首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
低温胁迫对不同基因型小麦品种光合性能的影响   总被引:3,自引:0,他引:3  
选用不同基因型小麦品种(春性品种扬麦18、弱春性品种郑麦9023、半冬性品种烟农19),研究了分蘖期和拔节期低温对叶片光合和叶绿素荧光特性的影响.结果表明:分蘖期-10℃低温处理后,烟农19的净光合速率(Pn)、气孔导度(gs)、PSⅡ最大光化学效率(Fv/Fm)、光化学猝灭系数(qP)、非光化学猝灭系数(NPQ)和PSⅡ非循环光合电子传递速率(ETR)显著高于扬麦18和郑麦9023;郑麦9023的gs、Fv/Fm、qp和NPQ显著高于扬麦18,胞间CO2浓度(Ci)显著高于烟农19;扬麦18的Ci显著高于烟农19,初始荧光(Fo)显著高于郑麦9023和烟农19.拔节期0℃低温处理后,烟农19的Pn、gs、Fv/Fm和qP显著高于扬麦18和郑麦9023,NPQ和ETR显著高于扬麦18;郑麦9023的Pn、gs、Fv/Fm和qP显著高于扬麦18,Fo显著高于烟农19;扬麦18的Ci和Fo显著高于郑麦9023和烟农19.分蘖期和拔节期低温胁迫下,半冬性品种烟农19具有较高的光合活性和较强的自我保护机制,弱春性品种郑麦9023次之,春性品种扬麦18最低.  相似文献   

2.
3.
Proton motive force (pmf) across thylakoid membranes is not only for harnessing solar energy for photosynthetic CO2 fixation, but also for triggering feedback regulation of photosystem II antenna. The mechanisms for balancing these two roles of the proton circuit under the long-term environmental stress, such as prolonged drought, have been poorly understood. In this study, we report on the response of wild watermelon thylakoid 'proton circuit' to drought stress using both in vivo spectroscopy and molecular analyses of the representative photosynthetic components. Although drought stress led to enhanced proton flux via a ∼34% increase in cyclic electron flow around photosystem I (PS I), an observed ∼fivefold decrease in proton conductivity, gH+, across thylakoid membranes suggested that decreased ATP synthase activity was the major factor for sustaining elevated qE. Western blotting analyses revealed that ATP synthase content decreased significantly, suggesting that quantitative control of the complex plays a pivotal role in down-regulation of gH+. The expression level of cytochrome b 6 f complex – another key control point in photosynthesis – also declined, probably to prevent excess-reduction of PS I electron acceptors. We conclude that plant acclimation to long-term environmental stress involves global changes in the photosynthetic proton circuit, in which ATP synthase represents the key control point for regulating the relationship between electron transfer and pmf.  相似文献   

4.
5.
Tropospheric ozone (O3) is a phytotoxic air pollutant whose current background concentrations in parts of East Asia have caused estimated rice yield losses of up to 20%; currently, however, little is known about the mechanisms of O3 tolerance in rice. We previously identified a quantitative trait locus (QTL) in rice called OzT8, which was associated with relative dry weight under ozone stress. The photosynthetic response in SL46, a Nipponbare (NB)–Kasalath chromosome segment substitution line (SL) containing the OzT8 locus, was compared to the parent NB in multiple ozone fumigation experiments (100 ppb, 8 h d–1, 23 d). By day 23, SL46 showed significantly less reduction of photosynthetic capacity compared to NB; the maximum carboxylation rate of ribulose 1·5‐bisphosphate carboxylase/oxygenase (Rubisco) decreased by 24% in SL46 compared to 49% in NB, and the maximum electron transport rate decreased by 16 and 39%, respectively. The midday carbon assimilation rates also showed a similar trend, but there was no genotypic difference in stomatal conductance. These results indicate that the OzT8 locus confers ozone tolerance via biochemical acclimation, not avoidance, making it a potentially valuable target for breeding of ozone tolerance into future rice lines. The sequence of photosynthetic response of rice to ozone stress and related tolerance factors are also discussed.  相似文献   

