首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human activity is drastically altering global nitrogen (N) availability. The extent to which ecosystems absorb additional N—and with it, additional CO2—depends on whether net primary production (NPP) is N-limited, so it is important to understand conditions under which N can limit NPP. Here I use a general dynamical model to show that N limitation at steady-state—such as in old-growth forests—depends on the balance of biotically controllable versus uncontrollable N inputs and losses. Steady-state N limitation is only possible when uncontrollable inputs (for example, atmospheric deposition) exceed controllable losses (for example, leaching of plant-available soil N), which is the same as when uncontrollable losses (for example, leaching of plant-unavailable soil N) exceed controllable inputs (biological N fixation). These basic results are robust to many model details, such as the number of plant-unavailable soil N pools and the number and type of N fixers. Empirical data from old-growth tropical (Hawai’i) and temperate (Oregon, Washington, Chile) forests support the model insights. Practically, this means that any N fixer—symbiotic or not—could overcome ecosystem N limitation, so understanding N limitation requires understanding controls on all N fixers. Further, comparing losses of plant-available N to abiotic inputs could offer a rapid diagnosis of whether ecosystems can be N-limited, although the applicability of this result is constrained to ecosystems with a steady-state N cycle such as old-growth forests largely devoid of disturbance.  相似文献   

2.
Ecological developments during Holocene age and high atmospheric depositions since industrialization have changed the N dynamics of temperate forest ecosystems. A number of different parameters are used to indicate whether the forests are N‐saturated or not, most common among them is the occurrence of nitrates in the seepage water below the rooting zone. The use of different definitions to describe N saturation implies that the N status of ecosystems is not always appropriately assessed. Data on N dynamics from 53 different German forests were used to classify various development states of forest ecosystems according to the forest ecosystem theory proposed by Ulrich for which N balances of input – (output plus plant N increment) were used. Those systems where N output equals N input minus plant N increment are described as (quasi‐) Steady State Type. Those forests where N output does not equal N input minus plant N increment as in a ‘transient state.’ Forests of the transient state may lose nitrogen from the soil (Degradation Type) or gain nitrogen [e.g., from atmospheric depositions (Accumulation Type)]. Forest ecosystems may occur in four different N states: (a) (quasi‐) Steady State Type with mull type humus, (b) Degradation Type with mull type humus, (c) Accumulation Type with moder type humus, and (d) (quasi‐) Steady State Type with moder type humus. Forests with the (quasi‐) steady state with mull type humus in the forest floor (n= 8) have high‐soil pH values, high N retention by plant increment, high N contents in the mineral soils, and have not undergone large changes in the N status. Forests of the Degradation Type lose nitrogen from the mineral soil (currently degradation is occurring on one site). Most forests that have moder or mor type humus and low‐soil pH values, and low N contents in the mineral soil have gone through the transient state of organic matter loss in the mineral soils. They accumulate organic matter in the forest floor (accumulation phase, currently 21 sites are accumulating 6–21 kg N ha?1 yr?1) or have reached a new (quasi‐) steady state with moder/mor type humus (n= 15). N retention in the accumulation phase has significantly increased in soil with N deposition (r2= 0.38), soil acidity (considering thickness of the forest floor as indices of soil acidity, r2= 0.43) and acid deposition (sulfate deposition, r2= 0.39). Retention of N (4–20 kg N ha?1 yr?1) by trees decreased and of soils increased with a decrease in the availability of base cations indicating the important role of trees for N retention in less acid soils and those of soils in more acid soils. Ecosystem theory could be successfully applied on the current data to understand the dynamics of N in temperate forest ecosystems.  相似文献   

