首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
TNF-alpha is believed to play a pivotal role in the pathogenesis of inflammatory bowel diseases which have diarrhea as one of their symptoms. This work studies the effect of the cytokine on electrolyte and water movements in the rat distal colon using an intestinal perfusion technique and attempts to determine its underlying mechanism of action. TNF-alpha inhibited net water and chloride absorption, down-regulated in both surface and crypt colonocytes the Na+-K+-2Cl- cotransporter, and reduced the protein expression and activity of the Na+-K+ ATPase. Indomethacin up-regulated the pump and the cotransporter in surface cells but not in crypt cells, and in its presence, TNF-alpha could not exert its effect, suggesting an involvement of PGE2 in the cytokine action. The effect of TNF-alpha on the pump and symporter was studied also in cultured Caco-2 cells in isolation of the effect of other cells and tissues, to test whether the cytokine acts directly on intestinal cells. In these cells, TNF-alpha and PGE2 had a similar effect on the pump expression and activity as that observed in crypt cells but were without any effect on the Na+-K+-2Cl- cotransporter. It was concluded that the effect of the cytokine on colonocytes is mediated via PGE2. By inhibiting the Na+-K+ ATPase, it reduces the Na+ gradient needed for NaCl absorption, and by down-regulating the expression of the Na+-K+-2Cl- symporter, it reduces basolateral Cl- entry and luminal Cl- secretion. The inhibitory effect on absorption is more significant than the inhibitory effect on secretion resulting in a decrease in net electrolyte uptake and consequently in more water retention in the lumen.  相似文献   

2.
3.
Acid extrusion responses to prostaglandin E2 were investigated in Chinese hamster ovary (CHO) cells heterologously expressing human EP1, EP2, and EP3I receptors (hEP1, hEP2 and hEP3I) by using a microphysiometer that detected small pH changes in the extracellular microenvironment. In the cells expressing hEP1, which is known to increase intracellular Ca2+, prostaglandin E2 (1 and 10 nM) slowly accelerated acid extrusion, but at higher concentrations an initial transient phase (approximately 5 times greater than the basal acidification) overlapped the slowly developing phase. In contrast, the cells expressing hEP2, which evokes cAMP production, showed dual responses to prostaglandin E2: an initial reduction followed by an acceleration of acid extrusion. In the cells expressing hEP3I, which is known to produce both a decrease in cAMP and a modest increase in intracellular Ca2+, acid extrusion was gradually accelerated by prostaglandin E2 and reached a plateau at around 2 min. Elimination of extracellular Ca2+ diminished the responses to prostaglandin E2 in hEP1 cells, but had little effect on the responses in hEP2 and hEP3I cells. Forskolin mimicked the dual effects of prostaglandin E2 observed in the hEP2 cells. Pretreatment with pertussis toxin inhibited the response to prostaglandin E2 in hEP3I cells, but the responses in hEP1 and hEP2 cells were not affected. Na+/H+ exchanger (NHE) inhibitors (EIPA and HOE642) suppressed all the responses induced by prostaglandin E2 in hEP1, hEP2, and hEP3I cells. These results suggest that EP receptor subtypes regulate acid extrusion mainly via NHE-1 through distinct signal transduction pathways in CHO cells.  相似文献   

