首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell walls of suspension-cultured cells of Rosa glauca were fractionated by two different extraction procedures. The first involved a stepwise fractionation scheme based on alkaline extraction. The second took advantage of the powerful cellulose solvent system N-methylmorpholine N-oxide/dimethyl sulfoxide which is capable of solubilizing whole cell walls. From the analytical composition of each solubilized fraction and of the corresponding residues, the fate of each type of cell wall polysaccharide constituent was followed at each step of the extraction scheme and the mode of action of the extractant was interpreted. Although the two fractionation procedures were very different, they yielded very similar cellulosic complex residues and extracts, thus delimiting two blocks of polysaccharides in the cell wall. The cellulose residues still comprised uronic acid-containing polysaccharides and hemicelluloses in association with cellulose. Graded acid hydrolysis provided evidence for the central role of a homogalacturonan core interconnecting xyloglucans and arabinogalactans. A tentative model showing the possible interaction existing between the constituent polysaccharides still associated to cellulose after alkaline extraction is presented. Hydrogen bonding between xyloglucan and cellulose is confirmed, and glycosidic linkages between xyloglucans and pectic polymers are suggested.  相似文献   

2.
The xyloglucan present in the 24% KOH extract of the cell wallsof suspension-cultured rice cells was characterized by fragmentationanalysis with Trichoderma viride cellulase and Aspergillus oryzaeß-D-glucosidase. The xyloglucan is composed mainlyof the following oligosaccharide units: Results showed that the xyloglucan of suspension-cultured ricecells is more extensively branched than is that of rice seedlings.Another structural characteristic of the former xyloglucan isthe presence of D-galactosyl-D-xylosyl side chains that arenot found in the latter. (Received June 15, 1984; Accepted January 11, 1985)  相似文献   

3.
The water-soluble polysaccharides (SEPS) secreted into the medium by suspension-cultured sycamore cells were examined to determine whether the polysaccharides were the same as those present in the walls of sycamore cells. The SEPS were made more amenable to fractionation by treatment with a highly purified α-1,4-endopolygalacturonase (EPG). The EPG-treated SEPS were fractionated by anion-exchange and gelpermeation chromatography. The following polysaccharides were found: xyloglucan, arabinoxylan, at least two arabinogalactans, a rhamnogalacturonan-II-like polysaccharide, and a polygalacturonic acid-rich polysaccharide. The oligogalacturonide fragments expected from EPG-digested homogalacturonan were also identified. Evidence was obtained for the presence of a rhamnogalacturonan-I-like polysaccharide. All of the above polysaccharides have been isolated from or are believed to be present in sycamore cell walls. Furthermore, all of the noncellulosic polysaccharides known to be present in sycamore cell-walls appear to be present in the SEPS.  相似文献   

4.
Considerable information has been obtained about the primary structures of suspension-cultured sycamore (Acer pseudoplatanus) cell-wall pectic polysaccharides, i.e. rhamnogalacturonan I, rhamnogalacturonan II, and homogalacturonan. However, these polysaccharides, which are solubilized from the walls by endo-α-1,4-polygalacturonase, account for only about half of the pectic polysaccharides known to be present in sycamore cell walls. We now report that, after exhaustive treatment with endo-α-1,4-polygalacturonase, additional pectic polysaccharides were extracted from sycamore cell walls by treatment with Na2CO3 at 1 and 22°C. These previously uncharacterized polysaccharides accounted for ~4% of the cell wall. Based on the glycosyl and glycosyl-linkage compositions and the nature of the products obtained by treating the quantitatively predominant NaCO3-extracted polysaccharides with lithium metal dissolved in ethylenediamine, the polysaccharides were found to strongly resemble rhamnogalacturonan I. However, unlike rhamnogalacturonan I that characteristically had equal amounts of 2- and 2,4-linked rhamnosyl residues in its backbone, the polysaccharides extracted in Na2CO3 at 1°C had markedly disparate ratios of 2- to 2,4-linked rhamnosyl residues. We concluded that polysaccharides similar to rhamnogalacturonan I but with different degrees of branching are present in the walls of suspension-cultured sycamore cells.  相似文献   

