首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aggregation and species coexistence in fleas parasitic on small mammals   总被引:2,自引:0,他引:2  
The aggregation model of coexistence states that species coexistence is facilitated if interspecific aggregation is reduced relative to intraspecific aggregation. We investigated the relationship between intraspecific and interspecific aggregation in 17 component communities (the flea assemblage of a host population) of fleas parasitic on small mammals and hypothesized that interspecific interactions should be reduced relative to intraspecific interactions, facilitating species coexistence. We predicted that the reduction of the level of interspecific aggregation in relation to the level of intraspecific aggregation would be positively correlated with total flea abundance and species richness of flea assemblages. We also expected that the higher degree of facilitation of flea coexistence would be affected by host parameters such as body mass, basal metabolic rate (BMR) and depth and complexity of burrows. Results of this study supported the aggregation model of coexistence and demonstrated that, in general, a) conspecific fleas were aggregated across their hosts; b) flea assemblages were not dominated by negative interspecific interactions; and c) the level of interspecific aggregation in flea assemblages was reduced in relation to the level of intraspecific aggregation. Intraspecific aggregation tended to be correlated positively to body mass, burrow complexity and mass-independent BMR of a host. Positive interspecific associations of fleas tended to occur more frequently in species-rich flea assemblages and/or in larger hosts possessing deep complex burrows. Intraspecific aggregation increased relative to interspecific aggregation when species richness of flea infracommunities (the flea assemblage of a host individual) and component communities increased. We conclude that the pattern of flea coexistence is related both to the structure of flea communities and affinities of host species.  相似文献   

2.
The use of measures of host infestation as a reliable indicator of a flea population size to be used in interspecific comparisons was considered. The abundance of fleas collected from host bodies and collected from host burrows was compared among 55 flea species, controlling for the effect of flea phylogeny. The mean number of fleas on host bodies correlated positively with the mean number of fleas in host burrows/nests both when the entire data pool was analysed and for separate subsets of data on 'fur' fleas and 'nest' fleas. This was also true for a within-host (Microtus californicus) between-flea comparison. The results of this study demonstrate that, in general, the index of host body infestation by fleas can be used reliably as an indicator of the entire population size.  相似文献   

3.
Nested pattern in flea assemblages across the host's geographic range   总被引:1,自引:0,他引:1  
Understanding non-random patterns in the taxonomic composition of communities occurring in insular or fragmented habitats remains a major goal of ecology. Nested subset patterns are one possible departure from random community assembly that has been reported for communities of both free-living and parasitic animals. Here, we investigate the effects of extrinsic factors on the occurrence of nestedness among the assemblages of fleas found in different populations of the same host species, using data on 25 mammalian host species. The patterns of flea species composition among host populations spanned the entire spectrum from significantly nested to significantly anti-nested. After controlling for host phylogeny, we found that across host species, the tendency for flea assemblages to approach nestedness increased with increasing host geographic range size and with decreasing latitude of the host's geographic range. This tendency also decreased with an increase in a composite variable combining data on mean January and July temperature. The number of closely-related mammalian species living in sympatry with a given host species had no influence on whether or not the structure of flea assemblages among its populations departed from randomness. We propose explanations for these results that include: the possible gradual loss of flea species as a host expands its range from its initial area of origin, the lack of specific flea faunas in narrowly-distributed host species, interspecific differences in the dispersal abilities of flea species becoming amplified in hosts with broad geographical ranges, and the effect of latitude, climate and environment on the probabilities of host-switching and extinction in fleas. Overall, our results suggest that the structure of flea assemblages in mammalian hosts may be driven by features of host biology.  相似文献   