3.
Ingestion and growth rates of the nanoflagellate predator Ochromonas danica feeding on the bacterium Pseudomonas fluorescens were quantified in laboratory cultures. Bacterial prey were grown under four nutritional conditions with respect to macronutrient elements: C-limited, N-limited, P-limited, and balanced. Ingestion and growth rates were saturating functions of prey abundance when preying upon nutritionally balanced, C-limited, and P-limited bacteria but were unimodal functions of abundance when preying on N-limited bacteria. At saturating prey concentrations, the ingestion rate of C-limited prey was about twice that of prey in other nutritional states, while at subsaturating prey concentrations, the ingestion rates of both C- and N-limited prey were higher than those of prey in other nutritional states. Over all prey concentrations, growth was most rapid on balanced and C-limited prey and generally lowest for P-limited prey. Due to the unimodal response of growth rate to abundance of N-limited prey, growth rate on N-limited prey approached that obtained on balanced and C-limited prey when prey were available at intermediate abundances. The accumulation of recycled N increased with the growth rate of O. danica. Recycling of N was highest when O. danica was feeding upon P-limited prey. The accumulation of recycled P increased with growth rate for balanced and N-limited prey, but not for P-limited prey, which consistently had low accumulation of recycled P. The low growth rate and negligible recycling of P for O. danica preying on P-limited prey is consistent with the theory of ecological stoichiometry and resembles results found for crustacean zooplankton, especially in the genus Daphnia. Potentially, the major predators of bacterioplankton and a major predator of phytoplankton play analogous roles in the trophic dynamics and biogeochemistry of aquatic ecosystems.  相似文献   

4.
陆地生态系统氮沉降增加的生态效应   总被引:21,自引:0,他引:21       下载免费PDF全文
 人类活动在全球范围内极大地改变着氮素从大气向陆地生态系统输入的方式和速率,人为固定的氮素正在不断积累,并对生态系统的结构和功 能产生显著影响。该文从以下几个方面综述了大气氮沉降增加对陆地生态系统的影响:1)氮输入增加可能影响植物生产力和生态系统碳蓄积能 力,生态系统响应的方向和程度取决于系统的初始氮状况(氮限制或氮饱和)以及当地的植被和土壤特征;2)持续氮输入有可能改变土壤氮循环 过程,降低土壤固持氮的能力,甚至导致土壤酸化、盐基离子损耗,进而影响到土壤有机碳的分解;3)高的氮沉降速率和持续氮输入都可能加 速含氮痕量气体的释放,但其影响程度受生态系统初始状态的影响(例如磷限制和氮限制);4)氮沉降增加会影响生态系统的物种丰富度、植物 群落结构和动态,促进森林扩张,改变菌根真菌的物种多样性;5)持续氮输入带来的植物群落结构和植物生理特征的变化可能影响昆虫取食特 性,进而通过食物链改变生态系统的营养结构;6) 氮沉降增加对生态系统的影响并不是孤立存在的,它与CO2浓度升高和O3浓度变化有协同作 用,但难以从其协同效应中区分出各自的影响。最后,该文总结了我国的氮沉降研究现状,并对今后的研究前景提出了展望。  相似文献   

5.
A nutrient enrichment experiment was conducted in order to studythe role of nitrogen (N), phosphorus (P) and the N:P ratio onthe early summer phytoplankton community in the ArchipelagoSea, northern Baltic Sea. The phytoplankton community was, interms of chlorophyll a and total biomass, primarily N-limited,but the individual species varied in their responses to thenutrient supply. The recorded overall N limitation was due tofast growth responses of a few N-limited species such as thediatom Chaetoceros wighamii (Brightwell) and the mixotrophicchrysophyte Uroglena sp. Another dominating diatom, Skeletonemacostatum (Greville) Cleve was most clearly P-limited. The N:Pratio had the strongest effect on Uroglena sp., which grew exponentiallyin the enrichments with a high N:P ratio. This can be explainedby the ability of the species to feed on P-rich bacteria, whichgives it a competitive advantage in P-limited conditions. Thespecies-specific differences in the responses to the nutrientenrichments can generally be explained by differences in thespecies physiology and they were consistent with the theoryof resource competition.  相似文献   

