kg) for 24 hours after discharge. Our primary outcome was the change in pain score using the Faces Pain Scale — Revised (FPS-R). Participants were asked to record pain scores immediately before and 30 minutes after receiving each dose.

Results:

We analyzed data from 66 participants in the morphine group and 68 participants in the ibuprofen group. For both morphine and ibuprofen, we found a reduction in pain scores (mean pre–post difference ± standard deviation for dose 1: morphine 1.5 ± 1.2, ibuprofen 1.3 ± 1.0, between-group difference [δ] 0.2 [95% confidence interval (CI) −0.2 to 0.6]; dose 2: morphine 1.3 ± 1.3, ibuprofen 1.3 ± 0.9, δ 0 [95% CI −0.4 to 0.4]; dose 3: morphine 1.3 ± 1.4, ibuprofen 1.4 ± 1.1, δ −0.1 [95% CI −0.7 to 0.4]; and dose 4: morphine 1.5 ± 1.4, ibuprofen 1.1 ± 1.2, δ 0.4 [95% CI −0.2 to 1.1]). We found no significant differences in the change in pain scores between morphine and ibuprofen between groups at any of the 4 time points (p = 0.6). Participants in the morphine group had significantly more adverse effects than those in the ibuprofen group (56.1% v. 30.9%, p < 0.01).

Interpretation:

We found no significant difference in analgesic efficacy between orally administered morphine and ibuprofen. However, morphine was associated with a significantly greater number of adverse effects. Our results suggest that ibuprofen remains safe and effective for outpatient pain management in children with uncomplicated fractures. Trial registration: ClinicalTrials.gov, no. NCT01690780.There is ample evidence that analgesia is underused,1 underprescribed,2 delayed in its administration2 and suboptimally dosed 3 in clinical settings. Children are particularly susceptible to suboptimal pain management4 and are less likely to receive opioid analgesia.5 Untreated pain in childhood has been reported to lead to short-term problems such as slower healing6 and to long-term issues such as anxiety, needle phobia,7 hyperesthesia8 and fear of medical care.9 The American Academy of Pediatrics has reaffirmed its advocacy for the appropriate use of analgesia for children with acute pain.10Fractures constitute between 10% and 25% of all injuries.11 The most severe pain after an injury occurs within the first 48 hours, with more than 80% of children showing compromise in at least 1 functional area.12 Low rates of analgesia have been reported after discharge from hospital.13 A recently improved understanding of the pharmacogenomics of codeine has raised significant concerns about its safety,14,15 and has led to a Food and Drug Administration boxed warning16 and a Health Canada advisory17 against its use. Although ibuprofen has been cited as the most common agent used by caregivers to treat musculoskeletal pain,12,13 there are concerns that its use as monotherapy may lead to inadequate pain management.6,18 Evidence suggests that orally administered morphine13 and other opioids are increasingly being prescribed.19 However, evidence for the oral administration of morphine in acute pain management is limited.20,21 Thus, additional studies are needed to address this gap in knowledge and provide a scientific basis for outpatient analgesic choices in children. Our objective was to assess if orally administered morphine is superior to ibuprofen in relieving pain in children with nonoperative fractures.  相似文献   

14.
15.
16.

Background:

Little evidence exists on the effect of an energy-unrestricted healthy diet on metabolic syndrome. We evaluated the long-term effect of Mediterranean diets ad libitum on the incidence or reversion of metabolic syndrome.

Methods:

We performed a secondary analysis of the PREDIMED trial — a multicentre, randomized trial done between October 2003 and December 2010 that involved men and women (age 55–80 yr) at high risk for cardiovascular disease. Participants were randomly assigned to 1 of 3 dietary interventions: a Mediterranean diet supplemented with extra-virgin olive oil, a Mediterranean diet supplemented with nuts or advice on following a low-fat diet (the control group). The interventions did not include increased physical activity or weight loss as a goal. We analyzed available data from 5801 participants. We determined the effect of diet on incidence and reversion of metabolic syndrome using Cox regression analysis to calculate hazard ratios (HRs) and 95% confidence intervals (CIs).

