首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We sought to assess the effect of an increase in cAMP on sodium channels on adult rat cardiac ventricular myocytes. Sodium channels were studied with the use of the radiolabeled sodium channel-specific toxin [3H] batrachotoxinin benzoate ([3H]BTXB). Forskolin, isoproterenol, prostaglandin E1, cholera toxin, and pertussis toxin each increased cAMP levels and decreased the number of [3H]BTXB binding sites without changing the affinity of [3H]BTXB for the sodium channel. The cAMP analog 8-bromo-cyclic AMP (8-Br-cAMP) reduced the number of [3H]BTXB binding sites from 19 fmol/10(5) cells to 11 fmol/10(5) cells. [3H]BTXB binding site down-regulation was reversible, cAMP dose-dependent, and time-dependent. To test the hypothesis that the cAMP effect was mediated by cAMP-dependent phosphorylation, we determined the effect of 8-Br-cAMP on [3H]BTXB binding after preincubation of myocytes with N-(2-(methylamino)ethyl)-5-isoquinolinesulfonamide dihydrochloride (H8), a protein kinase A inhibitor. H8 inhibited 70% of the decrease in the number of [3H]BTXB binding sites induced by 8-Br-cAMP. Thus increases in intracellular cAMP in cardiac myocytes reversibly induced a decrease in the number of [3H]BTXB binding sites via cAMP-dependent protein phosphorylation, possibly of the sodium channel.  相似文献   

2.
The effects of numerous cAMP analogs present in the [3H]cAMP binding reaction on subsequent dissociation of [3H]cAMP from the regulatory subunit of cAMP-dependent protein kinase I and II were analyzed. Certain analogs with modification at either C-8 or C-2 showed relative selectivity for one (site 1) of two intrachain cAMP binding sites of both isozymes. Modification at C-6 caused selectivity for the second site (site 2). The combination of a site-1-directed and site-2-directed analog inhibited [3H]cAMP binding much more than did either analog alone. In general, there was a correlation between the site 1 selectivity and the ability of the analog to stimulate the binding of [3H]cIMP, which selects site 2. The site-1-directed analogs stimulated the initial rate of [3H]cIMP binding. The stimulatory effect was enhanced in the presence of a polycationic protein such as histone and was inhibited by high ionic strength. The type I and II isozymes exhibited large differences in analog specificity for this effect. For type I, of the analogs tested the most efficacious for stimulating [3H]cIMP binding were those containing a nitrogen atom attached to C-8, 8-aminobutylamino-cAMP being the most effective. Type II responded best to analogs containing a sulfur atom attached to C-8, 8-SH-cAMP being the most effective of those tested. The stimulatory effect was accentuated in the presence of MgATP when using type I, but this nucleotide had no effect when using type II. It is proposed that in intact tissues cAMP binding to site 1 of either isozyme stimulates the binding to site 2.  相似文献   

3.
A novel method for rapidly determining the amount and degree of association-dissociation of the Type I and Type II cAMP-dependent protein kinases has been developed and validated. Antibodies directed against the regulatory subunits of Type I and Type II cAMP-dependent protein kinases were used. The antibodies formed complexes with holoenzymes and regulatory subunits which were precipitated by goat anti-rabbit IgG (immunoglobulin G). These complexes bound [3H]cAMP with an apparent Kb of 20 nM for protein kinase I and 80 nM for protein kinase II. Immunoprecipitated protein kinases I and II were catalytically active when incubated with cAMP, [gamma-32P]ATP, and histone H2B. When mixtures of the two kinase isoenzymes or cytosol were incubated with various amounts of [3H]cAMP and the isoenzymes were separated by precipitation with antisera specific for each isoenzyme, the amount of [3H]cAMP associated with immunoprecipitates was proportional to the concentration of [3H]cAMP. In contrast, the catalytic activity that was immunoprecipitated varied inversely with the concentration of [3H]cAMP, showing that the activation of protein kinase could be assessed by the disappearance of catalytic activity from the immunoprecipitates. In the absence of MgATP protein kinase I was activated by a 10-fold lower concentration of cAMP than protein kinase II. However, when MgATP was added to the incubation, there was no significant difference in the binding of [3H]cAMP or dissociation of catalytic subunits of the two isoenzymes. The anti-R antibodies were also used to rapidly quantitate the concentration of regulatory subunits and the relative ratio of protein kinases I and II in tissue cytosols.  相似文献   