5.
The partial purification and characterization of cell wall polysaccharides isolated from suspension-cultured Douglas fir (Pseudotsuga menziesii) cells are described. Extraction of isolated cell walls with 1.0 m LiCl solubilized pectic polysaccharides with glycosyl-linkage compositions similar to those of rhamnogalacturonans I and II, pectic polysaccharides isolated from walls of suspension-cultured sycamore cells. Treatment of LiCl-extracted Douglas fir walls with an endo-α-1,4-polygalacturonase released only small, additional amounts of pectic polysaccharide, which had a glycosyl-linkage composition similar to that of rhamnogalacturonan I. Xyloglucan oligosaccharides were released from the endo-α-1,4-polygalacturonase-treated walls by treatment with an endo-β-1,4-glucanase. These oligosaccharides included hepta- and nonasaccharides similar or identical to those released from sycamore cell walls by the same enzyme, and structurally related octa- and decasaccharides similar to those isolated from various angiosperms. Finally, additional xyloglucan and small amounts of xylan were extracted from the endo-β-1,4-glucanase-treated walls by 0.5 n NaOH. The xylan resembled that extracted by NaOH from dicot cell walls in that it contained 2,4- but not 3,4-linked xylosyl residues. In this study, a total of 15% of the cell wall was isolated as pectic material, 10% as xyloglucan, and less than 1% as xylan. The noncellulosic polysaccharides accounted for 26% of the cell walls, cellulose for 23%, protein for 34%, and ash for 5%, for a total of 88% of the cell wall. The cell walls of Douglas fir were more similar to dicot (sycamore) cell walls than to those of graminaceous monocots, because they had a predominance of xyloglucan over xylan as the principle hemicellulose and because they possessed relatively large amounts of rhamnogalacturonan-like pectic polysaccharides.  相似文献   

6.
The molecular structure, chemical properties, and biological function of the xyloglucan polysaccharide isolated from cell walls of suspension-cultured sycamore (Acer pseudoplatanus) cells are described. The sycamore wall xyloglucan is compared to the extracellular xyloglucan secreted by suspension-cultured sycamore cells into their culture medium and is also compared to the seed “amyloid” xyloglucans.  相似文献   

7.
Cell walls of suspension-cultured spinach cells and sugar beetpulp were separately hydrolyzed with Driselase. A feruloyl arabinobiosewas isolated from both spinach cells and sugar beet. Four feruloyloligosaccharides were obtained from sugar beet. The four oligosaccharideswere characterized by NMR spectroscopy, methylation analysisand FAB-MS. (Received January 21, 1994; Accepted February 24, 1994)  相似文献   

8.
The walls of barley (Hordeum vulgare var. Himalaya) aleurone cells are composed of two major polysaccharides, arabinoxylan (85%) and cellulose (8%). The cell wall preparations contain 6% protein, but this protein does not contain detectable amounts of hydroxyproline. The arabinoxylan has a linear 1,4-xylan backbone; 33% of the xylosyl residues are substituted at the 2 and/or 3 position with single arabinofuranosyl residues. The results of in vitro cellulose binding experiments support the hypothesis that noncovalent bonds between the arabinoxylan chains and cellulose fibers play a part in maintaining wall structure. It is suggested that bonding between the arabinoxylan chains themselves is also utilized in forming the walls.  相似文献   

9.
Dehydrodicaffeic acid derivatives were found in the cell walls of suspension-cultured cells of Mentha. Using gas chromatography/mass spectrometry (GC-MS) in a single ion chromatography at m/z 790 and m/z 718, eleven peaks of trimethylsilylated dehydrodimers of caffeic acid were detected in the extracts from the cell walls of suspension-cultured cells of Mentha using sodium hydroxide. The result suggests that dehydrodicaffeates are formed in the cell walls from two molecules of caffeate, probably formed through C-C, and C-O-C coupling processes.  相似文献   

10.
Attachment of radiolabeled Pseudomonas solanacearum cells to suspension-cultured tobacco cells and tobacco leaf cell walls was measured in vitro by a filtration technique that allowed separation of attached and unattached bacteria. An avirulent strain (B1) attached more rapidly to suspension-cultured cells than did the virulent parent strain (K60), and B1 attachment was less sensitive to inhibition by high ionic strength than was K60. Attachment of B1 bacteria to suspension-cultured cells and to leaf cell walls was comparable (50 to 70%), but only a small proportion (10 to 20%) of K60 bacteria attached to leaf cell walls under optimal conditions. With high bacterial populations (108 bacteria per ml), attachment of K60 to suspension-cultured cells was greatly reduced. Attachment of both strains was completely inhibited by pretreating bacterial cells with heat (41°C) or azide and was partially inhibited by EDTA and kanamycin. The mechanism of attachment is not known, but ionic forces may be involved.  相似文献   