4.
The strength of interspecific interactions varies over geographical scales, and can influence patterns of resource specialisation. Even with gene flow preventing local adaptation of a consumer to particular resources, we might expect that across its entire range, the consumer would show some specialisation for the resource types most likely to be encountered across the localities where it occurs. We tested the hypothesis that generalist fleas are more successful at exploiting small mammalian host species with which they co-occur frequently across their geographical range than host species that, though suitable, are encountered less frequently. This hypothesis was tested with data on 121 flea species compiled from field surveys across 35 regions of the Palaearctic. Using abundance (mean number of individual fleas per individual host) as a measure of flea success on a particular host species, positive correlations between flea abundance and the frequency of co-occurrence of a flea with each of its hosts amongst all regions surveyed were found in all but two of the flea species investigated, with one-fifth of these being significant. If overlap in geographical range between flea and host is used as a measure of frequency of encounters instead of the actual proportion of regions where they both occur, similar patterns are observed, though they are much weaker. In a comparative analysis across all flea species, there were significant relationships between the average abundance of fleas and average values of both measures of frequency of encounters (proportion of sites where they co-occur and range overlap), even when correcting for potential phylogenetic influences. The results suggest that for any given flea species, host species more commonly encountered throughout the spatial range of the flea are generally those on which the flea does best. Interaction frequency may be a key determinant of specialisation and abundance in host-parasite systems.  相似文献   

5.
Behavioral, genetic, and immune variation within a host population may lead to aggregation of parasites whereby a small proportion of hosts harbor a majority of parasites. In situations where two or more parasite species infect the same host population there is the potential for interaction among parasites that could potentially influence patterns of aggregation through either competition or facilitation. We studied the occurrence and abundance patterns of two congeneric flea species on black-tailed prairie dog (Cynomys ludovicianus) hosts to test for interactions among parasite species. We live-trapped prairie dogs on ten sites in Boulder County, CO and collected their fleas. We found a non-random, positive association between the two flea species, Oropsylla hirsuta and O. tuberculata cynomuris; hosts with high loads of one flea species had high loads of the second species. This result suggests that there is no interspecific competition among fleas on prairie dog hosts. Host weight had a weak negative relationship to flea load and host sex did not influence flea load, though there were slight differences in flea prevalence and abundance between male and female C. ludovicianus. While genetic and behavioral variation among hosts may predispose certain individuals to infection, our results indicate apparent facilitation among flea species that may result from immune suppression or other flea-mediated factors.  相似文献   

6.
Host identity, habitat type, season, and interspecific interactions were investigated as determinants of the community structure of fleas on wild carnivores in northwestern Mexico. A total of 540 fleas belonging to seven species was collected from 64 wild carnivores belonging to eight species. We found that the abundances of some flea species are explained by season and host identity. Pulex irritans and Echidnophaga gallinacea abundances were significantly higher in spring than in fall season. Flea communities on carnivore hosts revealed three clusters with a high degree of similarity within each group that was explained by the flea dominance of E. gallinacea, P. simulans, and P. irritans across host identity. Flea abundances did not differ statistically among habitat types. Finally, we found a negative correlation between the abundances of three flea species within wild carnivore hosts. Individual hosts with high loads of P. simulans males usually had significantly lower loads of P. irritans males or tend to have lower loads of E. gallinacea fleas and vice‐versa. Additionally, the logistic regression model showed that the presence of P. simulans males is more likely to occur in wild carnivore hosts in which P. irritans males are absent and vice‐versa. These results suggest that there is an apparent competitive exclusion among fleas on wild carnivores. The study of flea community structure on wild carnivores is important to identify the potential flea vectors for infectious diseases and provide information needed to design programs for human health and wildlife conservation.  相似文献   

7.
This study set out to determine whether the sex ratio of fleas collected from host bodies is a reliable indicator of sex ratio in the entire flea population. To answer this question, previously published data on 18 flea species was used and it was tested to see whether a correlation exists between the sex ratio of fleas collected from host bodies and the sex ratio of fleas collected from host burrows. Across species, the female:male ratio of fleas on hosts correlated strongly with the female:male ratio of fleas in their burrows, with the slope of the regression overlapping 1. Controlling for flea phylogeny by independent contrasts produced similar results. It was also ascertained whether a host individual is a proportional random sampler of male and female fleas and whether the sex ratio in flea infrapopulations depends on the size of infrapopulations and on the gender and age of a host. Using field data, the sex ratio in infrapopulations of 7 flea species parasitic on 4 rodent species was analysed. Populations of 3 species (Nosopsyllus iranus, Parapulex chephrenis and Xenopsylla conformis) were significantly female-biased, whereas male bias was found in 1 species (Synosternus cleopatrae). In general, the sex ratio of fleas collected from an individual rodent did not differ significantly from the sex ratio in the entire flea population. Neither host gender, and age nor number of fleas co-occurring on a host affected (a) the sex ratio in flea infrapopulations and (b) the probability of an infrapopulation to be either female- or male-biased.  相似文献   