4.
cAMP sites of the cAMP-dependent protein kinase from the fungus Mucor rouxii have been characterized through the study of the effects of cAMP and of cAMP analogs on the phosphotransferase activity and through binding kinetics. The tetrameric holoenzyme, which contains two regulatory (R) and two catalytic (C) subunits, exhibited positive cooperativity in activation by cAMP, suggesting multiple cAMP-binding sites. Several other results indicated that the Mucor kinase contained two different cooperative cAMP-binding sites on each R subunit, with properties similar to those of the mammalian cAMP-dependent protein kinase. Under optimum binding conditions, the [3H]cAMP dissociation behavior indicated equal amounts of two components which had dissociation rate constants of 0.09 min-1 (site 1) and 0.90 min-1 (site 2) at 30 degrees C. Two cAMP-binding sites could also be distinguished by C-8 cAMP analogs (site-1-selective) and C-6 cAMP analogs (site-2-selective); combinations of site-1- and site-2-selective analogs were synergistic in protein kinase activation. The two different cooperative binding sites were probably located on the same R subunit, since the proteolytically derived dimeric form of the enzyme, which contained one R and one C component, retained the salient properties of the untreated tetrameric enzyme. Unlike any of the mammalian cyclic-nucleotide-dependent isozymes described thus far, the Mucor kinase was much more potently activated by C-6 cAMP analogs than by C-8 cAMP analogs. In the ternary complex formed by the native Mucor tetramer and cAMP, only the two sites 1 contained bound cAMP, a feature which has also not yet been demonstrated for the mammalian cAMP-dependent protein kinase.  相似文献   

5.
Pyruvatekinase (PK) isoenzymes were isolated by means of (NH4)2SO4 fractionation (20-45% and 50-70% of saturation) and DEAE-cellulose chromatography. Two peaks of PK activity (I and II) were discovered under chromatography of 20-45% saturation precipitate, and one peak (I-A)-under chromatography of 50-70% saturation precipitate. PK-II in its properties (two-peaks kinetics for phosphoenolpyruvate (PEP), the resistance to effectors) is like L-type PK, which has lost its allosteric properties in the process of long-term isolation at low temperatures. PK-I and PK-I-A have S-form kinetics for PEP. They are inhibited by L-alanine and phenylalanine, and they probably are variants of the initial K(M2) type.  相似文献   

6.
Derivatives of adenosine 3',5'-cyclic phosphate (cAMP) with modifications in both the 2' and the 8 positions were synthesized and their enzymic activities as activators of cAMP-dependent protein kinase and as substrates for and inhibitors of cAMP phosphodiesterases were determined. Three types of derivatives were investigated: 8-substituted derivatives of O2'-Bt-cAMP, 8-substituted derivatives of 9-beta-D-arabinofuranosyladenine 3',5'-cyclic phosphate (ara-cAMP), and 8-substituted derivatives of 8,2'-anhydro-9-beta-D-arabinofuranosyladenine 3,'5'-cyclic phosphate (8,2'-anhydro-cAMP). The 8-substituted O2'-Bt-cAMP derivatives were synthesized by acylation of the preformed 8-substituted cAMP (8-HS-cAMP, 8-MeS-cAMP, and 8-PhCH2S-cAMP). 8-Br-O2'-tosyl-cAMP was sued as an intermediate for the preparation of 8,2'-anhydro-cAMP derivatives (8-HO-, 8-SH-, 8-H2N-, and 8-H3 CHN derivatives of 8,2'-anhydro-cAMP). 8-Substituted ara-cAMP derivatives were obtained by ring opening of 8-HO-8,2'-anhydro-cAMP with H+/H2O, NH3/MeOH, or MeONa/MeOH (to yield the 8-HO-, 8-H2N-, and 8-MeO-ara-cAMP derivatives). All of these doubly modified derivatives of cAMP are less than one-hundredth as active as cAMP at activating protein kinase and did not serve as substrates for the phosphodiesterase. These data show that the general inactivity of 2' derivatives of cAMP with kinase was not overcome by addition of an 8-substituent, even though many 8-substituted derivatives of cAMP activate the kinase more efficiently than does cAMP itself. In addition they show that while 2'-modification were tolerated by the phosphodiesterase, addition of an 8-substituent countermanded the allowable 2'-modification. The 8-substituted derivates of 02'-Bt-cAMP were found in general to be slightly better inhibitors of phosphodiesterase than the parent compounds containing no o2'-Bt substitution. As a group, the 8-substituted ara-cAMP derivatives were poorer inhibitors of phosphodiesterase than 8-substituted cAMP derivatives while the 8,2'-anhydro-cAMP derivatives were much poorer inhibitors than the 8-substituted ara-cAMP derivatives.  相似文献   