6.
Anthropogenic addition of reactive nitrogen (Nr) to the biosphere is increasing globally and some terrestrial ecosystems are suffering from a state of excess Nr for biological nitrogen (N) demand, termed N saturation. Here, we review the ecological risks in relation to N saturation and prospective responses to N saturation. Excess Nr increases the risks of local extinction of rare plant species, encouragement of exotic plant species, disturbance of nutrient balance in plant organs, and increase of herbivory in plant communities. On the ecosystem scale, excess bioavailable N induces forest decline, disturbance of nutrient cycling within ecosystems, depending on vegetation, soil, land-use, and N-loading history. These Nr risks will increase in the Asian region, where impacts of Nr in natural terrestrial ecosystems have been scarcely studied. Whether much of the terrestrial ecosystems on a global level are in the sate of N saturation or not is still controversial, but the potential risks of excess Nr seem to be increasing. The fundamental ways to mitigate Nr risks are to reduce Nr production, prevent Nr translocation, and promote conversion of Nr to N2. Temporal, but promising actions against ecological N risks may include management of forests and riparian zones, and carbon addition in grassland.  相似文献   

7.
Mangrove ecosystems can be either nitrogen (N) or phosphorus (P) limited and are therefore vulnerable to nutrient pollution. Nutrient enrichment with either N or P may have differing effects on ecosystems because of underlying differences in plant physiological responses to these nutrients in either N- or P-limited settings. Using a common mangrove species, Avicennia germinans, in sites where growth was either N or P limited, we investigated differing physiological responses to N and P limitation and fertilization. We tested the hypothesis that water uptake and transport, and hydraulic architecture, were the main processes limiting productivity at the P-limited site, but that this was not the case at the N-limited site. We found that plants at the P-deficient site had lower leaf water potential, stomatal conductance and photosynthetic carbon-assimilation rates, and less conductive xylem, than those at the N-limited site. These differences were greatly reduced with P fertilization at the P-limited site. By contrast, fertilization with N at the N-limited site had little effect on either photosynthetic or hydraulic traits. We conclude that growth in N- and P-limited sites differentially affect the hydraulic pathways of mangroves. Plants experiencing P limitation appear to be water deficient and undergo more pronounced changes in structure and function with relief of nutrient deficiency than those in N-limited ecosystems.  相似文献   

8.
Nitrogen Retention, Removal, and Saturation in Lotic Ecosystems   总被引:5,自引:0,他引:5  
Increased nitrogen (N) loading to lotic ecosystems may cause fundamental changes in the ability of streams and rivers to retain or remove N due to the potential for N saturation. Lotic ecosystems will saturate with sustained increases in the N load, but it is unclear at what point saturation will occur. Rates of N transformation in lotic ecosystems will vary depending on the total N load and whether it is an acute or chronic N load. Nitrogen saturation may not occur with only pulsed or short-term increases in N. Overall, saturation of microbial uptake will occur prior to saturation of denitrification of N and denitrification will become saturated prior to nitrification, exacerbating increases in nitrate concentrations and in N export downstream. The rate of N export to downstream ecosystems will increase proportionally to the N load once saturation occurs. Long term data sets showed that smaller lotic ecosystems have a greater capacity to remove in-stream N loads, relative to larger systems. Thus, denitrification is likely to become less important as a N loss mechanism as the stream size increases. There is a great need for long-term studies of N additions in lotic ecosystems and clear distinctions need to be made between ecosystem responses to short-term or periodic increases in N loading and alterations in ecosystem functions due to chronic N loading.  相似文献   