8.
We asked if and how feeding performance of fleas on an auxiliary host is affected by the phylogenetic distance between this host and the principal host of a flea. We investigated the feeding of 2 flea species, Parapulex chephrenis and Xenopsylla ramesis, on a principal (Acomys cahirinus and Meriones crassus, respectively) and 8 auxiliary host species. We predicted that fleas would perform better (higher proportion of fleas would feed and take larger bloodmeals) on (a) a principal rather than an auxiliary host and (b) auxiliary hosts phylogenetically closer to a principal host. Although feeding performance of fleas differed among different hosts, we found that: (1) fleas did not always perform better on a principal host than on an auxiliary host; and (2) flea performance on an auxiliary host was not negatively correlated with phylogenetic distance of this host from the principal host. In some cases, fleas fed better on hosts that were phylogenetically distant from their principal host. We concluded that variation in flea feeding performance among host species results from interplay between (a) inherent species-specific host defence abilities, (b) inherent species-specific flea abilities to withstand host defences and (c) evolutionary tightness of association between a particular host species and a particular flea species.  相似文献   

9.
Aim We determined whether dissimilarity in species composition between parasite communities depends on geographic distance, environmental dissimilarity or host faunal dissimilarity, for different subsets of parasite species with different levels of host specificity. Location Communities of fleas parasitic on small mammals from 28 different regions of the Palaearctic. Method Dissimilarities in both parasite and host species composition were computed between each pair of regions using the Bray–Curtis index. Geographic distances between regions were also calculated, as were measures of environmental dissimilarity consisting of the pairwise Euclidean distances between regions derived from elevation, vegetation and climatic variables. The 136 flea species included in the dataset were divided into highly host‐specific species (using 1–2 host species per region, on average), moderately host‐specific species (2.2–4 hosts per region) and generalist species (>4 hosts per region). The relative influence of geographic distance, host faunal dissimilarity and environmental dissimilarity on dissimilarity of flea species composition among all regions was analysed for the entire set of flea species as well as for the three above subsets using multiple regressions on distance matrices. Results When including all flea species, dissimilarity in flea species composition was affected by all three independent variables, although the pure effect of dissimilarity in host species composition was the strongest. Results were different when the subsets of fleas differing in host specificity were treated separately. In particular, dissimilarity in species composition of highly host‐specific fleas increased solely with environmental dissimilarity, whereas dissimilarity for both moderately specific and non‐specific fleas increased with both geographic distance and dissimilarity in host species composition. Main conclusions Host specificity seems to dictate which of the three factors considered is most likely to affect the dissimilarity between flea communities. Counter‐intuitively, environmental dissimilarity played a key role in determining dissimilarity in species composition of highly host‐specific fleas, possibly because, although their presence in a region relies on the occurrence of particular host species, their abundance is itself mostly determined by climatic conditions. Our results show that deconstructing communities into subsets of species with different traits can make it easier to uncover the mechanisms shaping geographic patterns of diversity.  相似文献   

