首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In prokaryotic nucleotide excision repair, UvrA recognizes DNA perturbations and recruits UvrB for the recognition and processing steps in the reaction. One of the most remarkable aspects of UvrA is that it can recognize a wide range of DNA lesions that differ in chemistry and structure. However, how UvrA interacts with DNA is unknown. To examine the role that the UvrA C-terminal zinc finger domain plays in DNA binding, an eleven amino acid deletion was constructed (ZnG UvrA). Biochemical characterization of the ZnG UvrA protein was carried out using UvrABC DNA incision, DNA binding and ATPase assays. Although ZnG UvrA was able to bind dsDNA slightly better than wild-type UvrA, the ZnG UvrA mutant only supported 50-75% of wild type incision. Surprisingly, the ZnG UvrA mutant, while retaining its ability to bind dsDNA, did not support damage-specific binding. Furthermore, this mutant protein only provided 10% of wild-type Bca UvrA complementation for UV survival of an uvrA deletion strain. In addition, ZnG UvrA failed to stimulate the UvrB DNA damage-associated ATPase activity. Electrophoretic mobility shift analysis was used to monitor UvrB loading onto damaged DNA with wild-type UvrA or ZnG UvrA. The ZnG UvrA protein showed a 30-60% reduction in UvrB loading as compared with the amount of UvrB loaded by wild-type UvrA. These data demonstrate that the C-terminal zinc finger of UvrA is required for regulation of damage-specific DNA binding.  相似文献   

2.
G M Myles  J E Hearst  A Sancar 《Biochemistry》1991,30(16):3824-3834
UvrA is the ATPase subunit of the DNA repair enzyme (A)BC excinuclease. The amino acid sequence of this protein has revealed, in addition to two zinc fingers, three pairs of nucleotide binding motifs each consisting of a Walker A and B sequence. We have conducted site-specific mutagenesis, ATPase kinetic analyses, and nucleotide binding equilibrium measurements to correlate these sequence motifs with activity. Replacement of the invariant Lys by Ala in the putative A sequences indicated that K37 and K646 but not K353 are involved in ATP hydrolysis. In contrast, substitution of the invariant Asp by Asn in the B sequences at positions D238, D513, or D857 had little effect on the in vivo activity of the protein. Nucleotide binding studies revealed a stoichiometry of 0.5 ADP/UvrA monomer while kinetic measurements on wild-type and mutant proteins showed that the active form of UvrA is a dimer with 2 catalytic sites which interact in a positive cooperative manner in the presence of ADP; mutagenesis of K37 but not of K646 attenuated this cooperativity. Loss of ATPase activity was about 75% in the K37A, 86% in the K646A mutant, and 95% in the K37A-K646A double mutant. These amino acid substitutions had only a marginal effect on the specific binding of UvrA to damaged DNA but drastically reduced its ability to deliver UvrB to the damage site. We find that the deficient UvrB loading activity of these mutant UvrA proteins results from their inability to associate with UvrB in the form of (UvrA)2(UvrB)1 complexes. We conclude that UvrA forms a dimer with two ATPase domains involving K37 and K646 and that the work performed by ATP hydrolysis is the delivery of UvrB to the damage site on DNA.  相似文献   

3.
Malta E  Moolenaar GF  Goosen N 《Biochemistry》2007,46(31):9080-9088
UvrB plays a key role in bacterial nucleotide excision repair. It is the ultimate damage-binding protein that interacts with both UvrA and UvrC. The oligomeric state of UvrB and the UvrAB complex have been subject of debate for a long time. Using fluorescence resonance energy transfer (FRET) between GFP and YFP fused to the C-terminal end of Escherichia coli UvrB, we unambiguously show that in solution two UvrB subunits bind to UvrA, most likely as part of a UvrA2B2 complex. This complex is most stable when both UvrA and UvrB are in the ATP-bound form. Analysis of a truncated form of UvrB shows that binding to UvrA promotes dimerization of the two C-terminal domain 4 regions of UvrB. The presence of undamaged DNA leads to dissociation of the UvrA2B2 complex, but when the ATPase site of UvrB is inactivated, the complex is trapped on the DNA. When the complex is bound to a damaged site, FRET between the two UvrB subunits could still be detected, but only as long as UvrA remains associated. Dissociation of UvrA from the damage-bound UvrB dimer leads to the reduction of the magnitude of the FRET signal, indicating that the domain 4 regions no longer interact. We propose that the UvrA-induced dimerization of the domain 4 regions serves to shield these domains from premature UvrC binding. Only after specific binding of the UvrB dimer to a damaged site and subsequent release of UvrA is the contact between the domain 4 regions broken, allowing recruitment of UvrC and subsequent incisions.  相似文献   

