首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cold-active phosphoglycerate kinase from the Antarctic bacterium Pseudomonas sp. TACII18 exhibits two distinct stability domains in the free, open conformation. It is shown that these stability domains do not match the structural N- and C-domains as the heat-stable domain corresponds to about 80 residues of the C-domain, including the nucleotide binding site, whereas the remaining of the protein contributes to the main heat-labile domain. This was demonstrated by spectroscopic and microcalorimetric analyses of the native enzyme, of its mutants, and of the isolated recombinant structural domains. It is proposed that the heat-stable domain provides a compact structure improving the binding affinity of the nucleotide, therefore increasing the catalytic efficiency at low temperatures. Upon substrate binding, the enzyme adopts a uniformly more stable closed conformation. Substrate-induced stability changes suggest that the free energy of ligand binding is converted into an increased conformational stability used to drive the hinge-bending motions and domain closure.  相似文献   

2.
The catalytic domain of chitobiase (beta-N-1-4 acetylhexosaminidase) from Serratia marcescens, is an alpha/beta TIM-barrel. This enzyme belongs to family 20 of glycosyl hydrolases in which a conserved amino acid pair, aspartate-glutamate, is present (Asp539-Glu540). It was proposed that catalysis by this enzyme family is carried out by glutamate 540 acting as a proton donor and by the acetamido group of the substrate as a nucleophile. We investigated the role of Asp539 and Glu540 by site-directed mutagenesis, biochemical characterization and by structural analyses of chitobiase -substrate co-crystals. We found that both residues are essential for chitobiase activity. The mutations, however, led to subtle changes in the catalytic site. Our results support the model that Glu540 acts as the proton donor and that Asp539 acts in several different ways. Asp539 restrains the acetamido group of the substrate in a specific orientation by forming a hydrogen bond with N2 of the non-reduced (-1) sugar. In addition, this residue participates in substrate binding. It is also required for the correct positioning of Glu540 and may provide additional negative charge at the active site. Thus, these biochemical and structural studies provide a molecular explanation for the functional importance and conservation of these residues.  相似文献   

3.
Isocitrate lyase (ICL) from Colwellia psychrerythraea, a psychrophilic bacterium, was purified and characterized. The subunit molecular mass was 64 kDa, which is larger than that of other bacterial ICLs. The optimal temperature for its activity was 25 degrees C, the value of K(m) for the substrate ( DL-isocitrate) was minimum at 15 degrees C, and the catalytic efficiency ( k(cat)/ K(m)) value was maximum at 20 degrees C. Furthermore, the enzyme was remarkably thermolabile and completely inactivated by incubation for 2 min at 30 degrees C. These features indicate that ICL from this bacterium is a typical cold-adapted enzyme. A partial amino acid sequence of the C. psychrerythraea ICL was very similar to that of the closely related psychrophile Colwellia maris. Expression of the gene encoding the C. psychrerythraea ICL was found to be induced by low temperatures and by acetate in the medium. The cold adaptation of the catalytic properties of ICL and the stimulated expression of its gene at low temperatures strongly suggest that this enzyme is important for the growth of this bacterium in a cold environment.  相似文献   

4.
Mo D  Wu L  Xu Y  Ren J  Wang L  Huang L  Wu QJ  Bao P  Xie MH  Yin P  Liu BF  Liang Y  Zhang Y 《Biochimie》2011,93(3):533-541
Folding of large structured RNAs into their functional tertiary structures at high temperatures is challenging. Here we show that I-TnaI protein, a small LAGLIDADG homing endonuclease encoded by a group I intron from a hyperthermophilic bacterium, acts as a maturase that is essential for the catalytic activity of this intron at high temperatures and physiological cationic conditions. I-TnaI specifically binds to and induces tertiary packing of the P4-P6 domain of the intron; this RNA-protein complex might serve as a thermostable platform for active folding of the entire intron. Interestingly, the binding affinity of I-TnaI to its cognate intron RNA largely increases with temperature; over 30-fold stronger binding at higher temperatures relative to 37 °C correlates with a switch from an entropy-driven (37 °C) to an enthalpy-driven (55-60 °C) interaction mode. This binding mode may represent a novel strategy how an RNA binding protein can promote the function of its target RNA specifically at high temperatures.  相似文献   

