首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Photosystem II, the water-splitting enzyme   总被引:9,自引:0,他引:9  
The light-driven water-splitting/oxygen-evolving enzyme remains one of the great enigmas of plant biology. However, due to the recent expansion of research efforts on this enzyme, it is grudgingly giving up some of its secrets.  相似文献   

2.
Recent X-ray structures determined for the Photosystem II (PSII) core complex isolated from cyanobacteria have provided important information for understanding the functionality of this photosynthetic enzyme including its water splitting activity. As yet, no high-resolution structure is available for PSII of plants or eukaryotes in general. However, crystal structures have been determined for some components of plant PSII which together with the cyanobacterial structure can be used to interpret lower resolution structures of plant PSII derived from electron cryomicroscopy (cryo-EM). Here, we utilise the published X-ray structures of a cyanobacterial PSII core, Light Harvesting Complex II (LHCII), PsbP and PsbQ proteins to construct a model of the plant LHCII-PSII supercomplex using a 17 A resolution 3D electron density map of the spinach supercomplex determined by cryo-EM and single particle analysis. In so doing, we tentatively identify the relative positioning of the chlorophylls within the supercomplex and consider energy transfer pathways between the different subunits. The modelling has also allowed density to be assigned to the three extrinsic proteins of plant PSII, PsbO, PsbP and PsbQ associated with the water splitting centre and concluded that although the position of PsbO is the same as in cyanobacteria, PsbP and PsbQ are located in different positions to the cyanobacterial extrinsic PsbU and PsbV proteins.  相似文献   

3.
 Identifying transformed plant lines carrying the antibiotic resistance marker gene, neomycin phosphotransferase II, requires a more definitive test than the ability of the plant to grow on kanamycin. Although a number of alternative assays have been described, most are cumbersome, time consuming and/or require the use of radioisotopes. This report describes an ELISA for the detection of the neomycin phosphotransferase II enzyme in transformed plant tissue. The ELISA utilises commercially available antibodies and provides a number of advantages, including an extremely low background, a reduction in the amount of tissue required for testing, and semi-quantitative data on neomycin phosphotransferase II gene expression. This method has been applied successfully to a number of independently transformed lines in nine plant species. Received: 4 January 1999 / Accepted: 17 April 1999  相似文献   

4.
Zavafer  Alonso 《Photosynthesis research》2021,149(1-2):107-120
Photosynthesis Research - Photodamage of photosystem II is a significant physiological process that is prevalent in the fields of photobiology, photosynthesis research and plant/algal stress. Since...  相似文献   

5.
利用生物反应器培养植物细胞的研究进展(Ⅱ)   总被引:4,自引:1,他引:4  
介绍了当前用于植物细胞培养的生物反应器类型(搅拌式、气升式、转鼓式和鼓泡式生物反应器)及其特点,对各种类型的反应器进行了比较与选择;并进一步介绍了植物细胞固定化培养,提出今后利用反应器大规模培养植物细胞的发展研究方向。  相似文献   

6.
A three-dimensional model of the core proteins D1 and D2, including the cofactors, that form the Photosystem II reaction centre of pea (Pisum sativum), has been generated. This model was built with a rule-based computer modelling system using the information from the crystal structures of the photosynthetic reaction centres of Rhodopseudomonas viridis and Rhodobacter sphaeroides. An alignment of the primary sequences of twenty three D1, nine D2, eight bacterial L and eight bacterial M subunits predicts strong similarity between bacterial and higher plant reaction centres, especially in the transmembrane region where the cofactors responsible for electron transport are located. The sequence to be modelled was aligned to the bacterial structures using environment-dependent substitution tables to construct matrices, improving the alignment procedure. The ancestral relationship between the bacteria and higher plant sequences allowed both the L and M subunits to be used as structural templates as they were equally related to the higher plant polypeptides. The regions with the highest predicted structural homology were used as a framework for the construction of the structurally conserved regions. The structurally conserved region of the model shows strong similarity to the bacterial reaction centre in the transmembrane helices. The stromal and lumenal loops show greater sequence variation and are therefore predicted to be the structurally variable regions in the model. The key sidechain assignments and residues that may interact with cofactors are discussed.Abbreviations D Tyr161 in the D2 polypeptide - PS II Photosystem II - QA primary plastoquinone acceptor of Photosystem II - QB secondary plastoquinone acceptor of Photosystem II - Z Tyr161 in the D1 polypeptide  相似文献   