7.
3',5'-Cyclic adenosine monophosphate (cAMP) modulates prostaglandin production in human amnion membranes. The major effects of cAMP are presumably mediated through the phosphorylation of specific regulatory phosphoproteins following cAMP activation of cAMP-dependent protein kinase. Cyclic AMP-dependent protein kinase and phosphoproteins have not previously been characterized in human amnion. Total homogenates, cytosol, and membrane fractions from human amnion were examined for [3H]cAMP binding activity and cAMP-dependent kinase activity. cAMP-dependent kinase activity was barely detectable in crude amnion fractions. Cytosol was therefore partially purified by DEAE column chromatography for further examination. Two peaks of coincident [3H]cAMP binding and cAMP-dependent kinase activity were demonstrated at 70 and 140 mM NaCl, characteristic of the Type I and Type II cAMP-dependent protein kinase isozymes. [3H]cAMP binding to the material from both peak fractions was saturable and reversible. Scatchard analysis of [3H]cAMP binding to the peak fractions was linear for peak I and curvilinear for peak II. Assuming a one-site model, [3H]cAMP binding to the Type I isozyme showed a KD = 4.17 x 10(-8) M and Bmax = 73 pmole/mg protein; using a two-site model, [3H]cAMP binding to the high-affinity site for the Type II isozyme had a KD = 3.94 x 10(-8) M and Bmax = 6.3 pmole/mg protein. Other cyclic nucleotides competed for these [3H]cAMP binding sites with a potency order of cAMP much greater than cGMP greater than (BU)2cAMP.cAMP caused a dose-dependent increase in cAMP-dependent kinase activity in the peak fractions; half-maximal activation was observed with 5.0 x 10(-8) M cAMP. The ability of cAMP to increase phosphorylation of endogenous proteins in both crude amnion cytosol and cytosol from cultures of amnion epithelial cells was assessed using [32P]ATP, SDS-polyacrylamide gel electrophoresis and autoradiography. cAMP stimulated 32P incorporation into three proteins having Mr = 80,000, 54,000, and 43,000 (P less than .01). Half-maximal 32P incorporation into these proteins occurred at 1.0 x 10(-7) M cAMP. cAMP-dependent kinase is present in human amnion; specific cAMP-enhanced phosphoproteins are also present. Hormones elevating cAMP levels in amnion may exert their effects by activating cAMP-dependent kinase and phosphorylating these phosphoproteins.  相似文献   

8.
Cyclic AMP has long been proposed to be the intracellular second messenger that conveys the inhibitory signal for T-cell activation and clonal T-cell proliferation. The present study further explores the mechanism by which the cAMP pathway regulates human T-lymphocyte interleukin-2 (IL-2) production and T-cell blastogenesis. Activation of adenylate cyclase, inhibition of cAMP-dependent phosphodiesterase, or the direct addition of the cell-permeable cAMP analog, 8-N3-cAMP, increased occupancy of intracellular cAMP receptors, inhibited IL-2 production, and reduced T-cell proliferation. However, inhibition of cAMP-dependent protein phosphorylation by N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide (H-8), a cell-permeable inhibitor of cyclic nucleotide-dependent protein kinase, partially restored IL-2 production. Our data support the conclusion that the cAMP pathway conveys an inhibitory signal for IL-2 production and T-cell proliferation via an integral protein phosphorylation step.  相似文献   