9.
The dominant conceptual model of nitrogen (N) saturation in forests predicts the temporal patterns of key N cycling indicators as an initially N-limited forest is progressively enriched in N. We present the results from a long-term N addition experiment in an oak forest in southeastern New York State, USA, which do not conform to the predictions of the conceptual model in several ways. In contrast to the predictions of the conceptual model, the foliar N concentrations in the N-treated stands of our study increased to about 20% above the levels in the control stands and then remained essentially constant, and nitrogen leaching from the treated stands increased almost immediately after the start of the experiment, prior to the onset of elevated nitrification. Concentrations of N in soil solution of the N-treated stands peaked at over 150-fold greater than the concentrations in the control stands. There were no significant changes in potential net N mineralization. Tree mortality increased in the treated stands, but the tree mortality did not appear to be the primary cause of the excess nitrate leaching. Based on these results and those of other recent studies, we present a new conceptual model of the N saturation process focused on the mass balance of N rather than the temporal dynamics of N cycling indicators. The mass balance is characterized by inputs of N from atmospheric deposition and fertilization, internal sinks in the vegetation and soils, and outputs to leaching and gaseous losses. The key points of the conceptual model are (1) added N can flow simultaneously to all sinks and losses in the system, (2) the fate of the added N and the temporal patterns of flow of N depend on the strength of the sinks and the factors that control them, and (3) the movement of N to the various sinks determines how N saturation is manifested in the ecosystem. We distinguish capacity N saturation, in which the sinks in the vegetation and soil are zero or negative, from kinetic N saturation, in which the sinks are positive but lower than the N input rate. The sink strengths in the vegetation and soil have two components, one due to carbon (C) accumulation in the system and the other due to change in the stoichiometry (C:N ratio) of the pool. Further work quantifying the magnitudes and controlling factors for the N sinks will allow better prediction of the dynamics of N saturation in different types of forested ecosystems.  相似文献   

10.
In nutrient-poor ecosystems high polyphenol concentrations in plant litter have been proposed to influence soil nutrient availability in benefit of the plants. We addressed the question whether litter polyphenol concentrations vary across a soil chronosequence of almost identical geology, climate and plant species composition, but of a wide range in nitrogen (N) and phosphorus (P) availability in the Hawaiian Islands. Concentrations of total phenolics (TPh) and proanthocyanidins (PA) in leaf litter of the dominant tree species Metrosideros polymorpha were higher at the oldest, P-limited site compared to the youngest, N-limited site, with intermediate values at the two relatively fertile sites co-limited by N and P. Polyphenol concentrations in fine root litter differed considerably from those observed in leaf litter and varied differently across the soil age gradient. Long-term fertilization did not significantly alter polyphenol concentrations in Metrosideros litter at either site. Moreover, green leaves and leaf litter of Metrosideros showed similar relative differences among sites when compared between natural populations and plants from the same populations but grown in a common garden. These results suggest that polyphenol concentrations inherently vary among populations of the dominant tree species in Hawaiian montane forests possibly indicating an adaptation to ecosystem properties such as substrate age related differences in soil fertility. The combined above- and below-ground input rate of TPh ranged from 62.4 to 170.8 g/m2/yr and was significantly higher at the P-limited than at the N-limited site. Root-derived polyphenols contributed a much higher absolute and relative amount of phenolic input at the N-limited than at the P-limited site. The differences in amount, quality, and pathways of input might suggest specific interactions with soil processes and nutrient cycling among the Hawaiian rainforests studied here.  相似文献   

11.
Long runs of a mechanistic model of forest carbon (C) and nitrogen (N) dynamics (Edinburgh Forest Model) suggest that, when in a steady state, ecosystem productivity may be insensitive to the specific rate of N mineralization of soil organic matter (SOM). At equilibrium, productivity and other vegetation properties are determined primarily by climate. This is so because, given time, modelled ecosystems tend to generate amounts of SOM that are able to supply N at rates which do not greatly limit plant growth. When specific N mineralization rates are low, large amounts of SOM accumulate, whereas when specific N mineralization rates are high, small amounts of SOM accumulate. However, it may take several millenia for equilibrium conditions to be reached following disturbance (particularly following degrading disturbance) and during that time N mineralization rates determine the speed of progress toward equilibrium.  相似文献   