4.
The UvrB protein is the central recognition protein in bacterial nucleotide excision repair. We have shown previously that the highly conserved beta-hairpin motif in Bacillus caldotenax UvrB is essential for DNA binding, damage recognition, and UvrC-mediated incision, as deletion of the upper part of the beta-hairpin (residues 97-112) results in the inability of UvrB to be loaded onto damaged DNA, defective incision, and the lack of strand-destabilizing activity. In this work, we have further examined the role of the beta-hairpin motif of UvrB by a mutational analysis of 13 amino acids within or in the vicinity of the beta-hairpin. These amino acids are predicted to be important for the interaction of UvrB with both damaged and non-damaged DNA strands as well as the formation of salt bridges between the beta-hairpin and domain 1b of UvrB. The resulting mutants were characterized by standard functional assays such as oligonucleotide incision, electrophoretic mobility shift, strand-destabilizing, and ATPase assays. Our data indicated a direct role of Tyr96, Glu99, and Arg123 in damage-specific DNA binding. In addition, Tyr93 plays an important but less essential role in DNA binding by UvrB. Finally, the formation of salt bridges between the beta-hairpin and domain 1b, involving amino acids Lys111 bound to Glu307 and Glu99 bound to Arg367 or Arg289, are important but not essential for the function of UvrB.  相似文献   

5.
Nucleotide excision repair (NER) is a universal DNA repair mechanism found in all three kingdoms of life. Its ability to repair a broad range of DNA lesions sets NER apart from other repair mechanisms. NER systems recognize the damaged DNA strand and cleave it 3', then 5' to the lesion. After the oligonucleotide containing the lesion is removed, repair synthesis fills the resulting gap. UvrB is the central component of bacterial NER. It is directly involved in distinguishing damaged from undamaged DNA and guides the DNA from recognition to repair synthesis. Recently solved structures of UvrB from different organisms represent the first high-resolution view into bacterial NER. The structures provide detailed insight into the domain architecture of UvrB and, through comparison, suggest possible domain movements. The structure of UvrB consists of five domains. Domains 1a and 3 bind ATP at the inter-domain interface and share high structural similarity to helicases of superfamilies I and II. Not related to helicase structures, domains 2 and 4 are involved in interactions with either UvrA or UvrC, whereas domain 1b was implicated for DNA binding. The structures indicate that ATP binding and hydrolysis is associated with domain motions. UvrB's ATPase activity, however, is not coupled to the separation of long DNA duplexes as in helicases, but rather leads to the formation of the preincision complex with the damaged DNA substrate. The location of conserved residues and structural comparisons with helicase-DNA structures suggest how UvrB might bind to DNA. A model of the UvrB-DNA interaction in which a beta-hairpin of UvrB inserts between the DNA double strand has been proposed recently. This padlock model is developed further to suggest two distinct consequences of domain motion: in the UvrA(2)B-DNA complex, domain motions lead to translocation along the DNA, whereas in the tight UvrB-DNA pre-incision complex, they lead to distortion of the 3' incision site.  相似文献   

6.
UvrA is the initial DNA damage-sensing protein in bacterial nucleotide excision repair. Each protomer of the UvrA dimer contains two ATPase domains, that belong to the family of ATP-binding cassette domains. Three structural domains are inserted in these ATPase domains: the insertion domain (ID) and UvrB binding domain (in ATP domain I) and the zinc-finger motif (in ATP domain II). In this paper we analyze the function of the ID and the zinc finger motif in damage specific binding of Escherichia coli UvrA. We show that the ID is not essential for damage discrimination, but it does stabilize UvrA on the DNA, most likely by forming a clamp around the DNA helix. We present evidence that two conserved arginine residues in the ID contact the phosphate backbone of the DNA, leading to strand separation after the ATPase-driven movement of the ID's. Remarkably, deletion of the ID generated a phenotype in which UV-survival strongly depends on the presence of photolyase, indicating that UvrA and photolyase form a ternary complex on a CPD-lesion. The zinc-finger motif is shown to be important for the transfer of the damage recognition signal to the ATPase of UvrA. In the absence of this domain the coupling between DNA binding and ATP hydrolysis is completely lost. Mutation of the phenylalanine residue in the tip of the zinc-finger domain resulted in a protein in which the ATPase was already triggered when binding to an undamaged site. As the zinc-finger motif is connected to the DNA binding regions on the surface of UvrA, this strongly suggests that damage-specific binding to these regions results in a rearrangement of the zinc-finger motif, which in its turn activates the ATPase. We present a model how damage recognition is transmitted to activate ATP hydrolysis in ATP binding domain I of the protein.  相似文献   