4.
The epithelial Na+ channel (ENaC), composed of three subunits (α, β, and γ), is expressed in several epithelia and plays a critical role in salt and water balance and in the regulation of blood pressure. Little is known, however, about the electrophysiological properties of this cloned channel when expressed in epithelial cells. Using whole-cell and single channel current recording techniques, we have now characterized the rat αβγENaC (rENaC) stably transfected and expressed in Madin-Darby canine kidney (MDCK) cells. Under whole-cell patch-clamp configuration, the αβγrENaC-expressing MDCK cells exhibited greater whole cell Na+ current at −143 mV (−1,466.2 ± 297.5 pA) than did untransfected cells (−47.6 ± 10.7 pA). This conductance was completely and reversibly inhibited by 10 μM amiloride, with a Ki of 20 nM at a membrane potential of −103 mV; the amiloride inhibition was slightly voltage dependent. Amiloride-sensitive whole-cell current of MDCK cells expressing αβ or αγ subunits alone was −115.2 ± 41.4 pA and −52.1 ± 24.5 pA at −143 mV, respectively, similar to the whole-cell Na+ current of untransfected cells. Relaxation analysis of the amiloride-sensitive current after voltage steps suggested that the channels were activated by membrane hyperpolarization. Ion selectivity sequence of the Na+ conductance was Li+ > Na+ >> K+ = N-methyl-d-glucamine+ (NMDG+). Using excised outside-out patches, amiloride-sensitive single channel conductance, likely responsible for the macroscopic Na+ channel current, was found to be ∼5 and 8 pS when Na+ and Li+ were used as a charge carrier, respectively. K+ conductance through the channel was undetectable. The channel activity, defined as a product of the number of active channel (n) and open probability (P o), was increased by membrane hyperpolarization. Both whole-cell Na+ current and conductance were saturated with increased extracellular Na+ concentrations, which likely resulted from saturation of the single channel conductance. The channel activity (nP o) was significantly decreased when cytosolic Na+ concentration was increased from 0 to 50 mM in inside-out patches. Whole-cell Na+ conductance (with Li+ as a charge carrier) was inhibited by the addition of ionomycin (1 μM) and Ca2+ (1 mM) to the bath. Dialysis of the cells with a pipette solution containing 1 μM Ca2+ caused a biphasic inhibition, with time constants of 1.7 ± 0.3 min (n = 3) and 128.4 ± 33.4 min (n = 3). An increase in cytosolic Ca2+ concentration from <1 nM to 1 μM was accompanied by a decrease in channel activity. Increasing cytosolic Ca2+ to 10 μM exhibited a pronounced inhibitory effect. Single channel conductance, however, was unchanged by increasing free Ca2+ concentrations from <1 nM to 10 μM. Collectively, these results provide the first characterization of rENaC heterologously expressed in a mammalian epithelial cell line, and provide evidence for channel regulation by cytosolic Na+ and Ca2+.  相似文献   

5.
Interleukin-17 (IL-17) is a cytokine secreted primarily by TH-17 cells that can stimulate the development of osteoclasts (osteoclastogenesis) in the presence of osteoblasts. IL-17, through osteoblasts, has indirect effects on the expression of bone resorption-related enzymes in osteoclasts, which have not been well clarified. Here, using MC3T3-E1 cells and RAW264.7 cells as osteoblasts and osteoclast precursors, we aimed to clarify these effects of IL-17A. MC3T3-E1 cells were cultured in the presence or absence of IL-17A for 72 h and the conditioned media collected (in the presence of soluble receptor activator of NF-кB ligand) and used to culture RAW264.7 cells. To assess osteoclast differentiation, adherent cells were fixed and stained for tartrate-resistant acid phosphatase (TRAP). Our analyses demonstrated that the number of TRAP-positive multinucleated cells increases after 3 days of culture in conditioned medium from IL-17A-treated cells compared to untreated controls. In addition, we observed that the levels of cathepsin K and MMP-9 increase in the conditioned medium from IL-17A-treated cells, whereas CA II expression levels remain unaffected. PGE2 production from MC3T3-E1 cells increased in the presence of IL-17A. Celecoxib, a specific inhibitor of cyclooxygenase-2 (COX-2), blocked both the IL-17A-stimulated increase in TRAP-positive multinucleated cells and the expression of cathepsin K and MMP-9. Furthermore, when MC3T3-E1 cells were transformed with small interfering RNA to silence COX-2 expression before IL-17A treatment, the resulting conditioned medium was less effective at inducing cathepsin K and MMP-9 expression in RAW264.7 cells. These results suggest that IL-17A induces the differentiation and function of osteoclasts via celecoxib-blocked prostaglandin, mainly PGE2, in osteoblasts.  相似文献   

6.
7.
Summary Addition of glucose or the nonmetabolizable analogue -methyl-d-glucoside to rabbit proximal tubules suspended in a glucoseand alanine-free buffer caused a sustained increase in intracellular Na+ content (+43±7 nmol · (mg protein)–1) and a concomitant but larger decrease in K+ content (–72±11 nmol· (mg protein)–1). A component of the net K+ efflux was Ba2+ insensitive, and was inhibited by high (1mm) but not low (10 m) concentrations of the diuretics, furosemide and bumetanide. The increase in intracellular Na+ content is consistent with the view that the increased rates of Na+ and water transport seen in the proximal tubule in the presence of glucose can be attributed (at least in part) to a stimulation of basolateral pump activity by an increased [Na+] i .  相似文献   