6.
Abstract Photosynthetic electron transport activities and the ability to generate and maintain a trans-thylakoid proton electrochemical gradient were examined during chloroplast development in 4-day-old wheat leaves grown under a diurnal light regime. Polarographic and spectropholometric studies on leaf tissue demonstrated that poorly developed chloroplasls at the leaf base could photo-oxidize water and transfer electrons from photosystem 2 to photosystem 1. The capacity for non-cyclic whole-chain electron transport increased during chloroplast development. Thylakoids isolated from the leaf base, although capable of pumping protons into the inlrathylakoid space, could not maintain a trans-membrane proton electrochemical gradient; this ability developed at later stages of chloroplast biogenesis in the leaf. The implications of these results for the energetics of the developing leaf are discussed.  相似文献   

7.
Abstract

Two genotypes (Pusa 9531 and PS 16) of moongbean [Vigna radiata (L) Wilczek], differing in photosynthetic capacity were grown for 30 days in earthen pots at three field capacities (100, 75 and 50%), and the possible role of biochemical alterations and antioxidant metabolism in conferring photosynthetic capacity was determined by measuring Rubisco activity, photosynthetic traits, lipid peroxidation and assaying activities of the central components of antioxidant defence system. Growth, Rubisco activity, photosynthetic traits and soluble protein content decreased significantly with decreasing field capacity (FC) from 100 to 50%. Levels of TBARS, H2O2, electrolyte leakage and proline contents increased with decreasing FC. Activities of SOD and GR increased in both genotypes with decreasing FC; the CAT and APX activities over-expressed only at mild (75%) FC but not at severe (50%) FC. There were found genotype-dependent alterations in growth, photosynthetic traits, Rubisco activity and antioxidant metabolism when exposed to water deficit. Decline in efficiency of the H2O2-decomposing system at severe drought was responsible for oxidative damage occurring in both the genotypes. The differential responses of antioxidative enzymes in the two genotypes were the result of their ability to protect photosynthetic apparatus and alleviate water deficit stress.  相似文献   

8.
三种栽培模式下不同基因型冬小麦旗叶衰老代谢比较   总被引:1,自引:0,他引:1  
为了探索冬小麦在不同栽培模式下功能叶片衰老代谢的生理机制,以cp02(213)、cp99(1)和陕农512为材料,比较研究了常规栽培、覆草栽培、地膜覆盖3种栽培模式下小麦旗叶衰老代谢特性.结果表明,覆草栽培叶面积、旗叶功能期、叶绿素含量、叶片保护酶活性(SOD、POD、CAT)显著高于常规栽培,膜脂过氧化程度较低,叶片衰老速度缓慢,代谢强度旺盛,有利于籽粒灌浆和光合产物的积累.灌浆前期,地膜覆盖叶面积、旗叶功能期、叶绿素含量、叶片保护性酶活性(SOD、POD、CAT)显著高于常规栽培,膜脂过氧化程度低于常规栽培;灌浆后期,叶绿素含量急剧下降,叶片衰老速度加快,膜脂过氧化程度加剧.参试品种(系)中陕农512叶片衰老速度缓慢,保绿性好.  相似文献   

9.
磷高效基因型小麦对缺磷胁迫的根际适应性反应   总被引:8,自引:2,他引:8  
采用奶箱分隔栽培试验法,进行了磷高效与磷低效小麦基因型根际土壤PH与有效磷变化的研究,结果表明:小麦根际土壤PH和有效磷含量皆明显低于外围土壤,表现出明显的根际效应特征;磷高效基因型小麦的根际PH和有效磷含量明显低于磷低效基因型,PH变异范围和磷素亏缺区也表现明显较大。为了进一步验证磷高效小麦基因型这的这一根际特征,同时进行了施用水溶性,枸溶性磷肥的试验研究,结果表明,以水溶性磷肥对根际PH和有效  相似文献   

