首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Membrane potential responses of a Hodgkin-Huxley oscillator to an externally-applied sinusoidal current were numerically calculated with relation to bifurcation parameters of the amplitude and the frequency of the stimulating current. The Hodgkin-Huxley oscillator, or the Hodgkin-Huxley axon in the state of self-sustained oscillation of action potentials, was realized by immersing the axon in calcium-deficient sea water. The forced oscillations were analysed by the stroboscopic plots and/or the Lorenz plots. The results show that the periodically forced Hodgkin-Huxley oscillator exhibits not only periodic motions (harmonic or sub-harmonic synchronization) but also non-periodic motions (quasi-periodic or chaotic oscillation), that the motions were determined by the amplitude and the frequency of the stimulating current, and that the characteristic motions obtained in the present study were in reasonable agreement with those of our previous results, found experimentally in squid giant axons. Also, two kinds of routes to the chaotic oscillations were found; successive period-doubling bifurcations and formation of the intermittently chaotic oscillation from sub-harmonic synchronization.  相似文献   

2.
The property of an excitable membrane of a nerve cell to change the type of electrical activity has been examined with the change of the value of applied current (I). The dependence of this property on the values of the membrane parameters is determined. Two different functional states depending on the values of the membrane parameters are considered. For one of the states a change in the value of I is accompanied by a change in the type of activity (damped periodic oscillations jump to undamped periodic oscillations or vice versa). For the other state the type of activity remains phasic (damped periodic oscillations) for each value of I. For the mathematical model of a membrane we have considered the problem of obtaining the boundary, partitioning the parameter space into the regions to which these functional states correspond. We suggest a mathematical set of this problem and give its algorithm. These boundaries have been constructed for two different variable parameters of the model. A good agreement between the boundaries and the experimental values of sodium and potassium conductances for different excitable membranes has been obtained.  相似文献   

3.
A two variable model with delay in both the variables, is proposed for the circadian oscillations of protein concentrations in the fungal species Neurospora crassa. The dynamical variables chosen are the concentrations of FRQ and WC-1 proteins. Our model is a two variable simplification of the detailed model of Smolen et al. (J. Neurosci. 21 (2001) 6644) modeling circadian oscillations with interlocking positive and negative feedback loops, containing 23 variables. In our model, as in the case of Smolen's model, a sustained limit cycle oscillation takes place in both FRQ and WC-1 protein in continuous darkness, and WC-1 is anti-phase to FRQ protein, as observed in experiments. The model accounts for various characteristic features of circadian rhythms such as entrainment to light dark cycles, phase response curves and robustness to parameter variation and molecular fluctuations. Simulations are carried out to study the effect of periodic forcing of circadian oscillations by light-dark cycles. The periodic forcing resulted in a rich bifurcation diagram that includes quasiperiodicity and chaotic oscillations, depending on the magnitude of the periodic changes in the light controlled parameter. When positive feedback is eliminated, our model reduces to the generic one dimensional delay model of Lema et al. (J. Theor. Biol. 204 (2000) 565), delay model of the circadian pace maker with FRQ protein as the dynamical variable which represses its own production. This one-dimensional model also exhibits all characteristic features of circadian oscillations and gives rise to circadian oscillations which are reasonably robust to parameter variations and molecular noise.  相似文献   

4.
Clustering behaviours have been found in numerous multi-strain transmission models. Numerical solutions of these models have shown that steady-states, periodic, or even chaotic motions can be self-organized into clusters. Such clustering behaviours are not a priori expected. It has been proposed that the cross-protection from multiple strains of pathogens is responsible for the clustering phenomenon. In this paper, we show that the steady-state clusterings in existing models can be analytically predicted. The clusterings occur via semi-simple double zero bifurcation from the quotient networks of the models and the patterns which follow can be predicted through the stability analysis of the bifurcation. We calculate the stability criteria for the clustering patterns and show that some patterns are inherently unstable. Finally, the biological implications of these results are discussed.  相似文献   