9.
Little is known about the relative role of cAMP-dependent protein kinase (cAPK) and guanine exchange factor directly activated by cAMP (Epac) as mediators of cAMP action. We tested cAMP analogs for ability to selectively activate Epac1 or cAPK and discriminate between the binding sites of Epac and of cAPKI and cAPKII. We found that commonly used cAMP analogs, like 8-Br-cAMP and 8-pCPT-cAMP, activate Epac and cAPK equally as well as cAMP, i.e. were full agonists. In contrast, 6-modified cAMP analogs, like N6-benzoyl-cAMP, were inefficient Epac activators and full cAPK activators. Analogs modified in the 2'-position of the ribose induced stronger Epac1 activation than cAMP but were only partial agonists for cAPK. 2'-O-Alkyl substitution of cAMP improved Epac/cAPK binding selectivity 10-100-fold. Phenylthio substituents in position 8, particularly with MeO- or Cl- in p-position, enhanced the Epac/cAPK selectivity even more. The combination of 8-pCPT- and 2'-O-methyl substitutions improved the Epac/cAPK binding selectivity about three orders of magnitude. The cAPK selectivity of 6-substituted cAMP analogs, the preferential inhibition of cAPK by moderate concentrations of Rp-cAMPS analogs, and the Epac selectivity of 8-pCPT-2'-O-methyl-cAMP was also demonstrated in intact cells. Using these compounds to selectively modulate Epac and cAPK in PC-12 cells, we observed that analogs selectively activating Epac synergized strongly with cAPK specific analogs to induce neurite outgrowth. We therefore conclude that cAMP-induced neurite outgrowth is mediated by both Epac and cAPK.  相似文献   

10.
Agents that elevated intracellular cyclic adenosine 3',5'-monophosphate (cAMP) caused a 3- to 10-fold increase in the luteinizing hormone (LH) receptor level and in progesterone biosynthesis in primary cultures of pig ovarian granulosa cells. Associated with these effects was a 2- to 4-fold increase in the total activity of the catalytic subunit of cAMP-dependent protein kinase in the tissue. From quantitation by [3H]cAMP binding and changes in the specific labeling with the photoaffinity analog [32P]-8-azido-cAMP, these agents were found to cause a concomitant 5- to 15-fold increase in two isoforms of the type II R-subunit (Mr = 54,000 and 56,000) of the protein kinase. Since the two intrasubunit cAMP binding sites of the protein kinase have been found to be positively cooperative, the addition of a combination of an analog selective for site 1 and an analog selective for site 2 causes synergistic increases in protein kinase activation in vitro and synergistic increases in intact cell responses if mediated by the cAMP-dependent protein kinase. In the present study, the addition of such a combination of site 1- and site 2-selective analogs to granulosa cells caused a synergistic increase in LH receptor induction and progesterone production. For both responses, synergism did not occur when two analogs selective for the same site were combined. The results indicated that these responses are mediated by either of the two major isozyme types of cAMP-dependent protein kinase.  相似文献   

11.
The levels of cAMP-dependent protein kinases were measured in developing rat brain by a variety of methods. The regulatory subunit (R) was measured both by [3H]cAMP binding and by 8-N3-[32P]cAMP incorporation. The catalytic subunit (C) was measured by an assay of histone kinase activity. Data were calculated per mg protein. Neither R nor C levels changed significantly in either membranes or cytosol during development. The ratio of R to C was essentially unity in the cerebra of both newborn (2-day-old) and adult (40-day-old) rats. Polyacrylamide-gel electrophoresis resolved two regulatory subunits (R-I) and (R-II) which were derived from the Type I and Type II cAMP-dependent protein kinases, respectively. 8-N3-[32P]cAMP incorporation into Proteins R-I and R-II indicated that the amounts of Proteins R-I and R-II did not change significantly in either membranes or cytosol during development.  相似文献   