11.
To study the kinetics of synthesis, wall-binding and degradationof xyloglucan, we incubated suspension-cultured rose cells for0–5–24 h in L-[1-3H]arabinose. >95% of the [3H]arabinosewas taken up within 2 h. UDP-Pentoses were maximally labelledwithin 0–5 h and had lost most of their 3H by 2 h afterthe addition of [3H]arabinose. Therefore, the 24 h experimentresembled a pulse-chase rgime. The [3H]xyloglucan formed wasfractionated into four cellular pools [detergent-extractable(interpreted as cytoplasmic), and guanidinium thiocyanate-,06 M NaOH- and 60 M NaOH-extractable (interpreted as progressivelymore firmly wall-bound)]; soluble extracellular xyloglucan wascollected as a fifth pool. All five pools of xyloglucan hadstarted accumulating 3H at their respective maximal rates by  相似文献   

12.
Differences in the composition of cell walls of two morphologicallydifferent lines (A and B) of suspension-cultured Catharanthusroseus cells, which have the same origin, were investigated.The cells of strain A are nearly spherical, while those of strainB are cylindrical. In strain A, the amount of cell wall pergram fresh weight of cells increased during the logarithmicphase. In strain B, the amount of cell wall per cell decreasedduring the logarithmic phase. The level of matrix polysaccharides increased markedly duringthe logarithmic phase in strain A. The amount of cellulose incell wall was relatively larger in strain B than in strain A.The following differences in sugar composition between the twostrains were observed: (a) there was an increase in the relativelevels of 4-linked galactose in the EDTA-soluble fraction andof 3-linked glucose in the 5% KOH-soluble fraction during thelogarithmic phase in strain A; (b) there were significantlyhigher levels of arabinose, probably derived from 2,5- and/or3,5-linked arabinan, in the EDTA-soluble fraction and in theextracellular polysaccharides in strain B; (c) there were decreasesin the relative amounts of some kinds of sugar, probably thosederived from xyloglucan, during the stationary phase in strainB. (Received March 31, 1989; Accepted October 12, 1989)  相似文献   