5.
Although it is known that two coupled Wilson–Cowan models with reciprocal connections induce aperiodic oscillations, little attention has been paid to the dynamical mechanism for such oscillations so far. In this study, we aim to elucidate the fundamental mechanism to induce the aperiodic oscillations in the coupled model. First, aperiodic oscillations observed are investigated for the case when the connections are unidirectional and when the input signal is a periodic oscillation. By the phase portrait analysis, we determine that the aperiodic oscillations are caused by periodically forced state transitions between a stable equilibrium and a stable limit cycle attractors around the saddle-node and saddle separatrix loop bifurcation points. It is revealed that the dynamical mechanism where the state crosses over the saddle-node and saddle separatrix loop bifurcations significantly contributes to the occurrence of chaotic oscillations forced by a periodic input. In addition, this mechanism can also give rise to chaotic oscillations in reciprocally connected Wilson–Cowan models. These results suggest that the dynamic attractor transition underlies chaotic behaviors in two coupled Wilson–Cowan oscillators.  相似文献   

6.
Recently, self-replicating molecules have been synthesized in the laboratory by Rebek. Given the importance of such molecules, we proposed a simple model of a self-replicating dimer, which works as a template for its own formation. Here we consider a three variable model. For the model, we obtain mixed-mode and chaotic oscillations. Also, we find coexistence between two periodic attractors as well as a periodic and a chaotic attractor.  相似文献   

7.
Transient oscillations induced by delayed growth response in the chemostat   总被引:2,自引:0,他引:2  
In this paper, in order to try to account for the transient oscillations observed in chemostat experiments, we consider a model of single species growth in a chemostat that involves delayed growth response. The time delay models the lag involved in the nutrient conversion process. Both monotone response functions and nonmonotone response functions are considered. The nonmonotone response function models the inhibitory effects of growth response of certain nutrients when concentrations are too high. By applying local and global Hopf bifurcation theorems, we prove that the model has unstable periodic solutions that bifurcate from unstable nonnegative equilibria as the parameter measuring the delay passes through certain critical values and that these local periodic solutions can persist, even if the delay parameter moves far from the critical (local) bifurcation values.When there are two positive equilibria, then positive periodic solutions can exist. When there is a unique positive equilibrium, the model does not have positive periodic oscillations and the unique positive equilibrium is globally asymptotically stable. However, the model can have periodic solutions that change sign. Although these solutions are not biologically meaningful, provided the initial data starts close enough to the unstable manifold of one of these periodic solutions they may still help to account for the transient oscillations that have been frequently observed in chemostat experiments. Numerical simulations are provided to illustrate that the model has varying degrees of transient oscillatory behaviour that can be controlled by the choice of the initial data.Mathematics Subject Classification: 34D20, 34K20, 92D25Research was partially supported by NSERC of Canada.This work was partly done while this author was a postdoc at McMaster.  相似文献   

8.
We have formulated and analysed a dynamic model for recurrent inhibition that takes into account the state dependence of the delayed feedback signal (due to the variation in threshold of fibres with their size) and the distribution of these delays (due to the distribution of fibre diameters in the feedback pathway). Using a combination of analytic and numerical tools, we have analysed the behaviour of this model. Depending on the parameter values chosen, as well as the initial preparation of the system, there may be a spectrum of post-synaptic firing dynamics ranging from stable constant values through periodic bursting (limit cycle) behaviour and chaotic firing as well as bistable behaviours. Using detailed parameter estimation for a physiologically motivated example (the CA3-basket cell-mossy fibre system in the hippocampus), we present some of these numerical behaviours. The numerical results corroborate the results of the analytic characterization of the solutions. Namely, for some parameter values the model has a single stable steady state while for the others there is a bistability in which the eventual behaviour depends on the magnitude of stimulation (the initial function).  相似文献   

9.
We analyze the behavior of a two-variable biochemical model in conditions where it admits multiple oscillatory domains in parameter space. The model represents an autocatalytic enzyme reaction with input of substrate both from a constant source and from non-linear recycling of product into substrate. This system was previously studied for birhythmicity, i.e. the coexistence between two stable periodic regimes (Moran and Goldbeter 1984), and for multithreshold excitability (Moran and Goldbeter 1985). When two distinct oscillatory domains obtain as a function of the substrate injection rate, the system is capable of exhibiting two markedly different modes of oscillations for slightly different values of this control parameter. Phase plane analysis shows how the multiplicity of oscillatory domains depends on the parameters that govern the underlying biochemical mechanism of product recycling. We analyze the response of the model to various kinds of transient perturbations and to periodic changes in the substrate input that bring the system through the two ranges of oscillatory behavior. The results provide a qualitative explanation for experimental observations (Jahnsen and Llinas 1984b) related to the occurrence of two different modes of oscillations in thalamic neurones.  相似文献   