8.
It has been anticipated that the inherent limitations of radioimmunoassays for prostaglandin E (PGE) would be obviated by assays for its major circulating metabolite, 15-keto, 13,14-dihydro PGE2 (KH2-PGE2) which has a longer half-life in blood. We examined the effects of PGE2 infusion and alterations in lipolysis , and of clotting, prolonged storage and hemolysis , on KH2-PGE2 immunoreactivity in unextracted human plasma and serum samples. Indeed KH2-PGE2 levels rose several hundred fold during infusions of PGE2 at doses which cause little or no increment in peripheral PGE levels. During stimulation of lipolysis by infusions of epinephrine, apparent KH2-PGE2 levels rose five-fold. However, the dilution curve of plasma obtained during stimulation of lipolysis was not parallel to the standard curve; furthermore, apparent KH2-PGE2 levels were correlated strongly with free fatty acid (FFA) levels, suggesting that FFA's cross-reacted in the RIA weakly but significantly due to their very high molar concentration in blood. Clotting and prolonged storage of samples, but not hemolysis, also caused marked apparent increments in KH2-PGE2 levels. Competition curves using dilutions of such samples were again not parallel to the standard curves in plasma or buffer, but resembled dilution curves of samples containing high levels of FFA. These results suggest that handling of human blood samples for KH2-PGE2 measurement must be carefully standardized to avoid significant artifacts which presumably are due in part to fatty acids released from triglyceride stores or from disrupted membrane phospholipids . Unextracted plasma appears to be unsatisfactory for use in this RIA.  相似文献   

9.
Summary Human red cells were prepared with various cellular Na+ and K+ concentrations at a constant sum of 156mm. At maximal activation of the K+ conductance,g K(Ca), the net efflux of K+ was determined as a function of the cellular Na+ and K+ concentrations and the membrane potential,V m , at a fixed [K+]ex of 3.5mm.V m was only varied from (V m E K)25 mV and upwards, that is, outside the range of potentials with a steep inward rectifying voltage dependence (Stampe & Vestergaard-Bogind, 1988).g K(Ca) as a function of cellular Na+ and K+ concentrations atV m =–40, 0 and 40 mV indicated a competitive, voltage-dependent block of the outward current conductance by cellular Na+. Since the present Ca2+-activated K+ channels have been shown to be of the multi-ion type, the experimental data from each set of Na+ and K+ concentrations were fitted separately to a Boltzmann-type equation, assuming that the outward current conductance in the absence of cellular Na+ is independent of voltage. The equivalent valence determined in this way was a function of the cellular Na+ concentration increasing from 0.5 to 1.5 as this concentration increased from 11 to 101mm. Data from a previous study of voltage dependence as a function of the degree of Ca2+ activation of the channel could be accounted for in this way as well. It is therefore suggested that the voltage dependence ofg K(Ca) for outward currents at (V m E K)>25 25 mV reflects a voltage-dependent Na+ block of the Ca2+-activated K+ channels.  相似文献   

10.
11.
Reversal of the Na+/Ca2+ -exchanger (NCX) has been shown to mediate Ca2+ influx during activation of G-protein linked receptors. Functional coupling between the reverse-mode NCX and the canonical transient receptor potential channels (TRPCs) has been proposed to mediate Ca2+ influx in HEK-293 cells overexpressing TRPC3. In this communication we present evidence for similar functional coupling of NCX to endogenously expressed TRPC6 in rat aorta smooth muscle cells. Selective inhibition of reverse-mode NCX with KB-R7943 and of non-selective cation-channels with SKF-96365 abolished Ca2+ influx in response to agonist stimulation (ATP). Expression of a dominant negative TRPC6 mutant also reduced the Ca2+ influx in proportion to its transfection efficiency. Calyculin A, which is known to disrupt the junctions of the plasma membrane and sarco/endoplasmic reticulum, increased global Na+ elevations and reduced stimulated Ca2+ influx. Together our data provide evidence that localized Na+ elevations are generated by TRPC6 and drive reversal of NCX to mediate Ca2+ influx.  相似文献   

12.
External bioenergy (EBE, energy emitted from a human body) has been shown to increase intracellular calcium concentration ([Ca2+]i, an important factor in signal transduction) and regulate the cellular response to heat stress in cultured human lymphoid Jurkat T cells. In this study, we wanted to elucidate the underlying mechanisms. A bioenergy specialist emitted bioenergy sequentially toward tubes of cultured Jurkat T cells for one 15-minute period in buffers containing different ion compositions or different concentrations of inhibitors. [Ca2+]i was measured spectrofluorometrically using the fluorescent probe fura-2. The resting [Ca2+]i in Jurkat T cells was 70 ± 3 nM (n = 130) in the normal buffer. Removal of external calcium decreased the resting [Ca2+]i to 52 ± 2 nM (n = 23), indicating that [Ca2+] entry from the external source is important for maintaining the basal level of [Ca2+]i. Treatment of Jurkat T cells with EBE for 15 min increased [Ca2+]i by 30 ± 5% (P 0.05, Student t-test). The distance between the bioenergy specialist and Jurkat T cells and repetitive treatments of EBE did not attenuate [Ca2+]i responsiveness to EBE. Removal of external Ca2+ or Na+, but not Mg2+, inhibited the EBE-induced increase in [Ca2+]i. Dichlorobenzamil, an inhibitor of Na+/Ca2+ exchangers, also inhibited the EBE-induced increase in [Ca2+]i in a concentration-dependent manner with an IC50 of 0.11 ± 0.02 nM. When external [K+] was increased from 4.5 mM to 25 mM, EBE decreased [Ca2+]i. The EBE-induced increase was also blocked by verapamil, an L-type voltage-gated Ca2+ channel blocker. These results suggest that the EBE-induced [Ca2+]i increase may serve as an objective means for assessing and validating bioenergy effects and those specialists claiming bioenergy capability. The increase in [Ca2+]i is mediated by activation of Na+/Ca2+ exchangers and opening of L-type voltage-gated Ca2+ channels. (Mol Cell Biochem 271: 51–59, 2005)  相似文献   