7.
Hollow plant stems are, compared to solid ones, endangered by a particular kind of mechanical damage: local buckling. In upright stems centric forces due to the weight of the plant itself are not critical. Bending, however, as caused by wind forces causes transverse stresses that lead to local buckling, long before the critical tension or compression stresses are reached. A new numerical method is proposed to treat local buckling of hollow plant stems caused by bending forces. The results emphasize the importance of transverse reinforcements in the nodes and/or the nodal thickenings for the stability of hollow structures.  相似文献   

8.
Photosystem II (PSII) is the plant photosynthetic reaction center that carries out the light driven oxidation of water. The water splitting reactions are catalyzed at a tetranuclear manganese cluster. The manganese stabilizing protein (MSP) of PSII stabilizes the manganese cluster and accelerates the rate of oxygen evolution. MSP can be removed from PSII, with an accompanying decrease in activity. Either an Escherichia coli expressed version of MSP or native, plant MSP can be rebound to the PSII reaction center; MSP reconstitution reverses the deleterious effects associated with MSP removal. We have employed Fourier transform infrared (FTIR) spectroscopy and solution small angle x-ray scattering (SAXS) techniques to investigate the structure of MSP in solution and to define the structural changes that occur before and after reconstitution to PSII. FTIR and SAXS are complementary, because FTIR spectroscopy detects changes in MSP secondary structure and SAXS detects changes in MSP size/shape. From the SAXS data, we conclude that the size/shape and domain structure of MSP do not change when MSP binds to PSII. From FTIR data acquired before and after reconstitution, we conclude that the reconstitution-induced increase in beta-sheet content, which was previously reported, persists after MSP is removed from the PSII reaction center. However, the secondary structural change in MSP is metastable after removal from PSII, which indicates that this form of MSP is not the lowest energy conformation in solution.  相似文献   

9.
In the cyanobacterial photosystem II (PSII), the O4-water chain in the D1 and CP43 proteins, a chain of water molecules that are directly H-bonded to O4 of the Mn4Ca cluster, is linked with a channel that connects the protein bulk surface along with a membrane-extrinsic protein subunit, PsbU (O4-PsbU channel). The cyanobacterial PSII structure also shows that the O1 site of the Mn4Ca cluster has a chain of H-bonded water molecules, which is linked with the channel that proceeds toward the bulk surface via PsbU and PsbV (O1-PsbU/V channel). Membrane-extrinsic protein subunits PsbU and PsbV in cyanobacterial PSII are replaced with PsbP and PsbQ in plant PSII. However, these four proteins have no structural similarity. It remains unknown whether the corresponding channels also exist in plant PSII, because water molecules are not identified in the plant PSII cryo-electron microscopy (cryo-EM) structure. Using the cyanobacterial and plant PSII structures, we analyzed the channels that proceed from the Mn4Ca cluster. The cyanobacterial O4-PsbU and O1-PsbU/V channels were structurally conserved as the channel that proceeds along PsbP toward the protein bulk surface in the plant PSII (O4-PsbP and O1-PsbP channels, respectively). Calculated protonation states indicated that in contrast to the original geometry of the plant cryo-EM structure, protonated PsbP-Lys166 may form a salt-bridge with ionized D1-Glu329 and protonated PsbP-Lys173 may form a salt-bridge with ionized PsbQ-Asp28 near the O1-PsbP channel. The existence of these channels might explain the molecular mechanism of how PsbP can interact with the Mn4Ca cluster.  相似文献   

10.
The nucleotide sequence for the Photosystem II gene psbC has been determined for the cyanobacterium Synechocystis 6803. The gene overlaps the last 50 bases of the psbD gene, and both genes are transcribed in the same direction, but read in different frames. This arrangement is identical to that found in all chloroplast genomes for which psbC has been sequenced. The Synechocystis nucleotide sequence is 70% homologous to the tobacco gene and the predicted amino acid sequence shows 85% homology. A possible alternative translation start site for psbC has been conserved between seven plant sequences and the cyanobacterial sequence. The hydropathy plot for the cyanobacterial protein is very similar to plots determined for six plant species. Pairs of histidines that may play a role in binding chlorophyll are conserved between the cyanobacterial and plant amino acid sequences.  相似文献   

