首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhu  Qingjun  Yang  Yanyan  Xiao  Yanan  Han  Wenhui  Li  Xingyue  Wang  Wenda  Kuang  Tingyun  Shen  Jian-Ren  Han  Guangye 《Photosynthesis research》2022,152(2):193-206
Photosynthesis Research - Photosystem II (PSII) has a number of hydrogen-bonding networks connecting the manganese cluster with the lumenal bulk solution. The structure of PSII from...  相似文献   

2.
Photosystem II (PSII) catalyzes one of the key reactions of photosynthesis, the light-driven conversion of water into oxygen. Although the structure and function of PSII have been well documented, our understanding of the biogenesis and maintenance of PSII protein complexes is still limited. A considerable number of auxiliary and regulatory proteins have been identified to be involved in the regulation of this process. The carboxy-terminal processing protease CtpA, the serine-type protease DegP and the ATP-dependent thylakoid-bound metalloprotease FtsH are critical for the biogenesis and maintenance of PSII. Here, we summarize and discuss the structural and functional aspects of these chloroplast proteases in these processes. This article is part of a Special Issue entitled: SI: Photosystem II.  相似文献   

3.
Photosynthesis Research - Photosystem II (PSII), the oxygen-evolving enzyme, consists of 17 trans-membrane and 3 extrinsic membrane proteins. Other subunits bind to PSII during assembly, like...  相似文献   

4.
Pigment-protein complexes were isolated from chloroplasts of normal green and several types of chlorophyll-deficient soybeans. The complexes were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and comparisons were made between normal and chlorophyll-deficient genotypes of the relative amounts of chlorophyll associated with Photosystem I (PSI), Photosystem II (PSII), light-harvesting, and free pigment complexes.

Chlorophyll-deficient genotypes, compared to normal green genotypes, have fewer light-harvesting complexes and a higher ratio of PSII to PSI complexes. Chlorophyll associated with PSII in yellow genotypes is in relatively higher amounts in spite of the fact that these genotypes have much less grana stacking than normal green genotypes. Although PSII activity has been associated with appressed regions of grana in normal plants, our work shows that the association does not always hold true.

  相似文献   

5.
The photosynthetic apparatus of plant chloroplasts contains two photosystems, termed Photosystem I (PSI) and Photosystem II (PSII). Both PSI and PSII contain several types of chlorophyll a/b-binding (CAB) polypeptides, at least some of which are structurally related. It has been previously shown that multiple genes encoding one type of PSII CAB polypeptides exist in the genome of many higher plants. In tomato, there are at least eight such genes, distributed in three independent loci. Genes encoding a second type of CAB polypeptides have been isolated from several plant species, but the precise location of the gene products has not been determined. Here we show that tomato has two unlinked genes encoding this second type and that this type of CAB polypeptide is also localized in PSII.  相似文献   

6.
CP43, encoded by the psbC gene, is a chlorophyll (Chl)-binding protein of Photosystem II (PSII), the water-splitting and oxygen-evolving enzyme of photosynthesis. CP47, encoded by psbB, a Chl-binding protein of PSII, is closely related to CP43. The Chl-binding six transmembrane helical unit typified by CP43, is also structurally related to the N-terminal domains of the PsaA and PsaB proteins of Photosystem I (PSI) as well as to the family of light-harvesting proteins encoded by cyanobacterial isiA genes and prochlorophyte pcb genes. Here we use recent structural information derived for PSII and PSI to review similarities and differences between the various members of the CP43-like class of light-harvesting proteins, exploring both functional and evolutionary implications.  相似文献   

7.
Photodamage of Photosystem II (PSII) has been considered as an unavoidable and harmful reaction that decreases plant productivity. PSII, however, has an efficient and dynamically regulated repair machinery, and the PSII activity becomes inhibited only when the rate of damage exceeds the rate of repair. The speed of repair is strictly regulated according to the energetic state in the chloroplast. In contrast to PSII, Photosystem I (PSI) is very rarely damaged, but when occurring, the damage is practically irreversible. While PSII damage is linearly dependent on light intensity, PSI gets damaged only when electron flow from PSII exceeds the capacity of PSI electron acceptors to cope with the electrons. When electron flow to PSI is limited, for example in the presence of DCMU, PSI is extremely tolerant against light stress. Proton gradient (ΔpH)-dependent slow-down of electron transfer from PSII to PSI, involving the PGR5 protein and the Cyt b6f complex, protects PSI from excess electrons upon sudden increase in light intensity. Here we provide evidence that in addition to the ΔpH-dependent control of electron transfer, the controlled photoinhibition of PSII is also able to protect PSI from permanent photodamage. We propose that regulation of PSII photoinhibition is the ultimate regulator of the photosynthetic electron transfer chain and provides a photoprotection mechanism against formation of reactive oxygen species and photodamage in PSI.  相似文献   