12.
Question: How do nitrogen and phosphorus budgets and balances differ between eutrophic fens and floodplains in western Europe and fens and floodplains in Poland, where we expect less eutrophication to occur? Location: Wetlands along the rivers Dommel (The Netherlands), Zwarte Beek (Belgium) and Biebrza (NE Poland). Methods: Assessment of external input and output fluxes as well as net N‐mineralization rates. Annual N‐ and P‐balances were estimated by the sum of all external input and output fluxes: atmospheric deposition, input of dissolved matter by flooding, input of sediment by flooding, input by groundwater, output by leaching, output by hay‐making and for N also input by N2‐fixation. For N we also estimated net annual N‐availability for plant growth, i.e. the N‐budget, which includes net mineralization in soil. Results: The studied wetland sites had a negative balance, which means that nutrients are depleted but only if mown annually, except for the Dutch/Belgian fens which had an equilibrium N‐balance and the Polish fen which had an equilibrium P‐balance. For the N‐budget it appeared that atmospheric deposition added significantly to the budget of Dutch/Belgian fens and N‐mineralization added significantly to fen and floodplain budgets, except for the Polish fens. Mineralization dominates the N‐budget of the western European floodplains. Hay‐making is the most important output pathway, particularly if practised annually. It seems to diminish N‐enrichment in the Dutch fens and floodplains. Conclusions: We conclude that western European fens and floodplains as well as Polish floodplains have a significant positive N‐budget indicating that there is a surplus of N for plant growth. In the Polish fens this is less due to low atmospheric deposition and lower N‐mineralization rates. The latter is associated with less drying out of the studied Polish ecosystems in summer. Our approach, although an approximate quantification, is helpful for assessing priorities focused on nutrient management.  相似文献   

13.
Palmitic acid (16:0) and palmitoleic acid (16:1), as the complex with bovine serum albumin, were infused at rates of 62 and 124 μmoles/hr into an albumin-buffer medium perfusing livers isolated from normal fed male rats. In other experiments, equimolar mixtures (124 μmoles/hr, total) of 16:0 + 16:1, or myristate (14:0) + 16:1 were infused. The output of triglyceride when 16:1 was infused was greater than when equivalent amounts of 14:0 or 16:0 were infused; output with equimolar mixtures of 14:0 and 16:1, or 16:0 and 16:1 was intermediate between that of saturated and unsaturated fatty acids alone. Rate-zonal mobility of the VLDL in the ultracentrifuge was more rapid as the quantity of 16:1 available to the liver increased, but did not change with increasing amounts of 16:0. The rate-zonal mobility of the mixtures of 14:0 and 16:1, or of 16:0 and 16:1, was not different than that of 16:1 alone. The ratios of phospholipid and cholesterol relative to triglyceride in the VLDL decreased with increasing output of triglyceride and with unsaturation of the fatty acid. Ratios resulting from mixtures of the fatty acids appeared to be in an intermediate position. The composition and properties of the secreted VLDL clearly are dependent on the structure and quantity of FFA available to the liver; with mixtures of saturated and unsaturated fatty acids, the unsaturated fatty acid seems to exert a dominant effect.  相似文献   

14.
Disturbances affect almost all terrestrial ecosystems, but it has been difficult to identify general principles regarding these influences. To improve our understanding of the long-term consequences of disturbance on terrestrial ecosystems, we present a conceptual framework that analyzes disturbances by their biogeochemical impacts. We posit that the ratio of soil and plant nutrient stocks in mature ecosystems represents a characteristic site property. Focusing on nitrogen (N), we hypothesize that this partitioning ratio (soil N: plant N) will undergo a predictable trajectory after disturbance. We investigate the nature of this partitioning ratio with three approaches: (1) nutrient stock data from forested ecosystems in North America, (2) a process-based ecosystem model, and (3) conceptual shifts in site nutrient availability with altered disturbance frequency. Partitioning ratios could be applied to a variety of ecosystems and successional states, allowing for improved temporal scaling of disturbance events. The generally short-term empirical evidence for recovery trajectories of nutrient stocks and partitioning ratios suggests two areas for future research. First, we need to recognize and quantify how disturbance effects can be accreting or depleting, depending on whether their net effect is to increase or decrease ecosystem nutrient stocks. Second, we need to test how altered disturbance frequencies from the present state may be constructive or destructive in their effects on biogeochemical cycling and nutrient availability. Long-term studies, with repeated sampling of soils and vegetation, will be essential in further developing this framework of biogeochemical response to disturbance.  相似文献   

