首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
1. Chronic nitrogen (N) deposition may alter the bioavailability of dissolved organic matter (DOM) in streams by multiple pathways. Elevated N deposition may alter the nutrient stoichiometry of DOM as well as nutrient availability in stream water. 2. We evaluated the influence of a decadal‐scale experimental N enrichment on the relative importance of DOM nutrient content and inorganic nutrient availability on the bioavailability of DOM. We measured the consumption of dissolved organic carbon (DOC) and changes in nutrient concentration, DOM components and enzyme activity in a bottle incubation assay with different DOM and nutrient treatments. To evaluate the effect of DOM stoichiometry, we used leaf leachates of different carbon/N/phosphorus (C : N :P) ratio, made from leaf litter sourced in the reference and N‐enriched catchments at the Bear Brook Watershed in Maine (BBWM). We also manipulated the concentration of inorganic N and P to compare the effect of nutrient enrichment with DOM stoichiometry. 3. DOC from the N‐enriched catchment was consumed 14% faster than that from the reference catchment. However, mean DOC consumption for both leachates was more than doubled by the simultaneous addition of N and P, compared to controls, while the addition of N or P alone increased consumption by 42 and 23%, respectively. The effect of N and/or P enrichment consistently had a greater effect than DOM source for all response variables considered. 4. We subsequently conducted DOC uptake measurements using leaf leachate addition under ambient and elevated N and P in the streams draining the reference and N‐enriched catchments at BBWM. In both streams, DOC uptake lengths were shorter when N and P were elevated. 5. Although both DOM stoichiometry and inorganic nutrient availability affect DOM bioavailability, N and P co‐limitation appears to be the dominant driver of reach‐scale processing of DOM.  相似文献   

3.
The common marmoset is one of the few callitrichid species that is not threatened or endangered in the wild, and is widely used in biomedical research, yet relatively little is understood about its digestive physiology. Dietary specialization on plant exudates has lead to relatively reduced small intestines, yet the common marmoset has exceptional dietary breadth, allowing it to successfully utilize a variety of habitats. We predicted that passive, paracellular nutrient absorption would be used by the common marmoset to a greater extent than in other non-flying mammals. We measured the bioavailability and rates of absorption of two metabolically inert carbohydrates not transported by mediated pathways (L-rhamnose and cellobiose, molecular masses of 164 and 342, respectively) to measure paracellular uptake, and of a non-metabolized D-glucose analog (3-O-methyl-D-glucose) to measure total uptake by both mediated and paracellular pathways. We found high bioavailability of 3-O-methyl-D-glucose (83+/-5%), and much higher bioavailability of the paracellular probes than in similarly sized non-flying mammals (30+/-3% and 19+/-2% for L-rhamnose and cellobiose, respectively). Passive, paracellular nutrient absorption accounts for around 30% of total glucose absorption in common marmosets and intestinal permeability is significantly higher than in humans, the only other species of primate measured to date. This may allow the common marmoset to maintain high digestive efficiency when feeding on higher quality foods (fruit, arthropods, gums with higher proportions of simple sugars), in spite of relatively reduced small intestines correlated with adaptations for fermentative digestion of plant gums. We find no evidence to support, in primates, the hypothesis that reliance on paracellular nutrient absorption should increase with body size in mammals, but suggest instead that it may be associated with small body size and/or taxon-specific adaptations to diet.  相似文献   

4.
Total mercury is closely related to nutrient status in ecosystems. However, studies specifying the effects of various nutrient forms on the mobility of mercury are rare. In this study, three fractions of mercury (mobile, semi-mobile, and non-mobile) were examined in the soil of an estuarine wetland with excessive nutrient inputs in northern China. The wetland is located in the east route of China's South-to-North Water Transfer Project. Correlations between the three fractions of mercury and four nutrient parameters were analyzed. Results showed that toxic mobile and semi-mobile mercury comprised a great portion of total soil mercury in the studied wetland. Among the four nutrient parameters, ammonium nitrogen showed a significant negative correlation with mobile toxic mercury and was the principal nutrient component that influenced the mobility and toxicity of mercury. Nitrate nitrogen showed a positive correlation with mobile toxic mercury. Moreover, carbon/nitrogen ratio and soil acid were positively correlated with mercury mobility. Given that lower nitrogen loading is required in the watershed to ensure the water quality during the water transfer project, our study suggested that changes in nitrogen inputs might promote the mobility and bioavailability of mercury in the watershed. Thus, more attention should be provided to the potential hazard of mercury in the food web during the water transfer.  相似文献   