8.
Photosystem II (PSII) is a large membrane protein complex that performs the water oxidation reactions of photosynthesis in cyanobacteria, algae, and plants. The unusual redox reactions in PSII often lead to damage, degradation, and reassembly of this molecular machine. To identify novel assembly factors, high sensitivity proteomic analysis of PSII purified from the cyanobacterium Synechocystis sp. PCC 6803 was performed. This analysis identified six PSII-associated proteins that are encoded by an operon containing nine genes, slr0144 to slr0152. This operon encodes proteins that are not essential components of the PSII holocomplex but accumulate to high levels in pre-complexes lacking any of the lumenal proteins PsbP, PsbQ, or PsbV. The operon contains genes with putative binding domains for chlorophylls and bilins, suggesting these proteins may function as a reservoir for cofactors needed during the PSII lifecycle. Genetic deletion of this operon shows that removal of these protein products does not alter photoautotrophic growth or PSII fluorescence properties. However, the deletion does result in decreased PSII-mediated oxygen evolution and an altered distribution of the S states of the catalytic manganese cluster. These data demonstrate that the proteins encoded by the genes in this operon are necessary for optimal function of PSII and function as accessory proteins during assembly of the PSII complex. Thus, we have named the products of the slr0144-slr0152 operon Pap (Photosystem II assembly proteins).  相似文献   

9.
In this work, lipid extracts from spinach membrane fragments enriched in Photosystem II (PSII) and from spinach PSII dimers were analyzed, by means of Thin Layer Chromatography (TLC) and Electro-Spray Ionization Mass Spectrometry. Cardiolipin found in association with PSII was isolated and purified by preparative TLC, then characterized by mass and mass-mass analyses. Cardiolipin structures with four unsaturated C18 acyl chains and variable saturation degrees were evidenced. Structural and functional effects of different phospholipids on PSII complexes were investigated by Fluorescence, Resonance Light Scattering and Oxygen Evolution Rate measurements. An increment of PSII thermal stability was observed in the presence of cardiolipin and phosphatidylglycerol.  相似文献   

10.
Kato  Yuki  Noguchi  Takumi 《Photosynthesis research》2022,152(2):135-151
Photosynthesis Research - Photosystem II (PSII) performs oxidation of water and reduction of plastoquinone through light-induced electron transfer. Electron transfer reactions at individual redox...  相似文献   

11.
Photosystem II (PSII) is a multisubunit protein complex in cyanobacteria, algae and plants that use light energy for oxidation of water and reduction of plastoquinone. The conversion of excitation energy absorbed by chlorophylls into the energy of separated charges and subsequent water-plastoquinone oxidoreductase activity are inadvertently coupled with the formation of reactive oxygen species (ROS). Singlet oxygen is generated by the excitation energy transfer from triplet chlorophyll formed by the intersystem crossing from singlet chlorophyll and the charge recombination of separated charges in the PSII antenna complex and reaction center of PSII, respectively. Apart to the energy transfer, the electron transport associated with the reduction of plastoquinone and the oxidation of water is linked to the formation of superoxide anion radical, hydrogen peroxide and hydroxyl radical. To protect PSII pigments, proteins and lipids against the oxidative damage, PSII evolved a highly efficient antioxidant defense system comprising either a non-enzymatic (prenyllipids such as carotenoids and prenylquinols) or an enzymatic (superoxide dismutase and catalase) scavengers. It is pointed out here that both the formation and the scavenging of ROS are controlled by the energy level and the redox potential of the excitation energy transfer and the electron transport carries, respectively. The review is focused on the mechanistic aspects of ROS production and scavenging by PSII. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

12.
Temperature-dependent fluorescence for intact cells of cyanobacterium Spirulina platensis was detected to search for the connection of the phycobilisome (PBS) with Photosystem I (PSI) and Photosystem II (PSII). Some interesting results were obtained from the deconvoluted fluorescence components of C-phycocyanin (C-PC), allophycocyanin (APC), PSI and PSII as well as the fluorescence spectra of the intact cells at room temperature (RT=25 degrees C) and 0 degrees C. It was observed that, compared to those at RT, both of the fluorescence components for PSI and APC increased, whereas those for PSII and C-PC decreased at 0 degrees C with excitation at 580 nm, that is, the fluorescence for C-PC is not synchronous with that for APC, and the fluorescence fluctuation for PSI is not synchronous with that for PSII. On the other hand, the decrease in C-PC fluorescence is synchronous with the increase in PSI fluorescence, and the increase in APC fluorescence is synchronous with the decrease in PSII fluorescence. Therefore, it can be readily deduced that PBS should be coupled not only with PSII through the terminal acceptors in the APC core but also with PSI through C-PC in PBS rods at physiological condition, while at 0 degrees C, a migration of a PBS makes the APC partially detached from PSII but the C-PC more efficiently coupled with PSI. The results provide good evidences for "mobile PBS" model and "parallel connection" model but not for the "spillover" model.  相似文献   