5.
Di-N-acetylchitobiase (chitobiase) is a lysosomal glycosidase involved in the degradation of asparagine-linked glycoproteins. Previous studies have revealed that chitobiase is unique among lysosomal glycosidases in that it may not be expressed universally in mammals. In this study we have isolated full-length cDNA clones for human placenta and rat liver chitobiase. The cDNAs from both species encode a glycosylated polypeptide of approximately 40 kDa that displays chitobiase activity when expressed in COS-1 cells. By using the rat cDNA sequence as a hybridization probe, genomic DNA from several species was analyzed for chitobiase gene sequences. The results from these experiments suggest bovine and dog, two species that are believed to be chitobiase-deficient, maintain the chitobiase gene as part of their genetic load. The first three exons of the bovine chitobiase gene were cloned and found to encode an open reading frame that is 77% identical to both human and rat chitobiase. Northern blotting and amplification of mRNA by the polymerase chain reaction indicate that the chitobiase gene in bovine is functional, however, the level of expression is low. The presence of residual amounts of chitobiase enzyme activity in bovine liver and brain was demonstrated. Congruency of the very low levels of chitobiase enzyme to a similarly low level of chitobiase gene expression in bovine indicates that chitobiase in this species has a minor role in hydrolyzing the reducing end GlcNAc of asparagine-linked glycoproteins within the lysosomes. This is in contrast to a species such as human that express substantial quantities of this glycosidase. Thus, the extreme range of chitobiase gene expression among species explains why either 1 or 2 GlcNAc residues remain intact at the reducing end of stored oligosaccharides when either chitobiase-expressing or chitobiase-deficient species, respectively, suffers from a lysosomal storage disease.  相似文献   

6.
Isocitrate dehydrogenase (IDH) has been studied extensively due to its central role in the Krebs cycle, catalyzing the oxidative NAD(P)(+)-dependent decarboxylation of isocitrate to alpha-ketoglutarate and CO(2). Here, we present the first crystal structure of IDH from a psychrophilic bacterium, Desulfotalea psychrophila (DpIDH). The structural information is combined with a detailed biochemical characterization and a comparative study with IDHs from the mesophilic bacterium Desulfitobacterium hafniense (DhIDH), porcine (PcIDH), human cytosolic (HcIDH) and the hyperthermophilic Thermotoga maritima (TmIDH). DpIDH was found to have a higher melting temperature (T(m)=66.9 degrees C) than its mesophilic homologues and a suboptimal catalytic efficiency at low temperatures. The thermodynamic activation parameters indicated a disordered active site, as seen also for the drastic increase in K(m) for isocitrate at elevated temperatures. A methionine cluster situated at the dimeric interface between the two active sites and a cluster of destabilizing charged amino acids in a region close to the active site might explain the poor isocitrate affinity. On the other hand, DpIDH was optimized for interacting with NADP(+) and the crystal structure revealed unique interactions with the cofactor. The highly acidic surface, destabilizing charged residues, fewer ion pairs and reduced size of ionic networks in DpIDH suggest a flexible global structure. However, strategic placement of ionic interactions stabilizing the N and C termini, and additional ionic interactions in the clasp domain as well as two enlarged aromatic clusters might counteract the destabilizing interactions and promote the increased thermal stability. The structure analysis of DpIDH illustrates how psychrophilic enzymes can adjust their flexibility in dynamic regions during their catalytic cycle without compromising the global stability of the protein.  相似文献   

7.
The xyn1 encoded 5 domain xylanase from the thermophilic bacterium Rhodothermus marinus binds specifically to xylan, β-glucan and amorphous but not crystalline cellulose. Our results show that the binding is mediated by the full length xylanase, but not by the catalytic domain only. Based on similarities concerning both predicted secondary structure and binding specificity found with one cellulose binding domain of CenC from Cellulomonas fimi, we suggest that the binding is mediated by the two N-terminally repeated domains.  相似文献   