10.
Pamela Graff  Martín R. Aguiar 《Oikos》2011,120(7):1023-1030
Since many arid ecosystems are overstocked with domestic herbivores, biotic stress could have a stronger influence in modulating the balance of species interactions than expected from the stress gradient hypothesis (SGH). Here we tested a priori predictions about the effect of grazing on species interactions and fine scale spatial structure of grasses in water‐limited ecosystems. We used detailed vegetation mapping and spatial analysis, and performed a field experiment where the direct and indirect components of positive interactions were disentangled to provide evidence of links between process and pattern. We found associational resistance (biotic refuge) to be the dominant process in grazing situations, while competition, instead of direct facilitation, seemed to govern grass spatial patterns when herbivore pressure was relaxed. These results suggest that facilitation between grasses in arid communities may be related to herbivory rather than nurse plant effects. Associational resistance tends to have the strongest effect on spatial aggregation of species at intermediate grazing pressure. Results suggest that contrary to SGH, this physical clustering of species decreased when grazing pressure reached their maximum levels. Positive associations remained significant only when palatability differences between neighbours is large, suggesting that managing stocking rate is a key factor determining the persistence of herbivory refuges. These refuges are potential foci to initiate population recovery of high quality forage species in arid degraded areas.  相似文献   

11.
Leaves of Triticum aestivum cv. Avalon were grown in an atmosphere that contained 150 nmole mol-1 ozone for 7h each day. After leaves had reached maximum size, the leaf blade was divided into three sections to provide tissue of different age, the youngest at the base of the blade and the oldest at the leaf tip. The ozone treatment was found to decrease significantly the light-saturated rate and quantum yield of CO2 assimilation and the maximum quantum yield of photosystem II photochemistry in the oldest leaf section. No effects were found on the basal and middle sections of the leaf. These ozone-induced decreases in the photosynthetic parameters were associated with decreases in the efficiency of utilization of light for CO2 assimilation at the photon flux density under which the leaves were grown. The depression in photosynthetic performance of tissue near the leaf tip was accompanied by large decreases in the contents of total, soluble and thylakoid proteins and chlorophyll. There was also found to be a preferential loss of ribulose-1,5-carboxylase-oxygenase. These ozone-induced changes in chlorophyll and protein contents and the photosynthetic activities of the leaf tissue were similar to changes normally associated with leaf senescence. Two-dimensional polyacrylamide gel analyses of leaf proteins demonstrated the loss of some minor, and unidentified, proteins, whilst another group of minor proteins appeared. It is concluded that daily exposure of the leaf to 150 nmol mol-1 ozone for 7h had no effect on the development of the photosynthetic apparatus and its activities during leaf expansion, but it did promote the onset of premature senescence in fully expanded tissue that resulted in a loss of pigments, proteins and photosynthetic capacity and efficiency.  相似文献   

12.
This study investigated the basis of the negative relationship between leaf size and photosynthetic rate per unit of area among five cultivars of soybeans. Exposure of developing mainstem leaves to light, and sizes and light saturated photosynthesis rates of those leaves at maturity were compared in cultivars grown in field plots for two years at Beltsville, Maryland, USA. Plants were grown both in stands at 2.5 cm by 1 m spacing and as isolated plants. While cultivar differences in leaf size were large and consistent in both planting arrangements, significant cultivar differences in light saturated photosynthetic rates were found only in plants grown in stands. Similarly, leaf size was significantly correlated with specific leaf weight only for plants grown in stands. The mainstem apex and developing mainstem leaves experienced more severe shading in large-leaved cultivars than in small-leaved cultivars when plants were grown in stands. Thus, cultivar differences in photosynthetic capacity were probably a consequence of differences in the exposure of developing leaves to light.  相似文献   

13.
A gradual reduction in leaf water potential (Ψleaf), net photosynthetic rate (P N), stomatal conductance, and transpiration rate was observed in two drought tolerant (C 306 and K 8027) and two susceptible (RW 893 and 899) genotypes subjected to water stress. The extent of reduction was lower in K 8027 and C 306 and higher in RW 893 and RW 899. Rewatering the plants after 5 d of stress restored P N and other gas exchange traits in all four cultivars. Water stress had no significant effect on variable to maximum fluorescence ratio (Fv/Fm) indicating that water stress had no effect on primary photochemistry of photosystem 2 (PS2). However, water stress reduced the efficiency of excitation energy transfer (F′v/F′m) and the quantum yield of electron transport (ΦPS2). The reduction was more pronounced in susceptible cultivars. Water stress had no significant effect on photochemical quenching, however, the non-photochemical quenching increased by water stress.  相似文献   