12.
A single sulfur substitution for either the axial or the equatorial exocyclic oxygen of adenosine cyclic 3', 5'-phosphate (cAMP) results in diastereometric phosphorothioate analogs of cAMP with agonist versus antagonist properties towards activation of cAMP-dependent protein kinase. Sulfur substitutions for both of the exocyclic oxygens of cAMP results in a dithioate analog of cAMP, adenosine cyclic 3', 5'-phosphorodithioate (cAMPS2), which has antagonist properties. cAMPS2 displaced [3H]cAMP from the binding sites on bovine heart Type II cAMP-dependent protein kinase as demonstrated by equilibrium dialysis experiments with an apparent Kd of 6.3 microM. The addition of 10, 30, or 100 microM cAMPS2 when measuring cAMP-induced activation of pure porcine heart Type II cAMP-dependent protein kinase resulted in a concentration-dependent increase in the amount of cAMP required to produce half-maximal activation (EC50). A plot of the EC50 values as a function of the cAMPS2 concentration resulted in a straight line from which a KI value of 4 microM was derived. cAMPS2 had no significant effect on the degree of cooperativity (n) of cAMP activation of the holoenzyme. These data suggest that the most important structural requirement for the dissociation of the holoenzyme is an equatorial exocyclic oxygen.  相似文献   

13.
The regulatory subunit of type II cAMP-dependent proteinkinase was isolated from cytosol of the rabbit small intestinal mucosa by affinity chromatography. The preparation contained 3 proteolytic enzymes and occurred in two forms differing as regards cAMP affinity. The cAMP-binding capacity of the preparation was equal to 17 nmol cAMP/mg protein. To study the topography of the cAMP-binding center, use was made of cAMP analogs. It was demonstrated that introduction of the substituents into the 8th position of the purine ring and substitution with respect to the N6-exoaminogroup affected insignificantly the analog affinity for the cAMP-binding center. At the same time the substituents introduced into the first position of the adenine base, into the area of the 2'-hydroxyl group of ribose and into the cyclophosphate part of the cAMP molecule considerably decreased the analog affinity for the regulatory center of type II cAMP-dependent proteinkinase.  相似文献   

14.
Cultured pig aortic smooth muscle cells respond to extracellular adenosine by activating adenylate cyclase and by initiating the efflux of cAMP. In the presence of extracellular adenosine, efflux is first order with respect to intracellular cAMP concentration up to at least 125 pmol/10(6) cells. The apparent first-order rate constant for the efflux of cAMP increases in a dose-dependent manner in response to extracellular adenosine or 5-N-ethylcarboxamide adenosine. The EC50 for adenosine for promoting cAMP efflux is 12 microM. For cells stimulated with 5-N-ethylcarboxamide adenosine, the EC50 is 5 microM. When extracellular adenosine is removed, efflux stops abruptly. Cellular cAMP content falls but is still in a range that supports cAMP efflux when agonist is present. Efflux is not affected by H8 (N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride), an inhibitor of cAMP-dependent protein kinase. These data suggest that in pig aortic smooth muscle cells, the efficiency of cAMP efflux is regulated by A2 receptor occupancy.  相似文献   

15.
Two different intrachain cAMP binding sites of cAMP-dependent protein kinases   总被引:15,自引:0,他引:15  
The regulatory subunits of both isozymes of cAMP-dependent protein kinase bind 2 mol of cAMP/mol of monomer. cAMP dissociation studies indicate similar cAMP binding behavior for each isozyme. Each has two different intrachain cAMP binding components present in approximately equal amounts and the rate of cAMP dissociation is 5- to 10-fold slower from one site (Site 1) than from the other (Site 2). Equilibrium [3H]cAMP binding is inhibited by several competing cyclic nucleotides. Following equilibrium binding using saturating [3H]cAMP in the presence of competing nucleotide, the pattern of release of [3H]cAMP, monitored in the presence of an excess of nonradioactive cAMP, suggests site-specific selectivity of some of the cyclic nucleotides. As compared with cAMP, cIMP prefers Site 2 for both regulatory subunits, whereas N6, O2-dibutyryl-cAMP shows a similar preference only with isozyme II regulatory subunit. 8-Bromo-cAMP, 8-bromo-cGMP, and 8-azido-cAMP prefer Site 1 of both proteins. The results indicate that for each isozyme the two intrachain binding sites have different analogue specificities and cAMP dissociation rates. Site 1 or Site 2 of one isozyme has a similar but not identical cyclic nucleotide specificity and cAMP dissociation rate to the corresponding site of the other isozyme.  相似文献   