8.
9.
Wang L  Lin M 《Journal of bacteriology》2007,189(5):2046-2054
We identified and biochemically characterized a novel surface-localized autolysin from Listeria monocytogenes serotype 4b, an 86-kDa protein consisting of 774 amino acids and known from our previous studies as the target (designated IspC) of the humoral immune response to listerial infection. Recombinant IspC, expressed in Escherichia coli, was purified and used to raise specific rabbit polyclonal antibodies for protein characterization. The native IspC was detected in all growth phases at a relatively stable low level during a 22-h in vitro culture, although its gene was transiently transcribed only in the early exponential growth phase. This and our previous findings suggest that IspC is upregulated in vivo during infection. The protein was unevenly distributed in clusters on the cell surface, as shown by immunofluorescence and immunogold electron microscopy. The recombinant IspC was capable of hydrolyzing not only the cell walls of the gram-positive bacterium Micrococcus lysodeikticus and the gram-negative bacterium E. coli but also that of the IspC-producing strain of L. monocytogenes serotype 4b, indicating that it was an autolysin. The IspC autolysin exhibited peptidoglycan hydrolase activity over a broad pH range of between 3 and 9, with a pH optimum of 7.5 to 9. Analysis of various truncated forms of IspC for cell wall-hydrolyzing or -binding activity has defined two separate functional domains: the N-terminal catalytic domain (amino acids [aa] 1 to 197) responsible for the hydrolytic activity and the C-terminal domain (aa 198 to 774) made up of seven GW modules responsible for anchoring the protein to the cell wall. In contrast to the full-length IspC, the N-terminal catalytic domain showed hydrolytic activity at acidic pHs, with a pH optimum of between 4 and 6 and negligible activity at alkaline pHs. This suggests that the cell wall binding domain may be of importance in modulating the activity of the N-terminal hydrolase domain. Elucidation of the biochemical properties of IspC may have provided new insights into its biological function(s) and its role in pathogenesis.  相似文献   

10.
The late steps of both 16S and 5S ribosomal RNA maturation in the Gram-positive bacterium Bacillus subtilis have been shown to be catalysed by ribonucleases that are not present in the Gram-negative paradigm, Escherichia coli. Here we present evidence that final maturation of the 5' and 3' extremities of B. subtilis 23S rRNA is also performed by an enzyme that is absent from the Proteobacteria. Mini-III contains an RNase III-like catalytic domain, but curiously lacks the double-stranded RNA binding domain typical of RNase III itself, Dicer, Drosha and other well-known members of this family of enzymes. Cells lacking Mini-III accumulate precursors and alternatively matured forms of 23S rRNA. We show that Mini-III functions much more efficiently on precursor 50S ribosomal subunits than naked pre-23S rRNA in vitro, suggesting that maturation occurs primarily on assembled subunits in vivo. Lastly, we provide a model for how Mini-III recognizes and cleaves double-stranded RNA, despite lacking three of the four RNA binding motifs of RNase III.  相似文献   

11.
The three-dimensional structure of the chitin-binding domain (ChBD) of chitinase A1 (ChiA1) from a Gram-positive bacterium, Bacillus circulans WL-12, was determined by means of multidimensional heteronuclear NMR methods. ChiA1 is a glycosidase that hydrolyzes chitin and is composed of an N-terminal catalytic domain, two fibronectin type III-like domains, and C-terminal ChBD(ChiA1) (45 residues, Ala(655)-Gln(699)), which binds specifically to insoluble chitin. ChBD(ChiA1) has a compact and globular structure with the topology of a twisted beta-sandwich. This domain contains two antiparallel beta-sheets, one composed of three strands and the other of two strands. The core region formed by the hydrophobic and aromatic residues makes the overall structure rigid and compact. The overall topology of ChBD(ChiA1) is similar to that of the cellulose-binding domain (CBD) of Erwinia chrysanthemi endoglucanase Z (CBD(EGZ)). However, ChBD(ChiA1) lacks the three aromatic residues aligned linearly and exposed to the solvent, which probably interact with cellulose in CBDs. Therefore, the binding mechanism of a group of ChBDs including ChBD(ChiA1) may be different from that proposed for CBDs.  相似文献   