7.
The UvrA protein is the initial DNA damage-sensing protein in bacterial nucleotide excision repair and detects a wide variety of structurally unrelated lesions. After initial recognition of DNA damage, UvrA loads the UvrB protein onto the DNA. This protein then verifies the presence of a lesion, after which UvrA is released from the DNA.UvrA contains two ATPase domains, both belonging to the ABC ATPase superfamily. We have determined the activities of two mutants, in which a single domain was deactivated. Inactivation of either one ATPase domain in Escherichia coli UvrA results in a complete loss of ATPase activity, indicating that both domains function in a cooperative way. We could show that this ATPase activity is not required for the recognition of bulky lesions by UvrA, but it does promote the specific binding to the less distorting cyclobutane–pyrimidine dimer (CPD). The two ATPase mutants also show a difference in UvrB-loading, depending on the length of the DNA substrate. The ATPase domain I mutant was capable of loading UvrB on a lesion in a 50 bp fragment, but this loading was reduced on a longer substrate. For the ATPase domain II mutant the opposite was found: UvrB could not be loaded on a 50 bp substrate, but this loading was rescued when the length of the fragment was increased. This differential loading of UvrB by the two ATPase mutants could be related to different interactions between the UvrA and UvrB subunits.  相似文献   

8.
DNase I footprint of ABC excinuclease   总被引:15,自引:0,他引:15  
The incision and excision steps of nucleotide excision repair in Escherichia coli are mediated by ABC excinuclease, a multisubunit enzyme composed of three proteins, UvrA, UvrB, and UvrC. To determine the DNA contact sites and the binding affinity of ABC excinuclease for damaged DNA, it is necessary to engineer a DNA fragment uniquely modified at one nucleotide. We have recently reported the construction of a 40 base pair (bp) DNA fragment containing a psoralen adduct at a central TpA sequence (Van Houten, B., Gamper, H., Hearst, J. E., and Sancar, A. (1986a) J. Biol. Chem. 261, 14135-14141). Using similar methodology a 137-bp fragment containing a psoralen-thymine adduct was synthesized, and this substrate was used in DNase I-footprinting experiments with the subunits of ABC excinuclease. It was found that the UvrA subunit binds specifically to the psoralen modified 137-bp fragment with an apparent equilibrium constant of K8 = 0.7 - 1.5 X 10(8) M-1, while protecting a 33-bp region surrounding the DNA adduct. The equilibrium constant for the nonspecific binding of UvrA was Kns = 0.7 - 2.9 X 10(5) M-1 (bp). In the presence of the UvrB subunit, the binding affinity of UvrA for the damaged substrate increased to K8 = 1.2 - 6.7 X 10(8) M-1 while the footprint shrunk to 19 bp. In addition the binding of the UvrA and UvrB subunits to the damaged substrate caused the 11th phosphodiester bond 5' to the psoralen-modified thymine to become hypersensitive to DNase I cleavage. These observations provide evidence of an alteration in the DNA conformation which occurs during the formation of the ternary UvrA.UvrB.DNA complex. The addition of the UvrC subunit to the UvrA.UvrB.DNA complex resulted in incisions on both sides of the adduct but did not cause any detectable change in the footprint. Experiments with shorter psoralen-modified DNA fragments (20-40 bp) indicated that ABC excinuclease is capable of incising a DNA fragment extending either 3 or 1 bp beyond the normal 5' or 3' incision sites, respectively. These results suggest that the DNA beyond the incision sites, while contributing to ABC excinuclease-DNA complex formation, is not essential for cleavage to occur.  相似文献   

9.
The UvrABC pathway is a ubiquitously occurring mechanism targeted towards the repair of bulky base damage. Key to this process is UvrB, a DNA-dependent limited helicase that acts as a lesion recognition element whilst part of a tracking complex involving UvrA, and as a DNA-binding platform required for the presentation of damage to UvrC for subsequent processing. We have been able to determine the structure of a ternary complex involving UvrB* (a C-terminal truncation of full-length UvrB), a polythymine trinucleotide and ADP. This structure has highlighted the roles of key conserved residues in DNA binding distinct from those of the beta-hairpin, where most of the attention in previous studies has been focussed. We are also the first to report the structural basis underlying conformational re-modelling of the beta-hairpin that is absolutely required for DNA binding and how this event results in an ATPase primed for catalysis. Our data provide the first insights at the molecular level into the transformation of UvrB into an active helicase.  相似文献   