13.
A group of 84 women at 39 – 43 weeks of pregnancy were randomly allocated to a blind trial of induction of labor with vaginal suppositories containing inert material or either 0.2 mg or 0.4 mg of prostaglandin E2. The suppositories were self-administered every two hours during waking hours on two successive days until labor started or 15 had been used. Side-effects were absent. Labor was established within 48 hr of insertion of the first suppository in 9.3% of control patients, 65.4% of those treated with 0.2 mg PGE2 and 85.7% of those treated with 0.4 mg PGE2. The mean Apgar scores in the three groups were the same. The mean total dose of PGE2 were 2.0 mg (0.2 mg group) and 2.3 mg (0.4 mg group). It is concluded that vaginal PGE2 is an effective and acceptable method of inducing labor at term.  相似文献   

14.
Summary The purpose of this study was to examine the effect of three classes of Ca2+ antagonists, diltiazem, verapamil and nifedipine on Na+-Ca2+ exchange mechanism in the sarcolemmal vesicles isolated from canine heart. Na+-Ca2+ exchange and Ca2+ pump (ATP-dependent Ca2+ uptake) activities were assessed using the Millipore filtration technique. sarcolemmal vesicles used in this study are estimated to consist of several subpopulations wherein 23% are inside-out and 55% are right side-out sealed vesicles in orientation. The affect of each Ca2+ antagonist on the Na+-dependent Ca2+ uptake was studied in the total population of sarcolemmal vesicles, in which none of the agents depressed the initial rate of Ca2+ uptake until concentrations of 10 M were incubated in the incubation medium. However, when sarcolemmal vesicles were preloaded with Ca2+ via ATP-dependent Ca2+ uptake, cellular Ca2+ influx was depressed only by verapamil (28%) at 1 M in the efflux medium with 8 mM Na+. Furthermore, inhibition of Ca2+ efflux by verapamil was more pronounced in the presence of 16 mM Na+ in the efflux medium. The order of inhibition was; verapamil > diltiazem > nifedipine. These results indicate that same forms of Ca2+-antagonist drugs may affect the Na+-Ca2+ exchange mechanism in the cardiac sarcolemmal vesicles and therefore we suggest this site of action may contribute to their effects on the myocardium.  相似文献   

15.
Effects of the external Ca2+ concentration on the depolarization-induced transient inward Na+ current responsible for the Na+ spike in the dinoflagellate Noctiluca miliaris were examined. The peak value and the duration of the Na+ current increased when lowering the external Ca2+ concentration. The threshold potential level for activation and the reversal potential level of the current were not affected by the external Ca2+ concentration. The inactivation took place even in a solution containing EGTA with very low (<10–9 M) Ca2+ concentration. Voltage dependency of the inactivation was scarcely affected by the external Ca2+ concentration. It is concluded that inactivation of Na+ channels responsible for the current is dependent on membrane depolarization and that the external Ca2+ modulates the inactivation kinetics. Appearance of a Na+ spike in a solution with reduced Ca2+ concentration is caused by a lowered rate of inactivation of the Na+ channels.  相似文献   

16.
UV irradiation has multiple effects on mammalian cells, including modification of ion channel function. The present study was undertaken to investigate the response of membrane currents in guinea-pig ventricular myocytes to the type A (355, 380 nm) irradiation commonly used in Ca2+ imaging studies. Myocytes configured for whole-cell voltage clamp were generally held at −80 mV, dialyzed with K+-, Na+-free pipette solution, and bathed with K+-free Tyrode’s solution at 22°C. During experiments that lasted for ≈ 35 min, UVA irradiation caused a progressive increase in slowly-inactivating inward current elicited by 200-ms depolarizations from −80 to −40 mV, but had little effect on background current or on L-type Ca2+ current. Trials with depolarized holding potential, Ca2+ channel blockers, and tetrodotoxin (TTX) established that the current induced by irradiation was late (slowly-inactivating) Na+ current (INa). The amplitude of the late inward current sensitive to 100 μM TTX was increased by 3.5-fold after 20–30 min of irradiation. UVA modulation of late INa may (i) interfere with imaging studies, and (ii) provide a paradigm for investigation of intracellular factors likely to influence slow inactivation of cardiac INa.  相似文献   