16.
Intact S49 mouse lymphoma cells were used as a model system to study the effects of cyclic AMP (cAMP) and its analogs on the phosphorylation of regulatory (R) subunit of type I cAMP-dependent protein kinase. Phosphorylation of R subunit was negligible in mutants deficient in adenylate cyclase; low levels of cAMP analogs, however, stimulated R subunit phosphorylation in these cells to rates comparable to those in wild-type cells. In both wild-type and adenylate cyclase-deficient cells, R subunit phosphorylation was inhibited by a variety of N6-substituted derivatives of cAMP; C-8-substituted derivatives were generally poor inhibitors. Two derivatives that were inactive as kinase activators (N6-carbamoylmethyl-5'-AMP and 2'-deoxy-N6-monobutyryl-cAMP) were also ineffective as inhibitors of R subunit phosphorylation. Preferential inhibition by N6-modified cAMP analogs could not be ascribed simply to selectivity for the more aminoterminal (site I) of the two cAMP-binding sites in R subunit: Analog concentrations required for inhibition of R subunit phosphorylation were always higher than those required for activation of endogenous kinase; 8-piperidino-cAMP, a C-8-substituted derivative that is selective for cAMP-binding site I, was relatively ineffective as in inhibitor; and, although thresholds for activation of endogenous kinase by site I-selective analogs could be reduced markedly by coincubation with low levels of site II-selective analogs, no such synergism was observed for the inhibitory effect. The uncoupling of cyclic nucleotide effects on R subunit phosphorylation from activation of endogenous protein kinase suggests that, in intact cells, activation of cAMP-dependent protein kinase requires more than one and fewer than four molecules of cyclic nucleotide.  相似文献   

17.
A variety of 6- and 8-substituted analogs of cAMP (cyclic adenosine 3:5-monophosphate) have been tested for their ability to increase activity of tyrosine aminotransferase (EC 2.6.1.5) in cultured Reuber H35 hepatoma cells. Some analogs, particularly the 8-thio-substituted ones, produced effects approximately equivalent to those generated by N-6, O2'-dibutyryl cAMP. In contrast, cAMP and its O-2-monobutyryl derivative were relatively ineffective even at very high concentrations, whereas three other analogs actually depressed the activity of the aminotransferase. Changes in enzyme activity generated by the various analogs were paralleled closely by changes in the relative rate of aminotransferase synthesis. An excellent correlation was found to exist between the ability of any given analog to influence the activity of tyrosine aminotransferase and that of phosphoenolpyruvate carboxykinase (EC 4.1.1.32). A similar correlation was found to exist between the ability of various analogs to evelate the activity of these enzymes and to inhibit reversibly the growth of H35 cells. Only one of five inhibitors of cAMP phosphodiesterase activity tested produce any increase in aminotransferase activity when added alone. All of the 6- and 8-substituted analogs tested, including noniducers, stimulated f1 histone phosphorylation in crude rat liver extracts with approximately equal potencies. On the other hand, dibutyryl cAMP was only a weak activator of protein kinase in vitro, even though it is a potent enzyme inducer. A possible resolution of this apparent discrepancy has been provided by preliminary analyses of site-specific f1 histone phosphorylation in whole cells. Only compounds active as aminotransferase inducers are capable of stimulating phosphorylation of the serine-37 residue of endogenous f1 histone (3- to 10-fold).  相似文献   

18.
Using histamine and the H3 receptor antagonist thioperamide, the roles of histamine receptors in NMDA-induced necrosis were investigated in rat cultured cortical neurons. Within 3 h of intense NMDA insult, most neurons died by necrosis. Histamine reversed the neurotoxicity in a concentration-dependent manner and showed peak protection at a concentration of 10(-7) m. This protection was antagonized by the H2 receptor antagonists cimetidine and zolantidine but not by the H1 receptor antagonists pyrilamine and diphenhydramine. In addition, the selective H2 receptor agonist amthamine mimicked the protection by histamine. This action was prevented by cimetidine but not by pyrilamine. 8-Bromo-cAMP also mimicked the effect of histamine. In contrast, both the adenylyl cyclase inhibitor 9-(tetrahydro-2-furanyl)-9H-purine-6-amine and the cAMP-dependent protein kinase inhibitor N-[2-(p-bromocinnamylamino) ethyl]-5-isoquinolinesulfonamide reversed the protection by histamine. Thioperamide also attenuated NMDA-induced excitotoxicity, which was reversed by the H3 receptor agonist (R)-alpha-methylhistamine but not by pyrilamine and cimetidine. In addition, the protection by thioperamide was inhibited by the GABA(A) receptor antagonists picrotoxin and bicuculline. Further study demonstrated that the protection by thioperamide was due to increased GABA release in NMDA-stimulated samples. These results indicate that not only the H2 receptor/cAMP/cAMP-dependent protein kinase pathway but also the H3 receptor/GABA release pathway can attenuate NMDA-induced neurotoxicity.  相似文献   