10.
Isolation and characterization of functional domains of UvrA.   总被引:2,自引:0,他引:2  
G M Myles  A Sancar 《Biochemistry》1991,30(16):3834-3840
The sequence of Escherichia coli UvrA protein suggests that it may fold into two functional domains each possessing DNA binding and ATPase activities. We have taken two approaches to physically isolate polypeptides corresponding to the two putative domains. First, a 180 base pair DNA segment encoding multiple collagenase recognition sequences was inserted into UvrA's putative interdomain hinge region. This UvrA derivative was purified and digested with collagenase, and the resulting 70-kDa N-terminal and 35-kDa C-terminal fragments were purified. Both fragments possessed nonspecific DNA binding activity, but only the N-terminal domain retained its nucleotide binding capacity as evidence by measurements of ATP hydrolysis and by ATP photo-cross-linking. Together, the two fragments failed to substitute for UvrA in reconstituting (A)BC excinuclease and, therefore, were presumed to be unable to load UvrB onto damaged DNA. Second, the DNA segments encoding the two domains were fused to the beta-galactosidase gene. The UvrA N-terminal domain-beta-galactosidase fusion protein was overproduced and purified. This fusion protein had ATPase activity, thus confirming that the amino-terminal domain does possess an intrinsic ATPase activity independent of any interaction with the carboxy terminus. Our results show that UvrA has two functional domains and that the specificity for binding to damaged DNA is provided by the proper three-dimensional orientation of one zinc finger motif relative to the other and is not an intrinsic property of an individual zinc finger domain.  相似文献   

11.
Zou Y  Ma H  Minko IG  Shell SM  Yang Z  Qu Y  Xu Y  Geacintov NE  Lloyd RS 《Biochemistry》2004,43(14):4196-4205
The DNA repair protein UvrB plays an indispensable role in the stepwise and sequential damage recognition of nucleotide excision repair in Escherichia coli. Our previous studies suggested that UvrB is responsible for the chemical damage recognition only upon a strand opening mediated by UvrA. Difficulties were encountered in studying the direct interaction of UvrB with adducts due to the presence of UvrA. We report herein that a single point mutation of Y95W in which a tyrosine is replaced by a tryptophan results in an UvrB mutant that is capable of efficiently binding to structure-specific DNA adducts even in the absence of UvrA. This mutant is fully functional in the UvrABC incisions. The dissociation constant for the mutant-DNA adduct interaction was less than 100 nM at physiological temperatures as determined by fluorescence spectroscopy. In contrast, similar substitutions at other residues in the beta-hairpin with tryptophan or phenylalanine do not confer UvrB such binding ability. Homology modeling of the structure of E. coli UvrB shows that the aromatic ring of residue Y95 and only Y95 directly points into the DNA binding cleft. We have also examined UvrB recognition of both "normal" bulky BPDE-DNA and protein-cross-linked DNA (DPC) adducts and the roles of aromatic residues of the beta-hairpin in the recognition of these lesions. A mutation of Y92W resulted in an obvious decrease in the efficiency of UvrABC incisions of normal adducts, while the incision of the DPC adduct is dramatically increased. Our results suggest that Y92 may function differently with these two types of adducts, while the Y95 residue plays an unique role in stabilizing the interaction of UvrB with DNA damage, most likely by a hydrophobic stacking.  相似文献   

12.
The roles of the two tandemly arranged putative ATP binding sites of Escherichia coli UvrA in UvrABC endonuclease-mediated excision repair were analyzed by site-directed mutagenesis and biochemical characterization of the representative mutant proteins. Evidence is presented that UvrA has two functional ATPase sites which coincide with the putative ATP binding motifs predicted from its amino acid sequence. The individual ATPase sites can independently hydrolyze ATP. The C-terminal ATPase site has a higher affinity for ATP than the N-terminal site. The invariable lysine residues at the ends of the glycine-rich loops of the consensus Walker type "A" motifs are indispensable for ATP hydrolysis. However, the mutations at these lysine residues do not significantly affect ATP binding. UvrA, with bound ATP, forms the most favored conformation for DNA binding. The initial binding of UvrA to DNA is chiefly at the undamaged sites. In contrast to the wild type UvrA, the ATPase site mutants bind equally to damaged and undamaged sites. Dissociation of tightly bound nucleoprotein complexes from the undamaged sites requires hydrolysis of ATP by the C-terminal ATPase site of UvrA. Thus, both ATP binding and hydrolysis are required for the damage recognition step enabling UvrA to discriminate between damaged and undamaged sites on DNA.  相似文献   