14.
Our experiment was conducted in order to find out effects of paclobutrazol (PBZ; 30 μl l–1) on morphology, photosynthetic process, and stress markers under water surplus and deficit conditions in several wheat genotypes. Study revealed that relative water content (RWC), photosynthetic rate, and maximal quantum yield of PSII (FV/FM) was improved after a PBZ application both under irrigation and water deficit across the genotypes, while the stomatal conductance was reduced. Further, the application of PBZ led to reduced leaf area in wheat genotypes. Moreover, a proline content was higher in the wheat genotypes under water stress as compared to the irrigated plants. The application of PBZ led to downregulation of the proline content under water deficit, while there was no significant change in the content and activity under irrigation with or without the PBZ treatment. These findings indicated that due to the application of PBZ the wheat genotypes might sense a lower stress level (indicated by the proline content) and better drought tolerance (according to RWC and photosynthetic characteristics).  相似文献   

15.
We measured the Δ Ψ and ΔpH components of the transthylakoid proton motive force ( pmf ) in light-adapted, intact tobacco leaves in response to moderate heat. The Δ Ψ causes an electrochromic shift (ECS) in carotenoid absorbance spectra. The light–dark difference spectrum has a peak at 518 nm and the two components of the pmf were separated by following the ECS for 25 s after turning the light off. The ECS signal was deconvoluted by subtracting the effects of zeaxanthin formation (peak at 505 nm) and the qE-related absorbance changes (peak at 535 nm) from a signal measured at 520 nm. Heat reduced ΔpH while Δ Ψ slightly increased. Elevated temperature accelerated ECS decay kinetics likely reflecting heat-induced increases in proton conductance and ion movement. Energy-dependent quenching (qE) was reduced by heat. However, the reduction of qE was less than expected given the loss of ΔpH. Zeaxanthin did not increase with heat in light-adapted leaves but it was higher than would be predicted given the reduced ΔpH found at high temperature. The results indicate that moderate heat stress can have very large effects on thylakoid reactions.  相似文献   

16.
To dissect differences in both lipid accumulation and composition and the role of these modifications during drought stress, four grapevine cultivars exhibiting differential tolerance to drought were subjected to water shortage. Tolerant cultivars, Kahli Kerkennah and Cardinal, exhibited higher leaf water potential (Ψw), and lower lipid peroxidation compared to the sensitive cultivars Guelb Sardouk and Superior Seedless during stress. Total lipid amounts increased during stress only in the leaves of the tolerant cultivars. Drought induced increases in the ratios digalactosyldiacylglycerol/monogalactosyldiacylglycerol and phosphatidylcholine/phoshatidylethanolamine of almost all the drought stressed cultivars. Moreover, the overall analysis of the composition of fatty acids revealed that a linolenic acid was prevalent in grapevine and the unsaturation level of lipids increased under water stress in all the cultivars. Specific adjustments in the lipid composition during stress could compromise stress tolerance.  相似文献   

17.
Wheat (Triticum aestivum L.) genotypes K-65 (salt tolerant) and HD 2329 (salt sensitive) were grown in pots under natural conditions and irrigated with NaCl solutions of electrical conductivity (ECe) 4.0, 6.0, and 8.0 dS m−1. Control plants were irrigated without saline water. Observations were made on the top most fully expanded leaf at tillering, anthesis, and grain filling stages. The net photosynthetic rate (P N), stomatal conductance (g s), and transpiration rate (E) were reduced with the addition of NaCl. The reduction was higher in HD 2329 than in K-65. Salinity enhanced leaf to air temperature gradient (ΔT) in both the genotypes. NaCl increased the activities of superoxide dismutase (SOD) and peroxidase (POX); the percent increment was higher in K-65. The sodium and potassium contents were higher in the roots and leaves of K-65 over HD 2329. Thus at cellular level K-65 has imparted salt tolerance by manipulating P N, E, g s, and K accumulation in leaves along with overproduction of antioxidative enzyme activities (SOD and POX).  相似文献   