5.
王吉鹏  吴艳宏 《生态学报》2016,36(5):1204-1214
磷(P)的生物有效性对山地生态系统的发育和稳定至关重要。由于大气CO_2浓度升高和N沉降增加,生态系统C、N和P的化学计量比失衡,P的生物有效性受到更多关注。近年来山地系统中P的研究不断深入,2004—2013年间ISI Web of Knowledge中相关研究论文几乎是此前近百年的3倍。总结了山地生态系统中P的生物有效性的特点及其对植物物种多样性和初级生产力的影响。山地生态系统P的生物有效性因垂直高差和地形梯度空间变异明显,快速物质运移和生物过程是控制山地生态系统P的生物有效性的关键因素。P的生物有效性可以影响山地生态系统物种多样性和初级生产力,其对初级生产力的限制存在于全球范围内的山地生态系统。当P的生物有效性发生改变时,山地生态系统的结构越复杂,其植物物种多样性和初级生产力的响应可能会越平缓。全球变化的重要驱动因子(如增温和N沉降增加)可以直接或间接地改变山地生态系统P的生物有效性,因此需要在山地生态系统中加强长期监测和养分控制实验,并结合新型P分析技术,以期认识山地生态系统P的生物有效性的现状、变化趋势和对生态系统的影响,从而为适应全球变化背景下山地生态系统养分状况的改变提供依据。  相似文献   

6.
Bioavailability of dissolved organic carbon (DOC) can significantly influence nutrient cycling in small streams yet the factors influencing the bioavailability of DOC remains poorly understood. The isotopic composition of DOC and factors controlling its utilization were studied in two contrasting headwater streams to elucidate the relationship between DOC source and its bioavailability. Water samples were collected monthly from Moore Creek (MC), located in a watershed dominated by fertilized pasture, and from Huey Hollow (HH), located in a deciduous forest watershed. Dissolved organic carbon concentrations ranged from 222 to 1130 μm C and 35 to 289 μm C in MC and HH, respectively. The isotopic composition of DOC (δ13CDOC) was more seasonally variable in HH and ranged from ?33.6 to ?28.0?, as compared with MC where it ranged from ?27.2 to ?24.5 ?. The δ13CDOC in Huey Hollow suggests leaf debris was an important source of DOC throughout most of the year while algae was important in winter and early spring. In MC, the δ13CDOC indicated DOC was largely derived from soil organic matter while algal inputs were small relative to the large pool of refractory DOC. Stream water community respiration (SWCR) rates suggest the existence of a larger pool of refractory DOC in MC relative to HH. The ratio of SWCR (μM C h?1) to DOC concentration (mM C) was generally higher in HH (1.2–13.2) as compared with MC (0.2–4.2), suggesting that relative bioavailability of DOC was often greater in HH. Nutrient addition experiments indicate that bioavailable C limited SWCR in spring and fall in MC, while bioavailable C was never limiting in HH. The results suggest that elevated nutrient and DOC concentrations supported higher levels of microbial activity that resulted in a large pool of refractory DOC in MC. The lower inorganic nutrient and DOC concentrations reduced microbial activity in HH and likely limited the production of refractory DOC. Results of this study suggest that both organic matter source and nutrient concentration are important determinants of DOC bioavailability in small streams. %  相似文献   