Results:

Over 4.8 years of follow-up, metabolic syndrome developed in 960 (50.0%) of the 1919 participants who did not have the condition at baseline. The risk of developing metabolic syndrome did not differ between participants assigned to the control diet and those assigned to either of the Mediterranean diets (control v. olive oil HR 1.10, 95% CI 0.94–1.30, p = 0.231; control v. nuts HR 1.08, 95% CI 0.92–1.27, p = 0.3). Reversion occurred in 958 (28.2%) of the 3392 participants who had metabolic syndrome at baseline. Compared with the control group, participants on either Mediterranean diet were more likely to undergo reversion (control v. olive oil HR 1.35, 95% CI 1.15–1.58, p < 0.001; control v. nuts HR 1.28, 95% CI 1.08–1.51, p < 0.001). Participants in the group receiving olive oil supplementation showed significant decreases in both central obesity and high fasting glucose (p = 0.02); participants in the group supplemented with nuts showed a significant decrease in central obesity.

Interpretation:

A Mediterranean diet supplemented with either extra virgin olive oil or nuts is not associated with the onset of metabolic syndrome, but such diets are more likely to cause reversion of the condition. An energy-unrestricted Mediterranean diet may be useful in reducing the risks of central obesity and hyperglycemia in people at high risk of cardiovascular disease. Trial registration: ClinicalTrials.gov, no. ISRCTN35739639.Metabolic syndrome is a cluster of 3 or more related cardiometabolic risk factors: central obesity (determined by waist circumference), hypertension, hypertriglyceridemia, low plasma high-density lipoprotein (HDL) cholesterol levels and hyperglycemia. Having the syndrome increases a person’s risk for type 2 diabetes and cardiovascular disease.1,2 In addition, the condition is associated with increased morbidity and all-cause mortality.1,35 The worldwide prevalence of metabolic syndrome in adults approaches 25%68 and increases with age,7 especially among women,8,9 making it an important public health issue.Several studies have shown that lifestyle modifications,10 such as increased physical activity,11 adherence to a healthy diet12,13 or weight loss,1416 are associated with reversion of the metabolic syndrome and its components. However, little information exists as to whether changes in the overall dietary pattern without weight loss might also be effective in preventing and managing the condition.The Mediterranean diet is recognized as one of the healthiest dietary patterns. It has shown benefits in patients with cardiovascular disease17,18 and in the prevention and treatment of related conditions, such as diabetes,1921 hypertension22,23 and metabolic syndrome.24Several cross-sectional2529 and prospective3032 epidemiologic studies have suggested an inverse association between adherence to the Mediterranean diet and the prevalence or incidence of metabolic syndrome. Evidence from clinical trials has shown that an energy-restricted Mediterranean diet33 or adopting a Mediterranean diet after weight loss34 has a beneficial effect on metabolic syndrome. However, these studies did not determine whether the effect could be attributed to the weight loss or to the diets themselves.Seminal data from the PREDIMED (PREvención con DIeta MEDiterránea) study suggested that adherence to a Mediterranean diet supplemented with nuts reversed metabolic syndrome more so than advice to follow a low-fat diet.35 However, the report was based on data from only 1224 participants followed for 1 year. We have analyzed the data from the final PREDIMED cohort after a median follow-up of 4.8 years to determine the long-term effects of a Mediterranean diet on metabolic syndrome.  相似文献   