18.
The aim of this study was to extent the range of knowledge about water relations and stomatal responses to water stress to ten Mediterranean plants with different growth forms and leaf habits. Plants were subjected to different levels of water stress and a treatment of recovery. Stomatal attributes (stomatal density, StoD), stomatal conductance (g s), stomatal responsiveness to water stress (SR), leaf water relations (pre-dawn and midday leaf water potential and relative water content), soil to leaf apparent hydraulic conductance (K L) and bulk modulus of elasticity (ε) were determined. The observed wide range of water relations and stomatal characteristics was found to be partially depended on the growth form. Maximum g s was related to StoD and the stomatal area index (SAI), while g s evolution after water stress and recovery was highly correlated with K L. Relationships between SR to water deficit and other morphological leaf traits, such as StoD, LMA or ε, provided no general correlations when including all species. It is concluded that a high variability is present among Mediterranean plants reflecting a continuum of leaf water relations and stomatal behaviour in response to water stress.  相似文献   

19.
遮荫对两个基因型玉米叶片解剖结构及光合特性的影响   总被引:9,自引:0,他引:9  
杜成凤  李潮海  刘天学  赵亚丽 《生态学报》2011,31(21):6633-6640
以耐荫性不同的玉米品种郑单958(ZD958,耐荫性较强)和豫玉22(YY22,耐荫性较弱)为材料,研究了苗期50%遮荫对玉米叶片形态结构和光合特性的影响。结果表明:形态结构上,苗期遮荫处理后,玉米叶片变薄,单位面积叶绿体数目减少,基粒数、基粒厚度和片层数增加,但是YY22的叶绿体大部分发育不良,肿胀呈球形,基粒片层和基质片层出现不同程度的松散;而ZD958大部分叶绿体结构良好,各部分发育基本正常。光合特性上,弱光胁迫使玉米叶片叶绿素含量升高,净光合速率(Pn)、PSⅡ最大光化学量子产量(Fv/Fm)和实际光化学效率(ΦPS)降低,胞间CO2浓度(Ci)和非光化学猝灭(NPQ)增加,但是YY22的Pn、Fv/FmΦPS显著下降,CiNPQ显著升高;而ZD958的Fv/FmΦPS下降幅度较小,且NPQ增加亦不显著。研究结果提示,弱光胁迫对玉米叶片形态结构和光合特性影响较大,且存在基因型差异,耐荫性较强的品种对弱光环境的适应性较强。  相似文献   

20.
The effect of heat stress on soluble proteins extracted from leaf tissues of bread (Triticum aestivum cv. Gönen-98, tolerant; cv. Cumhuriyet-75, susceptible; genome ABD) and durum (Triticum durum cv. Ege-88, tolerant; cv. Ankara-98, susceptible; genome AB) wheat cultivars differing in sensitivity to high temperature was examined by two-dimensional gel electrophoresis. At acclimation (37°C) and acclimation→high temperature (37°C→50°C) treatments compared to control (25°C), evaluation of gels revealed 31 proteins to be differentially expressed in first leaves as a result of heat stress in heat-susceptible and heat-tolerant cultivars of bread and durum wheats. All of the increased or decreased proteins in amount, newly synthesized and/or disappeared were in low-molecular-weight (LMW, 16.1–24.0 kDa) and generally acidic character (pI 4.8–6.9). The responses of the four cultivars were compared: Twenty-two of 31 proteins were detected as newly synthesized LMW heat shock proteins (LMW HSPs = small HSPs). The number of these sHSPs was different in cultivars which have the same genome. In addition, the number of the sHSPs in heat-tolerant cultivars was higher than in heat-susceptible cultivars. Some of the sHSPs were specific to cultivar. Most of the sHSPs synthesized at 37°C were also detected at 37°C→50°C treatment. It is suggested that sHSPs have special importance in two points: Firstly, sHSPs in cultivars showed abundance and diversity. Secondly, these proteins may play an important role in the acquiring of thermal tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号