10.
A spatial version of the predator–prey model with Holling III functional response, which includes some important factors such as external periodic forces, noise, and diffusion processes is investigated. For the model only with diffusion, it exhibits spiral waves in the two-dimensional space. However, combined with noise, it has the feature of chaotic patterns. Moreover, the oscillations become more obvious when the noise intensity is increased. Furthermore, the spatially extended system with external periodic forces and noise exhibits a resonant pattern and frequency-locking phenomena. These results may help us to understand the effects arising from the undeniable susceptibility to random fluctuations in the real ecosystems.  相似文献   

11.
Recently, the most convincing evidence of complex dynamics and chaos in biological populations has been presented for Tribolium castaneaum, a classic laboratory model insect. In this note, the robustness of this system is investigated and a constant immigration term is added to the adult population equation. It has been found that such perturbation to the model can either have a complicating effect (when the isolated system is periodic) or a simplifying one (when the system is chaotic in isolation).  相似文献   

12.
Starting with a model for a product-activated enzymatic reaction proposed for glycolytic oscillations, we show how more complex oscillatory phenomena may develop when the basic model is modified by addition of product recycling into substrate or by coupling in parallel or in series two autocatalytic enzyme reactions. Among the new modes of behavior are the coexistence between two stable types of oscillations (birhythmicity), bursting, and aperiodic oscillations (chaos). On the basis of these results, we outline an empirical method for finding complex oscillatory phenomena in autonomous biochemical systems, not subjected to forcing by a periodic input. This procedure relies on finding in parameter space two domains of instability of the steady state and bringing them close to each other until they merge. Complex phenomena occur in or near the region where the two domains overlap. The method applies to the search for birhythmicity, bursting and chaos in a model for the cAMP signalling system of Dictyostelium discoideum amoebae.  相似文献   

13.
We study the possibility of chaotic dynamics in the externally driven Droop model. This model describes a phytoplankton population in a chemostat under periodic nutrient supply. Previously, it has been proven under very general assumptions, that such systems are not able to exhibit chaotic dynamics. We show that the simple introduction of algal mortality may lead to chaotic oscillations of algal density in the forced chemostat. Our numerical simulations show that the existence of chaos is intimately related to plankton overshooting in the unforced model. We provide a simple measure, based on stability analysis, for estimating the amount of overshooting. These findings are not restricted to the Droop model but also hold for other chemostat models with mortality. Our results suggest periodically driven chemostats as a simple model system for the experimental verification of chaos in ecology.  相似文献   

14.
The leech neuron model studied here has a remarkable dynamical plasticity. It exhibits a wide range of activities including various types of tonic spiking and bursting. In this study we apply methods of the qualitative theory of dynamical systems and the bifurcation theory to analyze the dynamics of the leech neuron model with emphasis on tonic spiking regimes. We show that the model can demonstrate bi-stability, such that two modes of tonic spiking coexist. Under a certain parameter regime, both tonic spiking modes are represented by the periodic attractors. As a bifurcation parameter is varied, one of the attractors becomes chaotic through a cascade of period-doubling bifurcations, while the other remains periodic. Thus, the system can demonstrate co-existence of a periodic tonic spiking with either periodic or chaotic tonic spiking. Pontryagins averaging technique is used to locate the periodic orbits in the phase space.  相似文献   

15.
Theoretical analysis of peculiarities of reception of weak extremely low-frequency periodic signals by calcium-dependent intracellular regulatory systems was performed on the reduced “minimal” model for calcium oscillations suggested by Goldbeter et al. (Proc. Natl. Acad. Sci. USA 87, 1461–1465, 1990). The model considered the following calcium-dependent processes: the rise in intracellular free calcium concentration ([Ca2+]i) due to calcium ionophore A23187 action on a cell, activation of the Ca2+ entry through calcium channels in the plasma membrane by the initial rise in [Ca2+]i, and the Ca2+ release from intracellular stores by the calcium-induced calcium release mechanism. Calcium channels of plasma membrane were chosen as a target for the modulating signal and an additive noise influence in the model. An increase in [Ca2+]i under the influence of the modulating signal was demonstrated to depend not only on the amplitude and frequency of this signal, but also on the phase of the signal with respect to a momentary chemical stimulation of the cell. Such an effect was found only at high strengths of chemical stimulation and with a particular sequence of delivery of the chemical and electromagnetic stimuli. An increase in noise intensity led to magnification of the mean level of [Ca2+]i in a narrow frequency range by the mechanism of stochastic resonance. Under the influence of a modulating periodic signal, the gradual increase in strength of chemical stimulation induced a system transition from regular to chaotic behavior, and then to induced periodic oscillations. A boundary of the transition from chaotic to periodic oscillations corresponded to a “threshold” of sensitivity of calcium-dependent intracellular signaling systems on [Ca2+]i to the influence of the modulating signal. Results of the theoretical analysis led us to conclude that the narrow-band response of a system to an external electromagnetic signal is determined purely by nonlinear properties of the system.  相似文献   