17.
The erythropoietin receptor (EpoR) was discovered and described in red blood cells (RBCs), stimulating its proliferation and survival. The target in humans for EpoR agonists drugs appears clear—to treat anemia. However, there is evidence of the pleitropic actions of erythropoietin (Epo). For that reason, rhEpo therapy was suggested as a reliable approach for treating a broad range of pathologies, including heart and cardiovascular diseases, neurodegenerative disorders (Parkinson’s and Alzheimer’s disease), spinal cord injury, stroke, diabetic retinopathy and rare diseases (Friedreich ataxia). Unfortunately, the side effects of rhEpo are also evident. A new generation of nonhematopoietic EpoR agonists drugs (asialoEpo, Cepo and ARA 290) have been investigated and further developed. These EpoR agonists, without the erythropoietic activity of Epo, while preserving its tissue-protective properties, will provide better outcomes in ongoing clinical trials. Nonhematopoietic EpoR agonists represent safer and more effective surrogates for the treatment of several diseases such as brain and peripheral nerve injury, diabetic complications, renal ischemia, rare diseases, myocardial infarction, chronic heart disease and others.In principle, the erythropoietin receptor (EpoR) was discovered and described in red blood cell (RBC) progenitors, stimulating its proliferation and survival. Erythropoietin (Epo) is mainly synthesized in fetal liver and adult kidneys (13). Therefore, it was hypothesized that Epo act exclusively on erythroid progenitor cells. Accordingly, the target in humans for EpoR agonists drugs (such as recombinant erythropoietin [rhEpo], in general, called erythropoiesis-simulating agents) appears clear (that is, to treat anemia). However, evidence of a kaleidoscope of pleitropic actions of Epo has been provided (4,5). The Epo/EpoR axis research involved an initial journey from laboratory basic research to clinical therapeutics. However, as a consequence of clinical observations, basic research on Epo/EpoR comes back to expand its clinical therapeutic applicability.Although kidney and liver have long been considered the major sources of synthesis, Epo mRNA expression has also been detected in the brain (neurons and glial cells), lung, heart, bone marrow, spleen, hair follicles, reproductive tract and osteoblasts (617). Accordingly, EpoR was detected in other cells, such as neurons, astrocytes, microglia, immune cells, cancer cell lines, endothelial cells, bone marrow stromal cells and cells of heart, reproductive system, gastrointestinal tract, kidney, pancreas and skeletal muscle (1827). Conversely, Sinclair et al.(28) reported data questioning the presence or function of EpoR on nonhematopoietic cells (endothelial, neuronal and cardiac cells), suggesting that further studies are needed to confirm the diversity of EpoR. Elliott et al.(29) also showed that EpoR is virtually undetectable in human renal cells and other tissues with no detectable EpoR on cell surfaces. These results have raised doubts about the preclinical basis for studies exploring pleiotropic actions of rhEpo (30).For the above-mentioned data, a return to basic research studies has become necessary, and many studies in animal models have been initiated or have already been performed. The effect of rhEpo administration on angiogenesis, myogenesis, shift in muscle fiber types and oxidative enzyme activities in skeletal muscle (4,31), cardiac muscle mitochondrial biogenesis (32), cognitive effects (31), antiapoptotic and antiinflammatory actions (3337) and plasma glucose concentrations (38) has been extensively studied. Neuro- and cardioprotection properties have been mainly described. Accordingly, rhEpo therapy was suggested as a reliable approach for treating a broad range of pathologies, including heart and cardiovascular diseases, neurodegenerative disorders (Parkinson’s and Alzheimer’s disease), spinal cord injury, stroke, diabetic retinopathy and rare diseases (Friedreich ataxia).Unfortunately, the side effects of rhEpo are also evident. Epo is involved in regulating tumor angiogenesis (39) and probably in the survival and growth of tumor cells (25,40,41). rhEpo administration also induces serious side effects such as hypertension, polycythemia, myocardial infarction, stroke and seizures, platelet activation and increased thromboembolic risk, and immunogenicity (4246), with the most common being hypertension (47,48). A new generation of nonhematopoietic EpoR agonists drugs have hence been investigated and further developed in animals models. These compounds, namely asialoerythropoietin (asialoEpo) and carbamylated Epo (Cepo), were developed for preserving tissue-protective properties but reducing the erythropoietic activity of native Epo (49,50). These drugs will provide better outcome in ongoing clinical trials. The advantage of using nonhematopoietic Epo analogs is to avoid the stimulation of hematopoiesis and thereby the prevention of an increased hematocrit with a subsequent procoagulant status or increased blood pressure. In this regard, a new study by van Rijt et al. has shed new light on this topic (51). A new nonhematopoietic EpoR agonist analog named ARA 290 has been developed, promising cytoprotective capacities to prevent renal ischemia/reperfusion injury (51). ARA 290 is a short peptide that has shown no safety concerns in preclinical and human studies. In addition, ARA 290 has proven efficacious in cardiac disorders (52,53), neuropathic pain (54) and sarcoidosis-induced chronic neuropathic pain (55). Thus, ARA 290 is a novel nonhematopoietic EpoR agonist with promising therapeutic options in treating a wide range of pathologies and without increased risks of cardiovascular events.Overall, this new generation of EpoR agonists without the erythropoietic activity of Epo while preserving tissue-protective properties of Epo will provide better outcomes in ongoing clinical trials (49,50). Nonhematopoietic EpoR agonists represent safer and more effective surrogates for the treatment of several diseases, such as brain and peripheral nerve injury, diabetic complications, renal ischemia, rare diseases, myocardial infarction, chronic heart disease and others.  相似文献   