15.
Virtually complete nitrification of the available ammonium in soil and nitrification activity in the forest floor are important factors predisposing forests in the San Bernardino Mountains of southern California to nitrogen (N) saturation. As a result, inorganic N in the soil solution is dominated by nitrate. High nitrification rates also generate elevated nitric oxide (NO) emissions from soil. High-base cation saturation of these soils means that soil calcium depletion or effects associated with soil acidification are not an immediate risk for forest health as has been postulated for mesic forests in the eastern U.S. Physiological disturbance (e.g., altered carbon [C] cycling, reduced fine root biomass, premature needle abscission) of ozone-sensitive ponderosa pine trees exposed to high N deposition and high ozone levels appear to be the greater threat to forest sustainability. However, N deposition appears to offset the aboveground growth depression effects of ozone exposure. High nitrification activity reported for many western ecosystems suggests that with chronic N inputs these systems are prone to N saturation and hydrologic and gaseous losses of N. High runoff during the winter wet season in California forests under a Mediterranean climate may further predispose these watersheds to high nitrate leachate losses. After 4 years of N fertilization at a severely N saturated site in the San Bernardino Mountains, bole growth unexpectedly increased. Reduced C allocation below- ground at this site, presumably in response to ozone or N or both pollutants, may enhance the bole growth response to added N.  相似文献   

16.
Reproductive skew and group size: an N-person staying incentive model   总被引:5,自引:2,他引:3  
Transactional models of social evolution emphasize that dominantbreeders may donate parcels of reproduction to subordinatesin return for peaceful cooperation. We develop a general transactionalmodel of reproductive partitioning and group size for N-persongroups when (1) expected group output is a concave (decelerating)functiong[N] of the number N of group members, and (2) thesubordinates may receive fractions of total group reproduction("staying incentives") just sufficient to induce them to stayand help the dominant instead of breeding solitarily. We focusespecially on "saturated" groups, that is, groups that havegrown in size just up to the point where subsequent joining by subordinates is no longer beneficial either to them (in parent-offspring groups) or to the dominant (in symmetric-relatedness groups).Decreased expected output for solitary breeding increases thesaturated group size and decreases the staying incentives.Increased relatedness decreases both the saturated group sizeand the staying incentives. However, in saturated groups withsymmetric relatedness, an individual subordinate's staying incentive converges to 1 — g[N* — 1]/g[N*]) regardless ofrelatedness, where N* is the size of a saturated group, providedthat the g[N] function near the saturated group size N* isapproximately linear. Thus, staying incentives can be insensitiveto relatedness in saturated groups, although the dominant's total fraction of reproduction (total skew) will be more sensitive.The predicted ordering for saturated group size is: Parent-fullsibling offspring = non-relatives > symmetrically relatedrelatives. Strikingly, stable groups of non-relatives can formfor concaveg[N] functions in our model but not in previousmodels of group size lacking skew manipulation by the dominant.Finally, symmetrical relatedness groups should tend to breakup by threatened ejections of subordinates by dominants, whereas parent-offspring groups should tend to breakup via unforceddepartures by subordinates.  相似文献   

17.
Elevated and chronic nitrogen (N) deposition to N-limited terrestrial ecosystems can lead to ‘N saturation’, with resultant ecosystem damage and leaching of nitrate (NO3 ?) to surface waters. Present-day N deposition, however, is often a poor predictor of NO3 ? leaching, and the pathway of the ecosystem transition from N-limited to N-saturated remains incompletely understood. The dynamics of N cycling are intimately linked to the associated carbon (C) and sulphur (S) cycles. We hypothesize that N saturation is associated with shifts in the microbial community, manifest by a decrease in the fungi-to-bacteria ratio and a transition from N to C limitation. Three mechanisms could lead to lower amount of bioavailable dissolved organic C (DOC) for the microbial community and to C limitation of N-rich systems: (1) Increased abundance of N for plant uptake, causing lower C allocation to plant roots; (2) chemical suppression of DOC solubility by soil acidification; and (3) enhanced mineralisation of DOC due to increased abundance of electron acceptors in the form of ${{\text{SO}}_{ 4}}^{ 2-}$ SO 4 2 ? and NO3 ? in anoxic soil micro-sites. Here we consider each of these mechanisms, the extent to which their hypothesised impacts are consistent with observations from intensively-monitored sites, and the potential to improve biogeochemical models by incorporating mechanistic links to the C and S cycles.  相似文献   