13.
In the primary walls of growing plant cells, the glucose polymer cellulose is assembled into long microfibrils a few nanometers in diameter. The rigidity and orientation of these microfibrils control cell expansion; therefore, cellulose synthesis is a key factor in the growth and morphogenesis of plants. Celery (Apium graveolens) collenchyma is a useful model system for the study of primary wall microfibril structure because its microfibrils are oriented with unusual uniformity, facilitating spectroscopic and diffraction experiments. Using a combination of x-ray and neutron scattering methods with vibrational and nuclear magnetic resonance spectroscopy, we show that celery collenchyma microfibrils were 2.9 to 3.0 nm in mean diameter, with a most probable structure containing 24 chains in cross section, arranged in eight hydrogen-bonded sheets of three chains, with extensive disorder in lateral packing, conformation, and hydrogen bonding. A similar 18-chain structure, and 24-chain structures of different shape, fitted the data less well. Conformational disorder was largely restricted to the surface chains, but disorder in chain packing was not. That is, in position and orientation, the surface chains conformed to the disordered lattice constituting the core of each microfibril. There was evidence that adjacent microfibrils were noncovalently aggregated together over part of their length, suggesting that the need to disrupt these aggregates might be a constraining factor in growth and in the hydrolysis of cellulose for biofuel production.Growth and form in plants are controlled by the precisely oriented expansion of the walls of individual cells. The driving force for cell expansion is osmotic, but the rate and direction of expansion are controlled by the mechanical properties of the cell wall (Szymanski and Cosgrove, 2009). Expanding, primary cell walls are nanocomposite materials in which long microfibrils of cellulose, a few nanometers in diameter, run through a hydrated matrix of xyloglucans, pectins, and other polymers (Knox, 2008; Mohnen, 2008; Szymanski and Cosgrove, 2009; Scheller and Ulvskov, 2010). Native cellulose microfibrils are partially crystalline (Nishiyama, 2009; Fernandes et al., 2011). Formerly, primary wall cellulose was thought to have a unique crystal structure called cellulose IV1 (Dinand et al., 1996), but NMR evidence suggests the presence of forms similar to the better characterized cellulose Iα and Iβ crystalline forms together with large quantities of less ordered cellulose (Wickholm et al., 1998; Sturcová et al., 2004; Wada et al., 2004). Nevertheless, cellulose is much more ordered than any other component of the primary cell wall (Bootten et al., 2004), in keeping with its key role of providing strength and controlling growth.The stiffness of the cell wall is greatest in the direction of the cellulose microfibrils, where growth is directional and the predominant microfibril orientation is usually transverse to the growth direction (Green, 1999; MacKinnon et al., 2006; Szymanski and Cosgrove, 2009). Expansion of the cell wall then requires either widening of the spacing between microfibrils (Marga et al., 2005) or slippage between them (Cosgrove, 2005), or both, and the microfibrils reorient toward the direction of growth (Anderson et al., 2010). Polymer cross bridges between microfibrils (McCann et al., 1990) are thought to resist these deformations of the cell wall nanostructure and, thus, to control the rate of growth. Until recently, most attention was focused on bridging xyloglucans, hydrogen bonded to microfibril surfaces (Scheller and Ulvskov, 2010). However, there is evidence that not all xyloglucans are appropriately positioned (Fujino et al., 2000; Park and Cosgrove, 2012a) and that other bridging polymers may be involved (Zykwinska et al., 2007). It has also been suggested that bundles of aggregated microfibrils, not single microfibrils, might be the key structural units in primary cell walls (Anderson et al., 2010), as in wood (Fahlén and Salmén, 2005; Fernandes et al., 2011). If so, single microfibrils could bridge between microfibril bundles. In summary, the growth of plant cells is not well understood, and we need more information on how cellulose orientation is controlled and on the nature of the bridging polymers, the cellulose surfaces to which these polymers bind, and the cohesion between microfibril surfaces that might mediate aggregation.Cellulose microfibrils are synthesized at the cell surface by large enzyme complexes having hexagonal symmetry, sometimes called “rosettes” (Somerville, 2006). Each complex contains multiple cellulose synthases that differ between primary cell walls and wood, although the appearance of the complexes is similar (Somerville, 2006; Atanassov et al., 2009). The simultaneous synthesis, from the same end, of all the chains in a native cellulose microfibril is why they are parallel (Nishiyama et al., 2002, 2003), in contrast to the entropically favored antiparallel structure found in man-made celluloses like rayon (Langan et al., 2001). The number of chains in a microfibril and the number of cellulose synthases in the synthetic complex are evidently related. It is commonly assumed that the number of chains is divisible by six, matching the hexagonal rosette symmetry, and 36-chain models (Himmel et al., 2007) bounded by the hydrophilic [110] and [1-10] crystal faces, as in algal celluloses (Bergenstråhle et al., 2008), have been widely adopted. The assembly and orientation of cellulose are connected, as several cellulose synthase mutants have phenotypes defective in cellulose orientation and plant form as well as depleted in cellulose content (Paredez et al., 2008). In certain other mutant lines, the crystallinity of the microfibrils appears to be affected (Fujita et al., 2011; Harris et al., 2012; Sánchez-Rodríguez et al., 2012).Therefore, a detailed understanding of the structure of primary wall cellulose microfibrils would help us to understand cellulose synthesis as well as the growth and structural mechanics of living plants (Burgert and Fratzl, 2009). Primary cell walls and their cellulose skeletons also affect food quality characteristics like the crispness of salad vegetables and apples (Malus domestica; Jarvis, 2011). When biofuels are produced from lignocellulosic biomass, lignification leads to recalcitrance (Himmel et al., 2007), but some of the cell types in Miscanthus spp., switchgrass (Panicum virgatum), and arable crop residues have only primary walls with no lignin, and recalcitrance then depends on the nature of the cellulose microfibrils (Beckham et al., 2011).A relatively detailed structure has recently been proposed for the microfibrils of spruce (Picea spp.) wood (Fernandes et al., 2011), which are 3.0 nm in diameter, allowing space for only about 24 cellulose chains. Evidence from x-ray diffraction supported a “rectangular” shape (Matthews et al., 2006) bounded by the [010] and [200] faces. There was considerable disorder increasing toward the surface, and the microfibrils were aggregated into bundles about 15 to 20 nm across, with some, but not all, of the lateral interfaces being resistant to water (Fernandes et al., 2011). Disordered domains are a feature of other strong biological materials such as spider silk (van Beek et al., 2002).Therefore, it is of interest whether any of these features of wood cellulose might also be found in the cellulose microfibrils of primary (growing) cell walls. It would be particularly useful to characterize the disorder known to be present in primary wall microfibrils, that is, to define how cellulose that is not measured as “crystalline” differs from crystalline cellulose. Many of the experiments leading toward a structure for wood cellulose were dependent on exceptionally uniform orientation of the cellulose microfibrils (Sturcová et al., 2004; Fernandes et al., 2011). However, in growing cell walls, the microfibrils are not uniformly oriented. When microfibrils are first laid down at the inner face of the primary cell wall, their orientation is normally transverse to the direction of growth, but as the cell wall expands, the microfibrils reorient so that the orientation distribution, integrated across the thickness of the expanded cell wall, becomes progressively closer to random (Cosgrove, 2005; MacKinnon et al., 2006).This technical problem does not apply to the cell walls of celery (Apium graveolens) collenchyma, which are similar in composition to other primary cell walls but have their microfibrils oriented relatively uniformly along the cell axis (Sturcová et al., 2004; Kennedy et al., 2007a, 2007b). Some structural information on celery collenchyma cellulose has already been derived from spectroscopic and scattering experiments (Sturcová et al., 2004; Kennedy et al., 2007a, 2007b), confirming the disorder expected in a primary wall cellulose. Some of these experiments were analogous to what has been done on spruce cellulose (Fernandes et al., 2011), but insufficient data are available to specify the number of chains in each primary wall microfibril, the nature and location of the disorder, and the presence or absence of direct contact between microfibrils. Here, we report x-ray and neutron scattering and spectroscopic experiments addressing these questions and leading to a proposed structure for primary wall cellulose microfibrils. Characterizing a structure containing so much disorder presented unusual challenges, but disorder appears to be central to the enigmatic capacity of primary wall cellulose to provide high strength and yet to permit and control growth.  相似文献   