18.
High mobility group box 1 (HMGB1), the prototypic damage–associated molecular pattern molecule, is released at sites of inflammation and/or tissue damage. There, it promotes cytokine production and chemokine production/cell migration. New work shows that the redox status of HMGB1 distinguishes its cytokine-inducing and chemokine activity. Reduced all-thiol-HMGB1 has sole chemokine activity, whereas disulfide-HMGB1 has only cytokine activity, and oxidized, denatured HMGB1 has neither. Autophagy (programmed cell survival) and apoptosis (programmed cell death) have been implicated in controlling both innate and adaptive immune functions. Reduced HMGB1 protein promotes autophagy, whereas oxidized HMGB1 promotes apoptosis. Thus, the differential activity of HMGB1 in immunity, inflammation and cell death depends on the cellular redox status within tissues.High mobility group box 1 (HMGB1), a nonhistone nuclear factor, acts extracellularly as a damage-associated molecular pattern (DAMP) molecule to modulate inflammation, promoting autophagy and innate immune responses (15). HMGB1 has compartment-specific functions: nuclear, intracellular (but extranuclear) and extracellular. Its extracellular functions can now be divided further into cytokine-like or cytokine-inducing, chemokinelike and proangiogenic. Signaling pathways that induce variations on the posttranslational modification, such as phosphorylation and acetylation, have been implicated in the regulation of HMGB1 release. Importantly, HMGB1 contains three cysteines, each of which is susceptible to redox modification (6,7). The redox state of these cysteines is important for the proinflammatory cytokine-stimulating and proautophagic activity of HMGB1 (810). Autophagy (literally “self-eating”), a lysosome-mediated catabolic process, contributes to maintenance of intracellular homeostasis and promotes cell survival in response to environmental stress (1113).Treatment with reduced but not oxidized HMGB1 protein increases autophagy in cancer cells (9). In contrast, oxidized HMGB1 protein activates the caspase-dependent apoptotic cell death pathway (9). Venereau et al.(14) described a new role for redox control of both the cytokine-inducing and chemokine activity of HMGB1 in the setting of sterile inflammation, regulating leukocyte recruitment and their ability to secrete inflammatory cytokines (Figure 1).Open in a separate windowFigure 1Redox control of HMGB1 activity. To act as a DAMP/danger signal and inflammatory mediator, HMGB1 is transported extracellularly by two principal means: active secretion from living inflammatory cells (for example, macrophages) or passive release from necrotic cells. The activities of extracellular HMGB1 are redox dependent. All-thiol-HMGB1 promotes chemokine production and leukocyte recruitment. Disulfide-HMGB1, originating from infiltrating leukocytes, promotes release of proinflammatory cytokines and thus participates in the inflammatory response. Reactive oxygen species produced by leukocytes induces the terminal oxidation of HMGB1, which is inactivated during resolution of inflammation.Structurally, HMGB1 is composed of three domains: two positively charged proximal DNA-binding domains (A box and B box) and a negatively charged carboxyl terminus. Three cysteines are encoded within the molecule: two vicinal cysteines in box A (C23 and C45) and a single one in box B (C106). C23 and C45 can form an intermolecular disulfide bond, whereas C106 is unpaired. Therefore, three different redox forms HMGB1 (all-thiol-HMGB1, disulfide-HMGB1 and oxidized HMGB1) were derived from bacterial expression systems (14). In addition, by using tryptic digests and liquid chromatography tandem mass spectrometric analysis, Venereau et al. observed that recombinant HMGB1 can be reversibly oxidized and reduced in the presence of electron donors (for example, dithiothreitol) or acceptors (oxygen) (14).Next, Venereau et al. assessed whether individual redox forms of HMGB1 have a differential role in cytokine-stimulating and chemoattractant activities (14). They found that disulfide-HMGB1 induced activation of the nuclear factor (NF)-κB pathway and production of proinflammatory cytokines (for example, tumor necrosis factors-α, interleukin [IL]-6 and IL-8) in fibroblasts and macrophages. Interestingly, all-thiol-HMGB1 failed to induce a proinflammatory response. In contrast, all-thiol-HMGB1, but not disulfide-HMGB1, had