7.
Previous field studies indicate that zucchini (Cucurbita pepo) has a unique ability to phytoextract persistent organic pollutants from soil. It is unlikely that C. pepo evolved a unique mechanism favoring POP extraction and uptake, but all plants have evolved means to facilitate nutrient acquisition from soil. We have hypothesized that the exudation of organic acids as a means to acquire phosphorus could facilitate the uptake of persistent organic pollutants by increasing contaminant bioavailability to the plants. In one study, we assessed DDE uptake and organic acid exudation by zucchini (an uptaker of POPs) and cucumber (a non-uptaker of POPs) under various cultivation and nutrient conditions. Under dense planting (5 plants in a 5-kg pot of DDE-contaminated soil), zucchini accumulated significant and expected amounts of DDE but surprisingly, under these stressed conditions, cucumber phytoextracted greater amounts of DDE. The cucumber rhizosphere concentrations of organic acids were significantly higher than that of zucchini, suggesting that the increased organic acid exudation promoted DDE uptake by cucumber. Conversely, under non-stressed conditions zucchini phytoextracted significantly greater quantities of pollutant than cucumber but no differences in organic acid content of the rhizosphere of the two species were observed. Separately, zucchini and other species were grown under field conditions and weekly amendments of different nutrients were made (nitrogen, phosphorus, nitrogen/phosphorus, aluminum sulfate to bind phosphorus in the soil). The uptake and translocation of the weathered pollutant and inorganic elements was found to vary with nutrient amendments. Lastly, data will be presented from rhizotron units constructed to facilitate not only the direct in situ isolation of exuded organic acids but also the isolation of xylem sap and rhizosphere soil pore water from individual plants. The role of cultivation conditions and nutrient availability in controlling root morphology, organic acid exudation, and contaminant uptake will be discussed.  相似文献   

8.
Overview     
In vitro studies of mineral bioavailability are useful because they are faster and less expensive than in vivo studies and because they offer better control over experimental variables. Selection of conditions for in vitro assays of mineral availability is arbitrary. Conditions vary widely among laboratories and with the mineral of interest. Absorption takes place in vivo under conditions that allow ongoing influx and efflux of nutrients and digestive secretions. Conditions in the digestive tract respond to the bulk and nutrient composition of a meal. How does one reproduce these conditions in a closed in vitro system? Correlations between in vivo and in vitro assays may depend on choice of conditions for in vivo studies. Studies of mineral bioavailability from soils have developed to the point that mathematical models have been developed that predict the bioavailability of various minerals to plants under field conditions. Definition of such a model for mineral bioavailability to animals or humans will probably be more difficult to achieve. More information is needed on the nature of nonmineral components of foods and how they interact with minerals.  相似文献   

9.
BACKGROUND: Previous findings for the Texas Neural Tube Defects Project suggested that while maternal access to nutrients is adequate, bioavailability of nutrients to the fetus is compromised in NTD-affected pregnancies. Helicobacter pylori could cause nutrient loss to the fetus. Folate, B12, and ferritin are depleted in H. pylori infection; these same deficiencies are related to NTD risk. METHODS: Using H. pylori IgG ELISA Test System, we tested for H. pylori serum antibodies in participants in the population-based case-control study component of the Texas Neural Tube Defect Project conducted along the Texas-Mexico border. Case-women had pregnancies affected by NTD (anencephalus, spina bifida, encephalocele) and resided and delivered in one of the 14 Texas-Mexico border counties from 1995 through 2000. Control-women were study area residents delivering normal live births during the same period. RESULTS: Of 225 case- and 378 control-women, 103 cases and 156 controls provided questionnaire and H. pylori antibody data. H. pylori seropositivity was modestly associated with NTD-affected pregnancies (OR 1.4; 95% CI: 0.8-2.4). ORs of 2.0 or greater were seen in women younger than age 25 and with less than 7 years education. CONCLUSIONS: Our findings intimate that H. pylori could play a role in NTD causation in certain populations. While results did not provide compelling support for this proposal, subgroup findings prompt us to advocate an evaluation of this hypothesis in developing nations among populations with higher prevalence of H. pylori, marginal nutrient intake, and young childbearing age.  相似文献   