10.
Host specificity and geographic range in haematophagous ectoparasites   总被引:1,自引:0,他引:1  
A negative interspecific correlation between the degree of habitat specialization and the size of a species' geographic range has been documented for several free living groups of organisms, providing support for the niche breadth hypothesis. In contrast, practically nothing is known about the geographic range sizes of parasitic organisms and their determinants. In the context of the niche breadth hypothesis, parasites represent ideal study systems, because of the well documented variation in host specificity among parasite species. Here, we investigated the relationship between host specificity (a measure of niche breadth) and geographic range size among flea species parasitic on small mammals, using data from seven distinct geographical regions. Two measures of host specificity were used: the number of host species used by a flea species, and a measure of the average taxonomic distance between the host species used by a flea; the latter index provides an evolutionary perspective on host specificity. After correcting for phylogenetic influences, and using either of our two measures of host specificity, the degree of host specificity of fleas was negatively correlated with the size of their geographic range in all seven regions studied here, with only one minor exception. Overall, these results provide strong support for the niche breadth hypothesis, although other explanations cannot be ruled out.  相似文献   

11.
We investigated the relationship between host defense and specialization by parasites in comparative analyses of bird fleas and T-cell mediated immune response of their avian hosts, showing that fleas with few main host species exploited hosts with weak or strong immune defenses, whereas flea species that parasitized a large number of host species only exploited hosts with weak immune responses. Hosts with strong immune responses were exploited by a larger number of flea species than hosts with weak responses. A path analysis model with an effect of T-cell response on the number of host species, or a model with host coloniality directly affecting host T-cell response, which in turn affected the number of host species used by fleas, best explained the data. Therefore, parasite specialization may have evolved in response to strong host defenses.  相似文献   

12.
Related host species often demonstrate differences in prevalence and/or intensity of infection by particular parasite species, as well as different levels of resistance to those parasites. The mechanisms underlying this interspecific variation in parasitism and resistance expression are not well understood. Surprisingly, few researchers have assessed relations between actual levels of parasitism and resistance to parasites seen in nature across multiple host species. The main goal of this study was to determine whether interspecific variation in resistance against ectoparasitic larval water mites either was predictive of interspecific variation in parasitism for ten closely related species of damselflies (grouped into five “species pairs”), or was predicted by interspecific variation in a commonly used measure of innate immunity (total Phenoloxidase or potential PO activity). Two of five species pairs had interspecific differences in proportions of individuals resisting larval Arrenurus water mites, only one of five species pairs had species differences in prevalence of larval Arrenurus water mites, and another two of five species pairs showed species differences in mean PO activity. Within the two species pairs where species differed in proportion of individuals resisting mites the species with the higher proportion did not have correspondingly higher PO activity levels. Furthermore, the proportion of individuals resisting mites mirrored prevalence of parasitism in only one species pair. There was no interspecific variation in median intensity of mite infestation within any species pair. We conclude that a species’ relative ability to resist particular parasites does not explain interspecific variation in parasitism within species pairs and that neither resistance nor parasitism is reflected by interspecific variation in total PO or potential PO activity.  相似文献   

13.
Animal species with larger local populations tend to be widespread across many localities, whereas species with smaller local populations occur in fewer localities. This pattern is well documented for free-living species and can be explained by the resource breadth hypothesis: the attributes that enable a species to exploit a diversity of resources allow it to attain a broad distribution and high local density. In contrast, for parasitic organisms, the trade-off hypothesis predicts that parasites exploiting many host species will achieve lower mean abundance on those hosts than more host-specific parasites because of the costs of adaptations against multiple defense systems. We test these alternative hypotheses with data on host specificity and abundance of fleas parasitic on small mammals from 20 different regions. Our analyses controlled for phylogenetic influences, differences in host body surface area, and sampling effort. In most regions, we found significant positive relationships between flea abundance and either the number of host species they exploited or the average taxonomic distance among those host species. This was true whether we used mean flea abundance or the maximum abundance they achieved on their optimal host. Although fleas tended to exploit more host species in regions with either larger number of available hosts or more taxonomically diverse host faunas, differences in host faunas between regions had no clear effect on the abundance-host specificity relationship. Overall, the results support the resource breadth hypothesis: fleas exploiting many host species or taxonomically unrelated hosts achieve higher abundance than specialist fleas. We conclude that generalist parasites achieve higher abundance because of a combination of resource availability and stability.  相似文献   