chemoattractant activity in fibroblasts. These findings prompted them to determine whether HMGB1 inhibitors, such as box A and monoclonal antibody PDH1.1, block the chemoattractant and/or cytokine-inducing activities of HMGB1. Unexpectedly, these inhibitors prevented cell migration but not cytokine production, although they are widely used as HMGB1-targeting agents in experimental inflammatory diseases.Reactive oxygen species oxidize the HMGB1 released from dying cells, thereby neutralizing its stimulatory activity and promoting tolerance in immune cells (15,16). In addition, oxidation of C106 or lack of a disulfide bridge between C23 and C45 then causes HMGB1 to lose its proinflammatory effects in macrophages (8). Venereau et al. found that terminal oxidation by hydrogen peroxide results in the loss of both the cytokine-stimulating and chemoattractant activities of HMBG1. Moreover, the authors found that the three HMGB1 cysteine residues were required for the cytokine-stimulating activity but not for the chemoattractant activity of HMGB1. Cysteine mutant HMGB1 promotes fibroblast migration, but not cytokine expression in macrophages (14). Collectively, these findings establish a crucial role for redox in the regulation of HMGB1 activity in inflammation and migration.What is the redox state of HMGB1 in the pathogenesis of individual diseases? The redox state of HMGB1 from the human acute monocytic leukemia cell line THP-1 was measured in the presence or absence of lipopolysaccharide (LPS) and necrotic medium in vitro. Intracellular HMGB1 was all-thiol-HMGB1, whereas secreted HMGB1 contained both all-thiol- and disulfide-HMGB1 (14). Furthermore, disulfide-HMGB1 was present later and time-dependently increased in cardiotoxin-injured muscles in vivo, confirming that the redox state of HMGB1 is altered during tissue damage and inflammation. HMGB1 protein with all three cysteines mutated to serine are resistant to oxidation and induce leukocyte recruitment without inducing cytokine production (14). The activities of HMGB1 are thus redox-dependent and can be modified within the injured tissues after HMGB1 release. Therefore, release of dynamic redox-regulated HMGB1 contributes to the orderly orchestrated recruitment of leukocytes, activation of cytokine release and subsequent resolution of inflammation.Several issues remain unresolved regarding the redox control of HMGB1 activity. First, HMGB1 is specifically recognized by several cell surface receptors (2), including Toll-like receptor (TLR)-4 and the receptor for advanced glycation end products (RAGE), but most recently was joined by T-cell immunoglobulin and mucin domain 3 (TIM-3) (17). Initial studies suggest that reduced C106 is necessary for the binding of HMGB1 to one of its receptors, TLR4, to stimulate cytokine release (8). HMGB1-induced recruitment of inflammatory cells depends on forming a complex with CXCL12 and signaling via CXCR4 (18). Moreover, RAGE is required for reduced HMGB1-mediated autophagy, but not oxidized HMGB1-induced apoptosis (9). All-thiol-HMGB1, but not disulfide-HMGB1, binds CXCL12 (14). The influence of HMGB1 receptors (for example, RAGE, TLR4, TLR2, CD24, TIM-3 and triggering receptor expressed on myeloid cells 1 [TREM1]) on biological activities of individual redox forms of HMGB1 remains to be carefully investigated. Second, HMGB1 forms highly inflammatory complexes with DNA, lipoteichoic acid, LPS, IL-1β, chemokine (C-X-C motif) ligand 12 (CXCL12)/ stromal cell–derived factor-1 (SDF-1) and nucleosomes (19). There is great interest in determining whether the individual redox forms of HMGB1 have varying affinity profiles active in inflammation and immunity. Third, HMGB1 has multiple intracellular and extracellular functions in health and disease, including cancer (1,2,6,20). Additional studies will be needed to determine whether redox is required for other functions of HMGB1, such as regeneration and cellular differentiation as well as the complex interactions between autophagy and immunity (5). One additional unanswered question is where and how the formation of the disulfide takes place and whether there is an enzyme specific for regulating this. This is important, knowing that the nuclear form is mostly all thiol. Finally, the development and performance of a simple, sensitive method for the detection of individual HMGB1 redox state isoforms in clinical specimens remains to be accomplished.  相似文献   