11.
Recently 3D structural models of the photosystem II (PSII) core dimer complexes of higher plants (spinach) and cyanobacteria (Synechococcus elongatus) have been derived by electron [Rhee et al. (1998) Nature 396, 283-286; Hankamer et al. (2001) J. Struct. Biol., in press] and X-ray [Zouni et al. (2001) Nature 409, 739-743] crystallography respectively. The intermediate resolutions of these structures do not allow direct identification of side chains and therefore many of the individual subunits within the structure are unassigned. Here we review the structure of the higher plant PSII core dimer and provide evidence for the tentative assignment of the low molecular weight subunits. In so doing we highlight the similarities and differences between the higher plant and cyanobacterial structures.  相似文献   

12.
This review is devoted to the proteomes of the complex developmental stages of dicotyledoneous (dicot) plant materials. The two core technologies, two-dimensional gel electrophoresis (2-DGE) and mass spectrometry (MS), independently or in combination with each other, are propelling dicot plant proteomics to new discoveries and functions, with the establishment of tissue-specific and organelle proteomes, mostly in Arabidopsis thaliana and Medicago truncatula, revealing their complexity and specificity. These experimental proteomes have provided a good start towards the establishment of high-density 2-DGE reference maps and peptide mass fingerprint databases, for not only the model dicot plants, A. thaliana and M. truncatula, but also other important dicot plants, which will serve as a basis for proteomes of many other dicot plants and plant materials.  相似文献   

13.
Phosphopantetheinyl transferases (PPTases), which play an essential role in both primary and secondary metabolism, are magnesium binding enzymes. In this study, we characterized the magnesium binding residues of all known group II PPTases by biochemical and evolutionary analysis. Our results suggested that group II PPTases could be classified into two subgroups, two-magnesium-binding-residue-PPTases containing the triad Asp-Xxx-Glu and three-magnesium-binding-residue-PPTases containing the triad Asp-Glu-Glu. Mutations of two three-magnesium-binding-residue-PPTases and one two-magnesium-binding-residue-PPTase indicate that the first and the third residues in the triads are essential to activities; the second residues in the triads are non-essential. Although variations of the second residues in the triad Asp-Xxx-Glu exist throughout the whole phylogenetic tree, the second residues are conserved in animals, plants, algae, and most prokaryotes, respectively. Evolutionary analysis suggests that: the animal group II PPTases may originate from one common ancestor; the plant two-magnesium-binding-residue-PPTases may originate from one common ancestor; the plant three-magnesium-binding-residue-PPTases may derive from horizontal gene transfer from prokaryotes.  相似文献   

14.
主要探讨如下几个问题:转基因植物中的拟南芥开花时程基因;拟南芥中的甲基化与实验胚胎学研究;高等植物开花时程控制的可能机制.目前本领域已成为植物发育分子生物学的前沿热点研究领域之一.结合有关工作,对这一世界性热门领域进行了系统的评述,希望能为国内同行提供有关参考,赶超世界的植物分子生物学先进水平,对分子水平与生物技术角度改良黄土高原生态环境有指导意义.  相似文献   

15.
Summary We have determined the DNA sequence of aRhizobium meliloti gene that encodes glutamine synthetase II (GSII). The deduced amino acid sequence was compared to that ofBradyrhizobium japonicum GSII and those of various plant and mammalian glutamine synthetases (GS) in order to evaluate a proposal that the gene for this enzyme was recently transferred from plants to their symbiotic bacteria. There is 83.6% identity between theR. meliloti andB. japonicum proteins. The bacterial GSII proteins average 42.5% identity with the plant GS proteins and 41.8% identity with their mammalian counterparts. The plant proteins average 53.7% identity with the mammalian proteins. Thus, the GS proteins are highly conserved and the divergence of these proteins is proportional to the phylogenetic divergence of the organisms from which the sequences were determined. No transfer of genes across large taxonomic gaps is needed to explain the presence of GSII in these bacteria.  相似文献   

16.
Thaumatin, an intensely sweet-tasting protein, was secreted by the methylotrophic yeast Pichia pastoris. The mature thaumatin II gene was directly cloned from Taq polymerase-amplified PCR products by using TA cloning methods and fused the pPIC9K expression vector that contains Saccharomyces cerevisiae prepro alpha-mating factor secretion signal. Several additional amino acid residues were introduced at both the N- and C-terminal ends by genetic modification to investigate the role of the terminal end region for elicitation of sweetness in the thaumatin molecule. The secondary and tertiary structures of purified recombinant thaumatin were almost identical to those of the plant thaumatin molecule. Recombinant thaumatin II elicited a sweet taste as native plant thaumatin II; its threshold value of sweetness to humans was around 50 nM, which is the same as that of plant thaumatin II. These results demonstrate that the functional expression of thaumatin II was attained by Pichia pastoris systems and that the N- and C-terminal regions of the thaumatin II molecule do not -play an important role in eliciting the sweet taste of thaumatin.  相似文献   