14.
We used data on the abundance and distribution of fleas parasitic on small mammals in Slovakia and aimed: (i) to confirm a positive relationship between abundance and distribution fleas within and across host species; and (ii) to test if prevalence of fleas can be reliably predicted from a simple epidemiological model that takes into account flea mean abundance and its variance. Prevalence of a flea species increased with an increase in its mean abundance both within and across host species. We calculated prevalences both for each flea-host association and for each flea species across all hosts. Observed prevalences did not differ significantly from those predicted by the epidemiological model using parameters of Taylor's power relationship between mean abundance of fleas and its variance. Regressions of predicted prevalences against observed prevalences produced slope values that did not differ significantly from unity and were independent of scale (within or across host species). Our results demonstrated that up to 96% of variance in flea prevalence can be explained solely by their mean abundance. We concluded that, in general, there is no need to invoke other, more complex factors for the explanation of the variation in flea prevalence.  相似文献   

15.
马立名 《昆虫学报》1994,37(1):44-50
本文对二齿新蚤和方形黄鼠蚤松江亚种侵袭与离开宿主的习性进行了实验研究,结果:(1)蚤攻击宿主距离平均在2cm以内,最大攻击距离不超过10cm。在有效侵袭范围内,蚤与宿主距离近时较距离远时吸血蚤数增多。(2)蚤对宿主的侵袭程度雌蚤大于雄蚤,繁殖蚤大于新羽化蚤,二齿新蚤大于方形黄鼠蚤松江亚种,对小白鼠大于对达乌尔黄鼠。(3)宿主死后一定时间内,仍有部份蚤侵袭其尸体。 死亡时间越长侵袭蚤数越少,呈logY=a-blogX型曲线。(4)蚤离开宿主时间呈偏态分布,温度越高偏态分布越明显。蚤离开死鼠和离开活鼠所需时间很接近。 二齿新蚤和方形黄鼠蚤松江亚种离开宿主时间几乎相同。二种蚤离开宿主平均时间与环境温度呈负相关,且呈曲线关系。  相似文献   

16.
Comparative ecology uses interspecific relationships among traits, while accounting for the phylogenetic non-independence of species, to uncover general evolutionary processes. Applied to biogeographic questions, it can be a powerful tool to explain the spatial distribution of organisms. Here, we review how comparative methods can elucidate biogeographic patterns and processes, using analyses of distributional data on parasites (fleas and helminths) as case studies. Methods exist to detect phylogenetic signals, i.e. the degree of phylogenetic dependence of a given character, and either to control for these signals in statistical analyses of interspecific data, or to measure their contribution to variance. Parasite–host interactions present a special case, as a given trait may be a parasite trait, a host trait or a property of the coevolved association rather than of one participant only. For some analyses, it is therefore necessary to correct simultaneously for both parasite phylogeny and host phylogeny, or to evaluate which has the greatest influence on trait expression. Using comparative approaches, we show that two fundamental properties of parasites, their niche breadth, i.e. host specificity, and the nature of their life cycle, can explain interspecific and latitudinal variation in the sizes of their geographical ranges, or rates of distance decay in the similarity of parasite communities. These findings illustrate the ways in which phylogenetically based comparative methods can contribute to biogeographic research.  相似文献   

17.
Since obligate avian brood parasites depend completely on the effort of other host species for rearing their progeny, the availability of hosts will be a critical resource for their life history. Circumstantial evidence suggests that intense competition for host species may exist not only within but also between species. So far, however, few studies have demonstrated whether the interspecific competition really occurs in the system of avian brood parasitism and how the nature of brood parasitism is related to their niche evolution. Using the occurrence data of five avian brood parasites from two sources of nationwide bird surveys in South Korea and publically available environmental/climatic data, we identified their distribution patterns and ecological niches, and applied species distribution modeling to infer the effect of interspecific competition on their spatial distribution. We found that the distribution patterns of five avian brood parasites could be characterized by altitude and climatic conditions, but overall their spatial ranges and ecological niches extensively overlapped with each other. We also found that the predicted distribution areas of each species were generally comparable to the realized distribution areas, and the numbers of individuals in areas where multiple species were predicted to coexist showed positive relationships among species. In conclusion, despite following different coevolutionary trajectories to adapt to their respect host species, five species of avian brood parasites breeding in South Korea occupied broadly similar ecological niches, implying that they tend to conserve ancestral preferences for ecological conditions. Furthermore, our results indicated that contrary to expectation interspecific competition for host availability between avian brood parasites seemed to be trivial, and thus, play little role in shaping their spatial distributions and ecological niches. Future studies, including the complete ranges of avian brood parasites and ecological niches of host species, will be worthwhile to further elucidate these issues.  相似文献   