19.
The photoaffinity reagent 8-azidoadenosine 3':5'-monophosphate (8-N3cAMP) was previously shown to modify a single tyrosine residue on the type II regulatory subunit of cAMP-dependent protein kinase (Kerlavage, A.R., and Taylor, S.S. (1980) J. Biol. Chem, 255, 8483-8488). In the present studies, the binding stoichiometries of type II holoenzyme for cAMP and 8-N3cAMP were determined using Millipore filtration assays in the absence (Assay A) and presence (Assay B) of 2 M NaCl and histone. The binding stoichiometry of holoenzyme for cAMP was 2 mol/mol with Assay A, and 4 mol/mol with assay B. The binding stoichiometry for 8-N3cAMP was 2 mol/mol with Assay B or with Assay A following photolysis of the holoenzyme:8-N3cAMP mixture. In the absence of photolysis, the binding stoichiometry for 8-N3cAMP was 0.4 mol/mol with Assay A. Both 8-N3cAMP and cAMP fully dissociated the holoenzyme. Holoenzyme, labeled with 8-N3[3H]cAMP on a preparative scale, incorporated 1 mol of 8-N3[3H]cAMP/mol of regulatory subunit (RII) monomer. The labeled RII was separated from catalytic subunit, cleaved with cyanogen bromide, and the resultant peptides were separated by high performance liquid chromatography. A single radioactive peptide was observed which had the same NH2 terminal residue and amino acid composition as the peptide obtained when dissociated RII was labeled with 8-N3cAMP.  相似文献   

20.
9-substituted adenine derivatives with protected phosphoryl groups were synthesized and tested as inhibitors of adenylyl cyclase in isolated enzyme and intact cell systems. Protected 3'-phosphoryl derivatives of 2',5'-dideoxyadenosine (2',5'-dd-Ado) and beta-l-2',5'-dd-Ado, protected 5'-phosphoryl derivatives of beta-l-2',3'-dd-Ado, and protected phosphoryl derivatives of two 9-(2-phosphonomethoxy-acyl)-adenines were synthesized. Protection was afforded by two cyclosaligenyl- or three S-acyl-2-thioethyl-substituents. These pro-nucleotides were tested for their capacity to block forskolin-induced increases in [(3)H]cAMP in OB1771 and F442A preadipocytes and human macrophages prelabeled with [(3)H]adenine. A striking selectivity for 2',5'-dd-Ado-3'-phosphoryl derivatives was observed. Cyclosaligenyl-derivatives (IC(50) approximately 2 microm) were much less potent than S-acyl-2-thioethyl-derivatives. Best studied of these was 2',5'-dd-Ado-3'-O-bis(S-pivaloyl-2-thioethyl)-phosphate, which blocked [(3)H]cAMP formation in preadipocytes (IC(50) approximately 30 nm) and suppressed opening of cAMP-dependent Cl(-) channels in cardiac myocytes (IC(50) approximately 800 nm). None of the pro-nucleotides inhibited adenylyl cyclase per se, whether isolated from rat brain or OB1771 cells. These compounds exhibit the hallmarks of prodrugs. Data suggest they are taken up, are deprotected, and are converted to a potent inhibitory form to inhibit adenylyl cyclase, but only by intact cells. The availability and characteristics of these prodrugs should make them useful for blocking cAMP-mediated pathways in intact cell systems, in biochemical, pharmacological, and potentially therapeutic contexts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号