19.
Schultz AS  Finegan B  Nykiforuk CI  Kvern MA 《CMAJ》2011,183(18):E1334-E1344

Background:

Many hospitals have adopted smoke-free policies on their property. We examined the consequences of such polices at two Canadian tertiary acute-care hospitals.

Methods:

We conducted a qualitative study using ethnographic techniques over a six-month period. Participants (n = 186) shared their perspectives on and experiences with tobacco dependence and managing the use of tobacco, as well as their impressions of the smoke-free policy. We interviewed inpatients individually from eight wards (n = 82), key policy-makers (n = 9) and support staff (n = 14) and held 16 focus groups with health care providers and ward staff (n = 81). We also reviewed ward documents relating to tobacco dependence and looked at smoking-related activities on hospital property.

Results:

Noncompliance with the policy and exposure to secondhand smoke were ongoing concerns. Peoples’ impressions of the use of tobacco varied, including divergent opinions as to whether such use was a bad habit or an addiction. Treatment for tobacco dependence and the management of symptoms of withdrawal were offered inconsistently. Participants voiced concerns over patient safety and leaving the ward to smoke.

Interpretation:

Policies mandating smoke-free hospital property have important consequences beyond noncompliance, including concerns over patient safety and disruptions to care. Without adequately available and accessible support for withdrawal from tobacco, patients will continue to face personal risk when they leave hospital property to smoke.Canadian cities and provinces have passed smoking bans with the goal of reducing people’s exposure to secondhand smoke in workplaces, public spaces and on the property adjacent to public buildings.1,2 In response, Canadian health authorities and hospitals began implementing policies mandating smoke-free hospital property, with the goals of reducing the exposure of workers, patients and visitors to tobacco smoke while delivering a public health message about the dangers of smoking.25 An additional anticipated outcome was the reduced use of tobacco among patients and staff. The impetuses for adopting smoke-free policies include public support for such legislation and the potential for litigation for exposure to second-hand smoke.2,4Tobacco use is a modifiable risk factor associated with a variety of cancers, cardiovascular diseases and respiratory conditions.611 Patients in hospital who use tobacco tend to have more surgical complications and exacerbations of acute and chronic health conditions than patients who do not use tobacco.611 Any policy aimed at reducing exposure to tobacco in hospitals is well supported by evidence, as is the integration of interventions targetting tobacco dependence.12 Unfortunately, most of the nearly five million Canadians who smoke will receive suboptimal treatment,13 as the routine provision of interventions for tobacco dependence in hospital settings is not a practice norm.1416 In smoke-free hospitals, two studies suggest minimal support is offered for withdrawal, 17,18 and one reports an increased use of nicotine-replacement therapy after the implementation of the smoke-free policy.19Assessments of the effectiveness of smoke-free policies for hospital property tend to focus on noncompliance and related issues of enforcement.17,20,21 Although evidence of noncompliance and litter on hospital property2,17,20 implies ongoing exposure to tobacco smoke, half of the participating hospital sites in one study reported less exposure to tobacco smoke within hospital buildings and on the property.18 In addition, there is evidence to suggest some decline in smoking among staff.18,19,21,22We sought to determine the consequences of policies mandating smoke-free hospital property in two Canadian acute-care hospitals by eliciting lived experiences of the people faced with enacting the policies: patients and health care providers. In addition, we elicited stories from hospital support staff and administrators regarding the policies.  相似文献   