10.
Acquisition of nutrients by plants is primarily dependent on root growth and bioavailability of nutrients in the rooting medium. Most of the beneficial bacteria enhance root growth, but their effectiveness could be influenced by the nutrient status around the roots. In this study, two 1-aminocyclopropane-1-carboxylate (ACC)-deaminase containing plant-growth-promoting rhizobacteria (PGPR), Pseudomonas fluorescens and P. fluorescens biotype F were tested for their effect on growth, yield, and nutrient use efficiency of wheat under simultaneously varying levels of all the three major nutrients N, P, and K (at 0%, 25%, 50%, 75%, and 100% of recommended doses). Results of pot and field trials revealed that the efficacy of these strains for improving growth and yield of wheat reduced with the increasing rates of NPK added to the soil. In most of the cases, significant negative linear correlations were recorded between percentage increases in growth and yield parameters of wheat caused by inoculation and increasing levels of applied NPK fertilizers. It is highly likely that under low fertilizer application, the ACC-deaminase activity of PGPR might have caused reduction in the synthesis of stress (nutrient)-induced inhibitory levels of ethylene in the roots through ACC hydrolysis into NH3 and α-ketobutyrate. The results of this study imply that these Pseudomonads could be employed in combination with appropriate doses of fertilizers for better plant growth and savings of fertilizers.  相似文献   

11.
Phenanthrene mineralization rates were found to vary widely among four soils; differences in soil nutrient levels was one hypothesis to explain this variation. To test this hypothesis, phenanthrene mineralization rates were measured in these soils with, and without, added nitrogen and phosphorus. Mineralization rates either remained unchanged or were depressed by the addition of nitrogen and phosphorus. Phenanthrene degradation rates remained unchanged in the soil which had the highest indigenous levels of nitrogen and phosphorus and which showed the largest increase in phosphorus levels after nutrients were added. The soils in which degradation rates were depressed had lower initial phosphorus concentrations and showed much smaller or no measurable increase in phosphorus levels after nutrients were added to the soils. To understand the response of phenanthrene degradation rates to added nitrogen and phosphorus, it may be necessary to consider the bioavailability of added nutrients and nutrient induced changes in microbial metabolism and ecology.  相似文献   

12.
PURPOSE OF REVIEW: A new class of cholesterol-lowering therapy that reduces intestinal sterol absorption has recently been introduced. This increases the number of classes of lipid-lowering agents that directly affect gastrointestinal function and raises questions concerning the overall effect of these agents on absorption and nutritional status. RECENT FINDINGS: A recent assessment notes a paucity of information concerning the factors that affect the bioavailability and intestinal absorption of lipophilic nutrients. By contrast, the specificity of the mechanisms of action of new drugs acting on the gastrointestinal tract may circumvent some of the detrimental effects on nutrient and drug bioavailability that have been noted with older forms of treatment. SUMMARY: The clinical imperative for aggressive control of lipid and metabolic risk factors makes widespread use, alone or in combination, of lipid-lowering agents that affect the gastrointestinal tract seem increasingly likely. Whilst the opportunity for therapeutic synergy is attractive, care will be required to avoid interference with intestinal absorptive function.  相似文献   

13.
Increases in the growth rate of plants and microbes in the Mojave Desert in response to predicted increases in precipitation and CO2 due to global climate change may induce nutrient limitations. This study was designed to measure the pool of potentially bioavailable nutrients in soils of the Mojave Desert. Soils were collected from shrub and interspace microsites and then subjected to amendment with buffered solutions of an excess of various enzymes. The products of each enzyme reaction were then measured and the maximum quantity of hydrolyzable substrates was calculated. In interspace and shrub microsite soils, respectively, 14.5 and 9.7% of the organic C in the form cellulose, 60.0–97.8% and 61.2–100.0% of the organic N in the form protein, and 44.0 and 57.5% of the organic P was hydrolyzable. There were significant differences between microsites for hydrolyzable substrate using all enzyme amendments, except protease. We propose that accumulations of hydrolyzable organic C, N, and P in the Mojave Desert could be a result of the persistently dry soil conditions often found in desert ecosystems and the immobilization of enzymes, which may result in low diffusivity of soil substrates and enzymes and, accordingly, little degradation of organic C, N, and P. Alternatively, rapid nutrient cycling and immobilization by soil microorganisms could account for accumulations of organic C, N, and P. Further refinement of the methods used in this study could lead to a valuable tool for the assessment of potential bioavailability of nutrients in a variety of soils.  相似文献   