12.
The thermophilic marine bacterium Rhodothermus marinus produces a modular family 10 xylanase (Xyn10A). It consists of two N-terminal family 4 carbohydrate binding modules (CBMs) followed by a domain of unknown function (D3), and a catalytic module (CM) flanked by a small fifth domain (D5) at its C-terminus. Several truncated mutants of the enzyme have been produced and characterised with respect to biochemical properties and stability. Multiple calcium binding sites are shown to be present in the two N-terminal CBMs and recent evidence suggests that the third domain of the enzyme also has the ability to bind the same metal ligand. The specific binding of Ca2+ was demonstrated to have a pronounced effect on thermostability as shown by differential scanning calorimetry and thermal inactivation studies. Furthermore, deletion mutants of the enzyme were less stable than the full-length enzyme suggesting that module interactions contributed to the stability of the enzyme. Finally, recent evidence indicates that the fifth domain of Xyn10A is a novel type of module mediating cell-attachment.  相似文献   

13.
The irreversible binding of bacteriophages to their receptor(s) in the host cell surface triggers release of the naked genome from the virion followed by transit of viral DNA to the host cell cytoplasm. We have purified, for the first time, a receptor from a Gram-positive bacterium that is active to trigger viral DNA ejection in vitro. This extracellular region ("ectodomain") of the Bacillus subtilis protein YueB (YueB780) was a 7 S elongated dimer forming a 36.5-nm-long fiber. YueB780 bound to the tail tip of bacteriophage SPP1. Although a stable receptor-phage interaction occurred between 0 and 37 degrees C, complete blocking of phage DNA release or partial ejection events were observed at temperatures below 15 degrees C. We also showed that the receptor was exposed to the B. subtilis surface. YueB differed structurally from phage receptors from Gram-negative bacteria. Its properties revealed a fiber spanning the full length of the 30-nm-thick peptidoglycan layer. The fiber is predicted to be anchored in the cell membrane through transmembrane segments. These features, highly suitable for a virus receptor in Gram-positive bacteria, are very likely shared by a large number of phage receptors.  相似文献   

14.
In this study, 200 ps molecular dynamics simulations were conducted to investigate the unfolding mechanism of the catalytic domain of glucoamylase from Aspergillus awamori var. X100. The unfolding of this domain was suggested to follow a putative hierarchical manner, in which the heavily O-glycosylated belt region from residues T440 to A471 acted as the initiation site, followed by the alpha-helix secondary structure destruction, and then the collapse of the catalytic center pocket. The O-glycosylated belt region surrounded the surface of the catalytic domain in its native state at low temperature, whereas it was extended and is more suitable to be classified as part of the subsequent linker domain at high temperatures due to its high flexibility. The inner set helices of the (alpha/alpha)(6)-barrel seemed to exhibit higher helical content than the outer set ones at all temperatures examined. The distances between the C(alpha) of the three Cys residue pairs fluctuated rapidly at higher temperatures, indicating that these disulfide bonds have little effect on the structural stabilization. The melting temperature, at which the residual total helicity of the catalytic domain is 50%, is much lower than the critical temperature, at which the catalytic center pocket has lost its structural integrity.  相似文献   

15.
16.
The thermophilic marine bacterium Rhodothermus marinus produces a modular family 10 xylanase (Xyn10A). It consists of two N-terminal family 4 carbohydrate binding modules (CBMs) followed by a domain of unknown function (D3), and a catalytic module (CM) flanked by a small fifth domain (D5) at its C-terminus. Several truncated mutants of the enzyme have been produced and characterised with respect to biochemical properties and stability. Multiple calcium binding sites are shown to be present in the two N-terminal CBMs and recent evidence suggests that the third domain of the enzyme also has the ability to bind the same metal ligand. The specific binding of Ca2+ was demonstrated to have a pronounced effect on thermostability as shown by differential scanning calorimetry and thermal inactivation studies. Furthermore, deletion mutants of the enzyme were less stable than the full-length enzyme suggesting that module interactions contributed to the stability of the enzyme. Finally, recent evidence indicates that the fifth domain of Xyn10A is a novel type of module mediating cell-attachment.  相似文献   