18.
We hypothesized that sexual and interspecific differences in jumping performance of fleas found in our previous study are correlated with differences in resting metabolic rate (RMR) between sexes and among species. To test this hypothesis, we measured RMR of seven flea species (Xenopsylla conformis mycerini, Xenopsylla ramesis, Xenopsylla dipodilli, Parapulex chephrenis, Synosternus cleopatrae pyramidis, Nosopsyllus iranus theodori and Stenoponia tripectinata medialis). We compared RMR between sexes and among species and examined whether there is intra- and interspecific correlation between RMR and jumping ability. Both mass-specific and mass-independent RMR were the highest in female S. t. medialis, whereas mass-specific RMR was the lowest in male X. dipodilli and mass-independent RMR was the lowest in three Xenopsylla species and P. chephrenis. Mass-specific and mass-independent RMR were significantly higher in females than in males in all fleas except S. t. medialis. Differences in jumping ability between males and females were found to be correlated with sexual differences in mass-specific or mass-independent RMR. Interspecific comparison showed that the length of jump in both male and female fleas was strongly affected by their mass-specific and mass-independent RMR.  相似文献   

19.
We investigated the empirical relationship between mean abundance and its variance, known as Taylor’s power law, in fleas parasitic on small mammals. It has been suggested that the exponent of this function, b, represents a true biological character of a species and, dependent on the level of host specificity, varies among species. Other empirical and theoretical studies suggest that exponent b depends on interspecific competition and varies intraspecifically. We tested these hypotheses using data from central and eastern Slovakia. We demonstrate that the slope of Taylor’s relationship (a) is repeatable within a flea species, i.e. the slope represents a true species character; (b) increases with an increase of the degree of flea host specificity; and (c) decreases with an increase in flea community size. We discuss our results with the idea that the host can mediate interactions among and within flea species. Co-ordinating editor: A. Biere  相似文献   

20.
中国云南部分人间鼠疫流行区蚤类区系调查(英文)   总被引:15,自引:0,他引:15  
归纳了中国云南 13个人间鼠疫流行区的调查资料 ,对调查疫区的蚤类区系进行了研究。总计捕获12 0 77只小兽 ,隶属啮齿目、食虫目及攀目 3个目中的 9科、2 9属、4 7种。从小兽体表共采获 9369只蚤 ,经分类鉴定 ,隶属 5科、18属、33种。 33种蚤及 4 7种小兽宿主均按其分类阶元详细列于文末。结果表明 ,山区蚤及小兽宿主的种数明显多于坝区。坝区农耕地的优势种相对简单 ,优势种地位突出 ,黄胸鼠及印鼠客蚤分别是最重要的宿主及蚤种 (构成比分别为 83 2 7%和 75 32 % )。山区的优势种相对较复杂 ,优势种的种类较多 ,但其构成比较低 ( 10 96%~ 4 7 95% )。黄胸鼠及绒鼠为山区地带的两种优势宿主 ,缓慢细蚤、端凹栉眼蚤、印鼠客蚤、偏远古蚤及短突栉眼蚤为山区地带的 5种优势蚤种。多数蚤种可寄生两种以上的小兽宿主 ,但其所寄生的主要宿主并不多。结果提示 ,作为疫区主要媒介的印鼠客蚤及其所对应的主要寄生宿主 (黄胸鼠 )在坝区突出的优势种地位 ,似可解释近年疫区的鼠疫病人主要出现在坝区的原因  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号