14.
Rapid rainfall events can be responsible for a large proportion of annual nutrient and carbon loading from a watershed. The bioavailability of organic matter during these rapid loading events increases, suggesting that storms play a relevant role in the mobilization of potentially labile terrestrial carbon. A high correlation between river discharge rates and dissolved and particulate nutrient and carbon concentrations during autumn and winter storms was observed in several temperate Pacific Northwest rivers. Dissolved and particulate lignin concentrations also increased with river discharge; for example, in October 2009 dissolved lignin concentrations increased roughly 240% with a 200% increase in river discharge. During these storms a unique phenolic composition was observed for dissolved lignin that was rapidly mobilized from surface soils relative to the base flow of dissolved lignin. The observed increase in Ad/Al ratios with discharge indicates that rapidly mobilized dissolved lignin is more degraded than the base flow of dissolved lignin. Similarly, a marked increase in C/V ratios and decrease in the S/V ratio of dissolved lignin phenols with increasing river discharge was observed. These results may indicate a difference in source between mobilized and base flow pools, or, more likely, preferential degradation and mobilization/retention of specific lignin phenols. The cumulative results from this year-long data set indicate that a shallow nutrient-rich pool of particulate and dissolved organic matter accumulates in watersheds during periods of soil-saturation deficiency (summer). Autumn and winter storms mobilize this pool of accumulated nutrients from surface soils, which is exhausted with successive winter storms.  相似文献   

15.
The aim of this study was to measure the content of calcium, magnesium, iron, zinc, and copper and determine the bioavailability of these ingredients in gluten-free breads fortified with milk and selected seeds. Due to the increasing prevalence of celiac disease and mineral deficiencies, it has become necessary to produce food with higher nutritional values which maintains the appropriate product characteristics. This study was designed for gluten-free breads fortified with milk and seeds such as flax, poppy, sunflower seeds, pumpkin seeds or nuts, and flour with amaranth. Subsequently, digestion was performed in vitro and the potential bioavailability of the minerals was measured. In the case of calcium, magnesium, iron, and copper, higher bioavailability was observed in rice bread, and, in the case of copper and zinc, in buckwheat bread. This demonstrated a clear increase in bioavailability of all the minerals when the bread were enriched. However, satisfactory results are obtained only for the individual micronutrients.  相似文献   

16.
Monoamidine FXa inhibitors 3 were designed and synthesized. SAR studies and molecular modeling led to the design of conformationally constrained diaryl ethers 4 and 5, as well as benzopyrrolidinone 7 as potent FXa inhibitors. The monoamidines show high efficacy in a DVT model, but lack desirable oral bioavailability. The benzopyrrolidinone-based aminoisoquinolines 8 do not show significant improvement in oral bioavailability.  相似文献   

17.
Radioactive zinc was used to study the effect of a binary parenteral nutrient solution, composed of amino acids and glucose, on zinc uptake by fibroblasts. The influence of addition of taurine, l-glutamine and of the increase in l-histidine content of the admixture was assessed. The pure mixture was highly toxic for cells and so it was diluted 1/5 in tyrode buffer with 2% albumin. As compared with cells incubated in the buffer containing albumin, zinc absorption was significantly higher (P < 0.05) in the presence of the amino acids of the mixture. Amino acids thus increased bioavailability by displacing zinc bound to albumin. When the histidine concentration in the nutrient medium (4.2 mm) was doubled, inhibition was noted after 30 min of incubation and zinc uptake thereafter remained comparable to that in histidine-free medium. The addition of glutamine (4.2 mm), usually not present in binary mixtures, resulted in significant differences as compared with glutamine-free control medium. Taurine (0.8 mm), led to a constant increase in zinc uptake by fibroblasts as compared with that obtained with taurine-free mixture. However, ultrafiltration showed that taurine was not able to displace zinc from albumin.  相似文献   