20.

Background

Cryotherapy is widely used for the treatment of cutaneous warts in primary care. However, evidence favours salicylic acid application. We compared the effectiveness of these treatments as well as a wait-and-see approach.

Methods

Consecutive patients with new cutaneous warts were recruited in 30 primary care practices in the Netherlands between May 1, 2006, and Jan. 26, 2007. We randomly allocated eligible patients to one of three groups: cryotherapy with liquid nitrogen every two weeks, self-application of salicylic acid daily or a wait-and-see approach. The primary outcome was the proportion of participants whose warts were all cured at 13 weeks. Analysis was on an intention-to-treat basis. Secondary outcomes included treatment adherence, side effects and treatment satisfaction. Research nurses assessed outcomes during home visits at 4, 13 and 26 weeks.

Results

Of the 250 participants (age 4 to 79 years), 240 were included in the analysis at 13 weeks (loss to follow-up 4%). Cure rates were 39% (95% confidence interval [CI] 29%–51%) in the cryotherapy group, 24% (95% CI 16%–35%) in the salicylic acid group and 16% (95% CI 9.5%–25%) in the wait-and-see group. Differences in effectiveness were most pronounced among participants with common warts (n = 116): cure rates were 49% (95% CI 34%–64%) in the cryotherapy group, 15% (95% CI 7%–30%) in the salicylic acid group and 8% (95% CI 3%–21%) in the wait-and-see group. Cure rates among the participants with plantar warts (n = 124) did not differ significantly between treatment groups.

Interpretation

For common warts, cryotherapy was the most effective therapy in primary care. For plantar warts, we found no clinically relevant difference in effectiveness between cryotherapy, topical application of salicylic acid or a wait-and-see approach after 13 weeks. (ClinicalTrial.gov registration no. ISRCTN42730629)Cutaneous warts are common.13 Up to one-third of primary school children have warts, of which two-thirds resolve within two years.4,5 Because warts frequently result in discomfort,6 2% of the general population and 6% of school-aged children each year present with warts to their family physician.7,8 The usual treatment is cryotherapy with liquid nitrogen or, less frequently, topical application of salicylic acid.912 Some physicians choose a wait-and-see approach because of the benign natural course of warts and the risk of side effects of treatment.10,11A recent Cochrane review on treatments of cutaneous warts concluded that available studies were small, poorly designed or limited to dermatology outpatients.10,11 Evidence on cryotherapy was contradictory,1318 whereas the evidence on salicylic acid was more convincing.1923 However, studies that compared cryotherapy and salicylic acid directly showed no differences in effectiveness.24,25 The Cochrane review called for high-quality trials in primary care to compare the effects of cryotherapy, salicylic acid and placebo.We conducted a three-arm randomized controlled trial to compare the effectiveness of cryotherapy with liquid nitrogen, topical application of salicylic acid and a wait-and-see approach for the treatment of common and plantar warts in primary care.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号