14.
A bioassay to measure the incorporation of [14C]leucine into acid-precipitable polymers of suspension-cultured sycamore (Acer pseudoplatanus L.) cells is described. Using this assay, cell wall fragments solubilized from sycamore cell walls by partial acid hydrolysis are shown to contain components that inhibit the incorporation of [14C]leucine into the acid-precipitable polymers. This inhibition was not attributable to a suppression of [14C]leucine uptake. The effectiveness of the wall fragments in inhibiting [14C]leucine incorporation was substantially relieved by plasmolysis of the cells. Fragments released from starch and citrus pectin are shown not to possess such inhibitory activities.  相似文献   

15.
Trocha P  Daly JM 《Plant physiology》1974,53(4):527-532
Polymeric carbohydrates in 14C-labeled germ tube and uredospore walls of Uromyces phaseoli var. typica were studied by permethylation and by enzymatic hydrolysis. The native structure of the uredospore wall limited the effectiveness of both techniques with this wall, but evidence for two distinct polysaccharides was obtained. A linear (1→3) glucan, containing minor quantities of (1→6) linkages, may account for most of the glucose in the uredospore wall. A second uredospore polymer was a glucomannan similar to one reported for other rust fungi in that it consisted of approximately equal numbers of β(1→3) and β(1→4) mannosidic linkages with glucose as a minor component at the nonreducing end. Branching, most likely by (1→6) mannose links, was low. In contrast to uredospore wall, considerably more germ tube polysaccharide was accessible to enzymes and to methylation. Methylation studies indicate that (1→3) glucose and mannose bonds occur predominantly. Evidence from hydrolysis with exo- (β)-(1→3) glucanase suggests distinct wall regions of β(1→3) glycan, highly branched by (1→6) bonds, as well as wall regions of a glucomannan with alternating (1→3) glucose and (1→3) mannose residues. Polymer heterogeneity was indicated by differences in the proportions of mannose, glucose, and galactose as reducing end groups in different solubility fractions. In germ tube walls, but not in uredospore walls, glucosamine apparently existed as part of chitin polymer as evidenced by the isolation of N,N-diacetylchitobiose from chitinase digestion.  相似文献   