18.
Soil nutrients, and factors which influence their concentrations and bioavailability, form a basic component of bottom–up control of ecosystem processes, including plant–herbivore interactions. Increased nutrient levels are linked, through plant defence theory, with increased levels of herbivore susceptibility. The focal point of many ecological experiments examining this link is at the species level, where the response of single species is the average of many different genotypes. Here, we focus on the genetic basis of indirect ecological interactions. We investigated the effects of nutrient concentration on the population growth of an aphid herbivore across multiple genotypes of barley in relation to plant growth rate. In general, both aphid population size and plant growth rate increased with nutrient concentration. However, they were both dependent on the interaction between nutrient concentration and barley genotype. Our data raise the testable possibility of differential defense responses between genotypes of barley, for example divergent, fixed and inducible defences against aphids. We provide evidence that the indirect effects of soil nutrients on aphid population size are mediated by the genetics of the host plant.  相似文献   

19.
A 3 year field study was conducted with field corn from 2005 to 2007 to test the hypothesis that microbial inoculants that increase plant growth and yield can enhance nutrient uptake, and thereby remove more nutrients, especially N, P, and K from the field as part of an integrated nutrient management system. The field trial evaluated microbial inoculants, which include a commercially available plant growth-promoting rhizobacteria (PGPR), arbuscular mycorrhiza fungi (AMF), and their combination across 2 tillage systems (no-till and conventional till) and 2 fertilization regimes (poultry litter and ammonium nitrate). Data were collected on plant height, yield (dry mass of ears and silage), and nutrient content of corn grain and silage. In addition, nutrient content of soil was determined, and bioavailability of soil nutrient was measured with plant root simulator probes. Results showed that inoculants promoted plant growth and yield. For example, grain yields (kg.ha(-1)) in 2007 for inoculants were 7717 for AMF, 7260 for PGPR+AMF, 7313 for PGPR, 5725 for the control group, and for fertilizer were 7470 for poultry litter and 6537 for NH4NO3. Nitrogen content per gram of grain tissues was significantly enhanced in 2006 by inoculant, fertilizer, and their interactions. Significantly higher amounts of N, P, and K were removed from the plots with inoculants, based on total nutrient content of grain per plot. These results supported the overall hypothesis and indicate that application of inoculants can lead to reduction in the build up of N, P, and K in agricultural soils. Further studies should be conducted to combine microbial inoculants with reduced rates of fertilizer.  相似文献   

20.
Mean annual temperature (MAT) is an influential climate factor affecting the bioavailability of growth‐limiting nutrients nitrogen (N) and phosphorus (P). In tropical montane wet forests, warmer MAT drives higher N bioavailability, while patterns of P availability are inconsistent across MAT. Two important nutrient acquisition strategies, fine root proliferation into bulk soil and root association with arbuscular mycorrhizal fungi, are dependent on C availability to the plant via primary production. The case study presented here tests whether variation in bulk soil N bioavailability across a tropical montane wet forest elevation gradient (5.2°C MAT range) influences (a) morphology fine root proliferation into soil patches with elevated N, P, and N+P relative to background soil and (b) arbuscular mycorrhizal fungal (AMF) colonization of fine roots in patches. We created a fully factorial fertilized root ingrowth core design (N, P, N+P, unfertilized control) representing soil patches with elevated N and P bioavailability relative to background bulk soil. Our results show that percent AMF colonization of roots increased with MAT (r2 = .19, p = .004), but did not respond to fertilization treatments. Fine root length (FRL), a proxy for root foraging, increased with MAT in N+P‐fertilized patches only (p = .02), while other fine root morphological parameters did not respond to the gradient or fertilized patches. We conclude that in N‐rich, fine root elongation into areas with elevated N and P declines while AMF abundance increases with MAT. These results indicate a tradeoff between P acquisition strategies occurring with changing N bioavailability, which may be influenced by higher C availability with warmer MAT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号