17.
Green plant photosystem II (PSII) is involved in the light reactions of photosynthesis, which take place in the thylakoid membrane of the chloroplast. PSII is organized into large supercomplexes with variable amounts of membrane-bound peripheral antenna complexes. These supercomplexes are dimeric and contain usually 2-4 copies of trimeric LHCII complexes and have a further tendency to associate into megacomplexes or into crystalline domains, of which several types have been characterized. This review focuses on the overall composition and structure of the PSII supercomplex of green plants and its organization and interactions within the photosynthetic membrane. Further, we present the current knowledge how the thylakoid membrane is three-dimensionally organized within the chloroplast. We also discuss how the supramolecular organization in the thylakoid membrane and the PSII flexibility may play roles in various short-term regulatory mechanisms of green plant photosynthesis. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

18.
Boussac A  Sugiura M  Inoue Y  Rutherford AW 《Biochemistry》2000,39(45):13788-13799
The Mn(4)-cluster and the cytochrome c(550) in histidine-tagged photosystem II (PSII) from Synechococcus elongatus were studied using electron paramagnetic resonance (EPR) spectroscopy. The EPR signals associated with the S(0)-state (spin = 1/2) and the S(2)-state (spin = 1/2 and IR-induced spin = 5/2 state) were essentially identical to those detected in the non-His-tagged strain. The EPR signals from the S(3)-state, not previously reported in cyanobacteria, were detectable both using perpendicular (at g = 10) and parallel (at g = 14) polarization EPR, and these signals are similar to those found in plant PSII. In the S(3)-state, near-infrared illumination at 50 K induced a 176-G-wide split signal at g = 2 and signals at g = 5.20 and g = 1.51. These signals differ slightly from those reported in plant PSII [Ioannidis, N., and Petrouleas, V. (2000) Biochemistry 39, 5246-5254]. In accordance with the cited work, the split signal presumably reflects a radical interacting with the Mn(4)-cluster in a fraction of centers, while the g = 5.20 and g = 1.51 signals are tentatively attributed to a high-spin state of the Mn(4)-cluster with zero field splitting parameters different from those in plant PSII, reflecting minor changes in the environment of the Mn(4)-cluster. Biochemical modifications (Sr(2+)/Ca(2+) substitution, acetate and NH(3) treatments) were also investigated. In Sr(2+)-reconstituted PSII, in addition to the expected modified S(2) multiline signal, a signal at g = 5.2 was present instead of the g approximately 4 signal seen in plant PSII. In NH(3)-treated samples, in addition to the expected modified S(2)-multiline signal, a g approximately 4 signal was detected in a small proportion of the reaction centers. This is of note since g approximately 4 spectra arising from the Mn(4)-cluster in the S(2) state have not yet been published in cyanobacterial PSII. The detection of modified S(3)-signals in both perpendicular (at g = 7.5) and parallel (at g = 12) polarization EPR from NH(3)-treated PSII indicate that NH(3) is still bound in the S(3)-state. The acetate-treated PSII behaves essentially as in plant PSII. A study using oriented samples indicated that the heme plane of the oxidized low spin Cytc(550) was perpendicular to the plane of the membrane.  相似文献   

19.
Neomycin phosphotransferase II (neo) is a selectable marker gene used extensively in plant transformation experiments. Here we evaluate immunological detection of its gene product (NPTII) as an alternative to widely used radioactive assays. We have taken a commercially available non-radioactive NPTII Enzyme linked-Immunosorbant Assay (ELISA) kit, modified the protocol for application to plant tissues, and used it to quantify levels of NPTII protein in transformed plants. The ELISA proved safe, economical and convenient to reliably screen and quantify NPTII protein in large numbers of plant samples. The sensitivity of the ELISA for NPTII detection in tobacco plants is at least an order of magnitude greater than a widely used radioactive gel assay. Using three replicates per sample, standard errors are low and the assay is highly reproducibleover time for tissue-cultured tobacco. However, background readings varied with plant species, and also with plant age for untransformed glasshouse-grown tobacco. It is therefore essential to ensure that untransformed controls are closely matched to test plant.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号