16.
The primary cell walls of six suspension-cultured monocots and of a single suspension-cultured gymnosperm have been investigated with the following results: (a) the compositions of all six monocot cell walls are remarkably similar, despite the fact that the cell cultures were derived from diverse tissues; (b) the cell walls of suspension-cultured monocots differ substantially from those of suspension-cultured dicots and from the suspension-cultured gymnosperm; (c) an arabinoxylan is a major component (40% or more by weight) of monocot primary cell walls; (d) mixed β-1,3; β-1,4-glucans were found only in the cell wall preparations of rye grass endosperm cells, and not in the cell walls of any of the other five monocot cell cultures nor in the walls of suspension-cultured Douglas fir cells; (e) the monocot primary cell walls studied contain from 9 to 14% cellulose, 7 to 18% uronic acids, and 7 to 17% protein; (f) hydroxyproline accounts for less than 0.2% of the cell walls of monocots. Similar data on the soluble extracellular polysaccharides secreted by these cells are included.  相似文献   

17.
Degradative enzymes have been used to obtain defined fragments of the isolated cell walls of suspension-cultured sycamore cells. These fragments have been purified and structurally characterized. Fragments released from endopolygalacturonase-pretreated cell walls by a purified endoglucanase and the fragments extracted from these walls by urea and alkali provide evidence for a covalent connection between the xyloglucan and pectic polysaccharides. Fragments released by a protease from endopolygalacturonase-endoglucanase-pretreated cell walls provide evidence for a covalent connection between the pectic polysaccharides and the structural protein of the cell wall. Based on these interconnections and the strong binding which occurs between the xyloglucan and cellulose, a tentative structure of the cell wall is proposed.  相似文献   

18.
Xyloglucans were isolated from the 24% KOH-soluble fractionof the cell walls of bulbs of onion (Allium cepa), garlic (Alliumsativum) and their hybrid. The polysaccharides yielded singlepeaks upon gel filtration with average moleular weights of 65,000for onion, 55,000 for garlic and 82,000 for the hybrid. Compositionalanalysis of the oligosaccharide units after digestion with anendo-1,4-ß-glucanase from Streptomyces indicated thatthe polysaccharides were constructed of four kinds of repeatingoligosaccharide unit, namely, a decasaccharide (glucose/xylose/galactose/fucose,4 : 3 : 2 : 1), a nonasaccharide (glucose/xylose/galactose/fucose,4 : 3 : 1 : 1), an octasaccharide (glucose/xylose/galactose,4 : 3 : 1 ) , and a heptasaccharide (glucose/xylose, 4 : 3).The xyloglucan from the hybrid contained highly fucosylatedunits that resembled those from onion rather than from garlic.The analysis also revealed that the xyloglucans from Alliumspecies contain highly substituted xylosyl residues with fucosyl-galactosylresidues, suggesting that these monocotyledonous plants resembledicotyledons in the structural features of their xyloglucans. (Received November 1, 1993; Accepted June 16, 1994)  相似文献   

19.
This is the first in a series of papers dealing with the structure of cell walls isolated from suspension-cultured sycamore cells (Acer pseudoplatanus). These studies have been made possible by the availability of purified hydrolytic enzymes and by recent improvements in the techniques of methylation analysis. These techniques have permitted us to identify and quantitate the macromolecular components of sycamore cell walls. These walls are composed of 10% arabinan, 2% 3,6-linked arabinogalactan, 23% cellulose, 9% oligo-arabinosides (attached to hydroxyproline), 8% 4-linked galactan, 10% hydroxyproline-rich protein, 16% rhamnogalacturonan, and 21% xyloglucan.  相似文献   

20.
DESHPANDE  B. P. 《Annals of botany》1976,40(3):439-442
The microfibrillar framework of parenchymatous walls in Cucurbitawas observed in petioles treated so as to remove various non-cellulosiccell wall components. Such extraction typically results in separationof the microfibrillar components into concentric lamellae. Thenumber and thickness of these lamellae vary according to theage and type of cell wall. The microfibrils appear to be orientatedwithin the plane of their lamellae but the orientation may varyin successive lamellae, and in many walls the crossed polylamellatecondition was detected. The collenchyma—and the outerepidermal cell walls show an alternation of lamellae with almostvertical microfibrils with those with a practically transverseorientation. In ordinary parenchymatous walls the alternationis not so extreme and is revealed only by the occasional presenceof the ‘herring bone pattern’ in non-radial sections.As a rule the lamellae are continuous around the circumferenceof a cell though individual lamellae may vary in thickness andsometimes appear to ‘fade out’. The present observationssuggest that growth of the primary wall occurs by depositionof microfibrils in successive lamellae thus confirming the basicpremise of the multinet theory of growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号