18.
理解草地生态系统结构和功能对氮富集的响应及其机制有助于准确评估大气氮沉降等外源氮输入的生态效应。全球范围内建立的多水平氮添加实验为认识草地生态系统结构和功能对氮输入的非线性响应机制提供了有效途径。为了反映学术界基于多水平氮添加控制实验取得的主要研究进展,该文综述了草地群落多样性和生态系统碳氮循环过程对外源氮输入的非线性响应特征及其驱动机制。按照目前的研究,氮输入会导致草地植物物种多样性、功能多样性以及土壤细菌多样性下降,但真菌多样性的变化并不明显。地上和地下生产力对氮输入的响应趋势存在差异:地上生产力沿氮添加梯度呈“先上升后饱和”的变化规律,而根系生产量和根冠比呈下降趋势,根系周转速率则呈“先上升后下降”的单峰格局。不同碳分解过程对氮输入的响应也不尽相同:凋落物分解速率沿氮添加梯度表现出“指数衰减、线性增加或无显著变化”的多元响应,而土壤呼吸和CH4吸收速率与施氮量的关系则以“低氮促进、高氮抑制”的单峰趋势为主。类似地,不同土壤碳组分对氮输入的响应存在差异:氮添加总体会导致草地土壤碳库和颗粒态有机碳含量增加,而矿物结合态碳含量随施氮量呈“增加、不变或下降”的多元响...  相似文献   

19.
The complete nitrogen cycle of an N-saturated spruce forest ecosystem   总被引:1,自引:0,他引:1  
Long-term nitrogen deposition into forest ecosystems has turned many forests in Central Europe and North America from N-limited to N-saturated systems, with consequences for climate as well as air and groundwater quality. However, complete quantification of processes that convert the N deposited and contributed to ecosystem N cycling is scarce. In this study, we provide the first complete quantification of external and internal N fluxes in an old-growth spruce forest, the Höglwald, Bavaria, Germany, exposed to high chronic N deposition. In this forest, N cycling is dominated by high rates of mineralisation of soil organic matter, nitrification and immobilisation of ammonium and nitrate into microbial biomass. The amount of ammonium available is sufficient to cover the entire N demand of the spruce trees. The data demonstrate the existence of a highly dynamic internal N cycle within the soil, driven by growth and death of the microbial biomass, which turns over approximately seven times each year. Although input and output fluxes are of high environmental significance, they are low compared to the internal fluxes mediated by microbial activity.  相似文献   

20.
Atmospheric deposition of biologically active nitrogen (N) has increased dramatically over the past 60 years, with far-reaching impacts on the structure and function of many ecosystems. Much research has examined the initial impacts of N enrichment; however, few studies have been multidecadal, and even fewer long-term studies have examined the longevity of N-induced impacts on N cycling after inputs cease. Here, we address this gap by reporting the state of key N pools and fluxes in a Minnesota grassland for plots that received N addition for 10 years and then none for 12 years, in comparison with plots that received annual N treatment for the entire 22 years. We found weak evidence for long-term N retention in plots that ceased receiving treatment; and in plots that continued to receive N over the 22-year period, retention that was high after 12 years (50–100% of inputs) was greatly reduced after 22 years (to 15%). In spite of this, net N mineralization rates remained elevated in plots that ceased receiving treatment 12 years prior, likely because N-rich litter maintained higher N-cycling rates. These results suggest (1) some systems do not retain much deposited N, with potentially large impacts on downstream habitats; (2) the previously reported high retention efficiencies for this and many other terrestrial ecosystems may be relatively short-lived as N sinks become saturated over time; and (3) the effects of even small amounts of retained N in N-limited environments may be particularly long-lasting. In total, these findings highlight the importance of long-term studies in evaluating the impacts of chronic N deposition to ecosystems, and urge additional research examining dynamics following N cessation to evaluate the reversibility of these impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号