17.
PrsA is a peptidyl-prolyl isomerase (PPIase) from Bacillus subtilis belonging to the parvulin family of PPIases. It is a membrane bound lipoprotein at the membrane-wall interface, involved in folding of exported proteins. We present the NMR solution structure of the PPIase domain of PrsA, the first from a Gram-positive bacterium. In addition we mapped out the active site with NMR titration experiments. A high degree of conservation with other members of the parvulin family was revealed in the structure and binding site. Interactions with substrate peptides were also characterized by mutated domains revealing that H122 is indispensable for overall correct folding.  相似文献   

18.
Aspartate-beta-semialdehyde dehydrogenase (ASADH) catalyzes a critical branch point transformation in amino acid bio-synthesis. The products of the aspartate pathway are essential in microorganisms, and this entire pathway is absent in mammals, making this enzyme an attractive target for antibiotic development. The first structure of an ASADH from a Gram-positive bacterium, Streptococcus pneumoniae, has now been determined. The overall structure of the apoenzyme has a similar fold to those of the Gram-negative and archaeal ASADHs but contains some interesting structural variations that can be exploited for inhibitor design. Binding of the coenzyme NADP, as well as a truncated nucleotide analogue, into an alternative conformation from that observed in Gram-negative ASADHs causes an enzyme domain closure that precedes catalysis. The covalent acyl-enzyme intermediate was trapped by soaking the substrate into crystals of the coenzyme complex, and the structure of this elusive intermediate provides detailed insights into the catalytic mechanism.  相似文献   

19.
As an important facet of host-pathogen interaction, Staphylococcus aureus has the ability to adhere to human extracellular matrix (ECM) components via a range of surface proteins. Here we have shown that IsdA has broad-spectrum ligand-binding activity, including fibrinogen and fibronectin. Mapping studies revealed a distinct domain responsible for ligand binding. This domain is present in a number of iron-regulated proteins of S. aureus and in other Gram-positive organisms. The isdA gene is only expressed in iron-limited conditions under the control of Fur and not in standard laboratory media. Such conditions occur in serum in vitro and during infection. Whole cell binding and clumping assays revealed that when the bacteria are grown under iron-limited conditions, IsdA constitutes a physiologically relevant adhesin to both fibrinogen and fibronectin. Thus for S. aureus, iron is an important marker for the host environment, to which the bacterium responds by differential regulation of at least one element of its adhesive strategy.  相似文献   

20.
In thermophilic bacteria, specific 2‐thiolation occurs on the conserved ribothymidine at position 54 (T54) in tRNAs, which is necessary for survival at high temperatures. T54 2‐thiolation is achieved by the tRNA thiouridine synthetase TtuA and sulfur‐carrier proteins. TtuA has five conserved CXXC/H motifs and the signature PP motif, and belongs to the TtcA family of tRNA 2‐thiolation enzymes, for which there is currently no structural information. In this study, we determined the crystal structure of a TtuA homolog from the hyperthermophilic archeon Pyrococcus horikoshii at 2.1 Å resolution. The P. horikoshii TtuA forms a homodimer, and each subunit contains a catalytic domain and unique N‐ and C‐terminal zinc fingers. The catalytic domain has much higher structural similarity to that of another tRNA modification enzyme, TilS (tRNAIle2 lysidine synthetase), than to the other type of tRNA 2‐thiolation enzyme, MnmA. Three conserved cysteine residues are clustered in the putative catalytic site, which is not present in TilS. An in vivo mutational analysis in the bacterium Thermus thermophilus demonstrated that the three conserved cysteine residues and the putative ATP‐binding residues in the catalytic domain are important for the TtuA activity. A positively charged surface that includes the catalytic site and the two zinc fingers is likely to provide the tRNA‐binding site. Proteins 2013; 81:1232–1244. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号