16.
在大鼠损伤背根节神经元受到去甲肾上腺(NE)、四乙基胺(TEA)和高浓度钙等剌激的实验中,观察到非周期放电的神经元明显地比周期放电的神经元对外界刺激的反应敏感程度高。现有的结果表明许多非周期放电的神经元实际上表现为确定性的混沌运动,比如混沌尖峰放电、混沌簇放电以及整数倍放电等。以修正的胰腺B细胞Chay模型为例,通过对其分岔结构的分析和对构成混沌吸引子的基本骨架的不稳定周期轨道的计算,揭示了分岔、激变和混沌运动对参数敏感依赖性是该现象产生的动力学机制。同时指出以往使用平均发放率来刻划可兴奋性细胞放电活动存在的缺陷,提出了一种新的利用周期轨道信息的刻划方法。  相似文献   

17.
研究了一个具有脉冲出生的Leslie-Gower捕食者一食饵系统的动力学性质.利用频闪映射。得到了带有Ricker和Beverton-Holt函数的脉冲系统准确的周期解.通过Floquet定理和脉冲比较定理,讨论了该系统的灭绝和持久生存.最后,数值分析了以b(p)为分支参数的分支图,得到的结论是脉冲出生会带给系统倍周期分支、混沌以及在混沌带中出现周期窗口等复杂的动力学行为.  相似文献   

18.
Diversity of temporal self-organized behaviors in a biochemical system.   总被引:3,自引:0,他引:3  
The numerical study of a glycolytic model formed by a system of three delay-differential equations revealed a notable richness of temporal structures which included the three main routes to chaos, as well as a multiplicity of stable coexisting states. The Feigenbaum, intermitency and quasiperiodicity routes to chaos can emerge in the biochemical oscillator. Moreover, different types of birhythmicity, trirhythmicity and hard excitation emerge in the phase space. For a single range of the control parameter it can be observed the coexistence of two quasiperiodicity routes to chaos, the coexistence of a stable steady state with a stable torus, and the coexistence of a strange attractor with different stable regimes such as chaos with different periodic regimes, chaos with bursting behavior, and chaos with torus. In most of the numerical studies, the biochemical oscillator has been considered under periodic input flux being the mean input flux rate 6 mM/h. On the other hand, several investigators have observed quasiperiodic time patterns and chaotic oscillations by monitoring the fluorescence of NADH in glycolyzing yeast under sinusoidal glucose input flux. Our numerical results match well with these experimental studies.  相似文献   

19.
The numerical study of a glycolytic model formed by a system of three delay differential equations reveals a multiplicity of stable coexisting states: birhythmicity, trirhythmicity, hard excitation and quasiperiodic with chaotic regimes. For different initial functions in the phase space one may observe the coexistence of two different quasiperiodic motions, the existence of a stable steady state with a stable torus, and the existence of a strange attractor with different stable regimes (chaos with torus, chaos with bursting motion, and chaos with different periodic regimes). For a single range of the control parameter values our system may exhibit different bifurcation diagrams: in one case a Feigenbaum route to chaos coexists with a finite number of successive periodic bifurcations, in other conditions it is possible to observe the coexistence of two quasiperiodicity routes to chaos. These studies were obtained both at constant input flux and under forcing conditions.  相似文献   

20.
PER protein circadian oscillations in Drosophila have been described by Goldbeter according to a five-dimensional model that includes the possibility of genetic mutation described by changing one parameter, the maximum degradation rate of the PER protein. Assuming that, in a mutant Drosophila this parameter is unreachable, we modify another parameter, the translation rate between the mRNA and the nonphosphorylated form of PER protein, by periodic intermittent activation or inhibition. We show how such a modification, simulated in the model by a periodic, on/off, piecewise constant stimulation (which increases or decreases this parameter) allows the entrainment of oscillations exactly at, or close to, a desired period. In a different context, this suggests that some diseases may be corrected using pharmacological agents according to specific periodic delivery schedules. (Chronobiology International,17(1), 1-14, 2000)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号