13.
In this work, lipid extracts from spinach membrane fragments enriched in Photosystem II (PSII) and from spinach PSII dimers were analyzed, by means of Thin Layer Chromatography (TLC) and Electro-Spray Ionization Mass Spectrometry. Cardiolipin found in association with PSII was isolated and purified by preparative TLC, then characterized by mass and mass-mass analyses. Cardiolipin structures with four unsaturated C18 acyl chains and variable saturation degrees were evidenced. Structural and functional effects of different phospholipids on PSII complexes were investigated by Fluorescence, Resonance Light Scattering and Oxygen Evolution Rate measurements. An increment of PSII thermal stability was observed in the presence of cardiolipin and phosphatidylglycerol.  相似文献   

14.
Photosynthesis Research - Photosystem II (PSII), the enzyme responsible for oxidizing water into molecular oxygen, undergoes a complex lifecycle during which multiple assembly proteins transiently...  相似文献   

15.
Photosystem (PSII) is a supramolecular polypeptide complex found in oxygenic photosynthetic membranes, which is capable of extracting electrons from water for the reduction of plastoquinone. An intriguing feature of this assembly is the fact that it includes more than a dozen low-mass polypeptides of generally unknown function. Using a transplastomic approach, we have individually disrupted the genes of the psbEFLJoperon in Nicotiana tabacum, which encode four such polypeptides, without impairing expression of downstream loci of the operon. All four mutants exhibited distinct phenotypes; none of them was capable of photoautotrophic growth. All mutants bleached rapidly in the light. Disruption of psbEand psbF, which code for the alpha and beta apoproteins of cytochrome b(559), abolished PSII activity, as expected; Delta psbL and Delta psbJ plants displayed residual PSII activity in young leaves. Controlled partial solubilisation of thylakoid membranes uncovered surprisingly severe impairment of PSII structure, with subunit and assembly patterns varying depending on the mutant considered. In the Delta psbL mutant PSII was assembled primarily in a monomeric form, the homodimeric form was preponderant in Delta psbJ, and, unlike the case in Delta psbZ, the thylakoids of both mutants released some PSII supercomplexes. On the other hand, Photosystem I (PSI), the cytochrome b(6)f complex, ATP synthase, LHCII, and CP24/CP26/CP29 antennae were present in near wild-type levels. The data are discussed in terms of their implications for structural, biogenetic and functional aspects of PSII.  相似文献   

16.
Photosynthesis Research - Photosystem II (PSII) catalyzes the oxidation of water at its active site that harbors a high-valent inorganic Mn4CaOx cluster called the oxygen-evolving complex (OEC)....  相似文献   

17.
Photosystem II (PSII) is a multisubunit chlorophyll-binding enzyme that absorbs light to catalyze water oxidation and plastoquinone reduction. Chlorophyll excitonic interaction changes in PSII were studied by absorption and circular dichroism spectra from 25 degrees C to 80 degrees C, and protein subunit denaturation was monitored by differential scanning calorimetry. A four-stage process of chlorophyll excitonic interaction change was observed being correlated with the denaturation of protein subunits.  相似文献   

18.
Theoretical studies (B3LYP) on models of the active sites in Photosystem II (PSII) and cytochrome oxidase are discussed. The role of a tyrosyl radical in the O-O bond formation in PSII is investigated, as well as the tyrosyl radical formation. In cytochrome oxidase, mechanisms for O-O bond cleavage involving tyrosyl radical formation are investigated, together with possible roles for the tyrosine in the proton translocation.  相似文献   

19.
Photosynthesis Research - The effect of chloramphenicol, an often used protein synthesis inhibitor, in photosynthetic systems was studied on the rate of Photosystem II (PSII) photodamage in the...  相似文献   

20.
Li  Daxing  Wang  Mengwei  Zhang  Tianpeng  Chen  Xiao  Li  Chongyang  Liu  Yang  Brestic  Marian  Chen  Tony H. H.  Yang  Xinghong 《Photosynthesis research》2021,147(3):301-315
Photosynthesis Research - Photosystem II (PSII), especially the D1 protein, is highly sensitive to the detrimental impact of heat stress. Photoinhibition always occurs when the rate of photodamage...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号