13.
We have isolated UvrB-DNA complexes by capture of biotinylated damaged DNA substrates on streptavidin-coated magnetic beads. With this method the UvrB-DNA preincision complex remains stable even in the absence of ATP. For the binding of UvrC to the UvrB-DNA complex no cofactor is needed. The subsequent induction of 3' incision does require ATP binding by UvrB but not hydrolysis. This ATP binding induces a conformational change in the DNA, resulting in the appearance of the DNase I-hypersensitive site at the 5' side of the damage. In contrast, the 5' incision is not dependent on ATP binding because it occurs with the same efficiency with ADP. We show with competition experiments that both incision reactions are induced by the binding of the same UvrC molecule. A DNA substrate containing damage close to the 5' end of the damaged strand is specifically bound by UvrB in the absence of UvrA and ATP (Moolenaar, G. F., Monaco, V., van der Marel, G. A., van Boom, J. H., Visse, R., and Goosen, N. (2000) J. Biol. Chem. 275, 8038-8043). To initiate the formation of an active UvrBC-DNA incision complex, however, UvrB first needs to hydrolyze ATP, and subsequently a new ATP molecule must be bound. Implications of these findings for the mechanism of the UvrA-mediated formation of the UvrB-DNA preincision complex will be discussed.  相似文献   

14.
UvrB, a central DNA damage recognition protein in bacterial nucleotide excision repair, has weak affinity for DNA, and its ATPase activity is activated by UvrA and damaged DNA. Regulation of DNA binding and ATP hydrolysis by UvrB is poorly understood. Using atomic force microscopy and biochemical assays, we found that truncation of domain 4 of Bacillus caldotenax UvrB (UvrBDelta4) leads to multiple changes in protein function. Protein dimerization decreases with an approximately 8-fold increase of the equilibrium dissociation constant and an increase in DNA binding. Loss of domain 4 causes the DNA binding mode of UvrB to change from dimer to monomer, and affinity increases with the apparent dissociation constants on nondamaged and damaged single-stranded DNA decreasing 22- and 14-fold, respectively. ATPase activity by UvrBDelta4 increases 14- and 9-fold with and without single-stranded DNA, respectively, and UvrBDelta4 supports UvrA-independent damage-specific incision by Cho on a bubble DNA substrate. We propose that other than its previously discovered role in regulating protein-protein interactions, domain 4 is an autoinhibitory domain regulating the DNA binding and ATPase activities of UvrB.  相似文献   

15.
The UvrA, UvrB, and UvrC proteins of Escherichia coli are subunits of a DNA repair enzyme, ABC exci nuclease. In order to amplify these proteins, we have joined the artificial canonical promoter tac (Amann E., Brosius, J., and Ptashne, M. (1983) Gene (Amst.) 25, 167-178) to the uvr genes to obtain plasmids that express these genes under the control of the lac repressor. When cells carrying the tac-uvr plasmids are induced by the gratuitous lac inducer isopropyl-beta-D-galactoside the Uvr proteins are overproduced reaching a level of 10-20% of total cellular proteins after 6-8 h of induction. We have developed methods to purify all three Uvr proteins, UvrA, UvrB, and UvrC, in milligram quantities and to near homogeneity from these overproducing cells. The purified UvrA protein is an ATPase but UvrB and UvrC proteins are not. However, UvrB protein stimulates the ATPase activity of UvrA protein by a factor of 1.5 in the presence of double-stranded DNA and by a factor of about 2.6 in the presence of UV-irradiated DNA but not in the absence of DNA.  相似文献   

16.
It is generally accepted that the damage recognition complex of nucleotide excision repair in Escherichia coli consists of two UvrA and one UvrB molecule, and that in the preincision complex UvrB binds to the damage as a monomer. Using scanning force microscopy, we show here that the damage recognition complex consists of two UvrA and two UvrB subunits, with the DNA wrapped around one of the UvrB monomers. Upon binding the damage and release of the UvrA subunits, UvrB remains a dimer in the preincision complex. After association with the UvrC protein, one of the UvrB monomers is released. We propose a model in which the presence of two UvrB subunits ensures damage recognition in both DNA strands. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one of the UvrB monomers, which will subsequently probe one of the DNA strands for the presence of a lesion. When no damage is found, the DNA will wrap around the second UvrB subunit, which will check the other strand for aberrations.  相似文献   