17.
Prostaglandin E2 (PGE2), the principal pro-inflammatory prostanoid, is known to play versatile roles in pain transmission via four PGE receptor subtypes, EP1-EP4. We recently demonstrated that continuous production of nitric oxide (NO) by neuronal NO synthase (nNOS) following phosphorylation of myristoylated alanine-rich C-kinase substrate (MARCKS) and NMDA receptor NR2B subunits is essential for neuropathic pain. These phosphorylation and nNOS activity visualized by NADPH-diaphorase histochemistry were blocked by indomethacin, a PG synthesis inhibitor. To clarify the interaction between cyclooxygenase and nNOS pathways in the spinal cord, we examined the effect of EP subtype-selective agonists on NO production. NO formation was stimulated in the spinal superficial layer by EP1, EP3, and EP4 agonists. While the EP1- and the EP4-stimulated NO formation was markedly blocked by MK-801, an NMDA receptor antagonist, the EP3-stimulated one was completely inhibited by H-1152, a Rho-kinase inhibitor. Phosphorylation of MARCKS and NADPH-diaphorase activity stimulated by the EP3 agonist were also blocked by H-1152. These results suggest that PGE2 stimulates NO formation by Rho-kinase via EP3, a mechanism(s) different from EP1 and EP4.  相似文献   

18.
The dopamine receptor agonist, bromocriptine, in a dose of 10 mg/kg i.p. for 14 days, in rats caused a significant increase in liver Na+/K+-ATPase activity, whereas sulpiride, a dopamine receptor antagonist, in a dose of 10 mg/kg, i.p. for 14 days, in rats, caused a significant decrease in liver Na+/K+-ATPase activity. Injection of bromocriptine and sulpiride simultaneously in a group of rats, under the same conditions and using the same doses caused a complete block of both stimulatory activity of bromocriptine and inhibitory activity of sulpiride on liver Na+/K+-ATPase activity. It is suggested that Na+/K+-ATPase may have a role in the action of dopaminergic-D2 receptors.  相似文献   

19.
Summary The countertransport of Ca2+ and Na+ across the membranes of the unicellular fresh-water algaChlamydomonas reinhardtii CW-15 and twoDunaliella species differing in salt tolerance was studied. All algae used are devoid of cell walls. The calcium uptake by twoDunaliella species depended markedly on the intracellular sodium concentration. This calcium uptake was accompanied by Na+ release. For 15 and 30 s after artificial gradient formation (Naint + greater than Naext +) the ratio of released Na+ to absorbed Ca2+ was 31 and 41, respectively. For the extremely halotolerantD. salina, the apparent Michaelis constant of the Ca2+ uptake was 33 M, and for the marine halotolerant algaD. maritima, it was equal to 400 M, presuming more efficient Na+-for-Ca2+ exchange inD. salina cells. Ouabain, an inhibitor of Na+/K+-ATPase, suppressed Na+ transfer by 25%, whereas the agents blocking Ca2+-channels did not affect the transport of Ca2+ and Na+. The oppositely directed transmembrane Ca2+ and Na+ transfer was shown to depend on the external concentrations of Na+ and H+. In the fresh-water algaC. reinhardtii CW-15 (Naext + greater than Naint +), the direction of Ca2+ and Na+ fluxes across the plasma membrane was opposite to those described for Dunaliella cells. The results obtained point to the ability of the Na+-Ca2+ exchanger function in plasma membranes of algal cells.  相似文献   

20.
The effects of prostaglandin E2 (PGE)2, as trigger of erythroid progenitor cells into the cell cycle, were studied on the induction of micronucleu by various mutagens; with mitomicin C (MMC) the optimal protocol was established. dose-response relationship between PGE2 doses and micronucleus frequency were observed 30 h after injection of MMC to mice administered PGE2 24 h previously. Sensitazion by PGE2 pretreatment was also found for other mutagens, such as vincristine, 5-fluorouracil, benzo[a]pyrene, 1,1-dimethylhydrazine and 2-naphthylamine. These results support the hypothesis that accelerating the erythropoiesis increases the frequency of micronucleic induced by mutagens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号