17.
Nucleotide excision repair (NER) is a major DNA repair mechanism that recognizes a broad range of DNA damages. In Escherichia coli, damage recognition in NER is accomplished by the UvrA and UvrB proteins. We have analysed the structural properties of the different protein-DNA complexes formed by UvrA, UvrB and (damaged) DNA using atomic force microscopy. Analysis of the UvrA(2)B complex in search of damage revealed the DNA to be wrapped around the UvrB protein, comprising a region of about seven helical turns. In the UvrB-DNA pre-incision complex the DNA is wrapped in a similar way and this DNA configuration is dependent on ATP binding. Based on these results, a role for DNA wrapping in damage recognition is proposed. Evidence is presented that DNA wrapping in the pre-incision complex also stimulates the rate of incision by UvrC.  相似文献   

18.
DNA-damage recognition in the nucleotide excision repair (NER) cascade is a complex process, operating on a wide variety of damages. UvrB is the central component in prokaryotic NER, directly involved in DNA-damage recognition and guiding the DNA through repair synthesis. We report the first structure of a UvrB-double-stranded DNA complex, providing insights into the mechanism by which UvrB binds DNA, leading to formation of the preincision complex. One DNA strand, containing a 3' overhang, threads behind a beta-hairpin motif of UvrB, indicating that this motif inserts between the strands of the double helix, thereby locking down either the damaged or undamaged strand. The nucleotide directly behind the beta-hairpin is flipped out and inserted into a small, highly conserved pocket in UvrB.  相似文献   

19.
UvrB is the ultimate damage-binding protein in bacterial nucleotide excision repair. Previous AFM experiments have indicated that UvrB binds to a damage as a dimer. In this paper we visualize for the first time a UvrB dimer in a gel retardation assay, with the second subunit (B2) more loosely bound than the subunit (B1) that interacts with the damage. A beta-hairpin motif in UvrB plays an important role in damage specific binding. Alanine substitutions of Y92 or Y93 in the beta-hairpin result in proteins that kill E. coli cells as a consequence of incision in non-damaged DNA. Apparently, both residues are needed to prevent binding of UvrB to non-damaged DNA. The lethality of Y93A results from UvrC-mediated incisions, whereas that of Y92A is due to incisions by Cho. This difference could be ascribed to a difference in stability of the B2 subunit in the mutant UvrB-DNA complexes. We show that for 3' incision UvrC needs to displace this second UvrB subunit from the complex, whereas Cho seems capable to incise the dimer-complex. Footprint analysis of the contacts of UvrB with damaged DNA revealed that the B2 subunit interacts with the flanking DNA at the 3' side of the lesion. The B2 subunit of mutant Y92A appeared to be more firmly associated with the DNA, indicating that even when B1 is bound to a lesion, the B2 subunit probes the adjacent DNA for presence of damage. We propose this to be a reflection of the process that the UvrB dimer uses to find lesions in the DNA. In addition to preventing binding to non-damaged DNA, the Y92 and Y93 residues appear also important for making specific contacts (of B1) with the damaged site. We show that the concerted action of the two tyrosines lead to a conformational change in the DNA surrounding the lesion, which is required for the 3' incision reaction.  相似文献   

20.
The UvrA protein is the DNA binding and damage recognition subunit of the damage-specific UvrABC endonuclease. In addition, it is an ATPase/GTPase, and the binding energy of ATP is linked to dimerization of the UvrA protein. Furthermore, the UvrA protein interacts with the UvrB protein to modulate its activities, both in solution and in association with DNA, where the UvrAB complex possesses a helicase activity. The domains of the UvrA protein that sponsor each of these activities were localized within the protein by studying the in vitro properties of a set of purified deletion mutants of the UvrA protein. A region located within the first 230 amino acids was found to contain the minimal region necessary for interactions with UvrB, the UvrA dimerization interface was localized to within the first 680 amino acids, and the DNA binding domain lies within the first 900 amino acids of the 940-amino acid UvrA protein. Two damage recognition domains were detected. The first domain, which coincides with the DNA binding region, is required to detect the damage. The second domain, located on or near the C-terminal 40 amino acids, stabilizes the protein-DNA complex when damage is encountered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号