首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we found that a novel piperazine compound, 11a, showed a moderate affinity (IC(50)=333nM) for the MC4 receptor. We developed the new type of piperazine compounds and found that mono-piperazine 11b exhibited a high-affinity (IC(50)=40.3nM) for the MC4 receptor. We also found that a series of biphenyl analogues exhibited a high-affinity for the receptor, and in particular, compound 11j exhibited the highest affinity for the MC4 receptor with an IC(50) value of 14.5nM. Furthermore, some of these compounds, when administered orally, significantly reversed the stress-induced anxiety-like behavior in rats. In this paper, we report the synthesis, structure-activity relationships, and oral activity of the novel mono-piperazines as MC4 receptor antagonists.  相似文献   

2.
A series of 2-piperazine-alpha-isopropylbenzylamine derivatives were synthesized and characterized as melanocortin-4 receptor (MC4R) antagonists. Attaching an amino acid to benzylamines 7 significantly increased their binding affinity, and the resulting compounds 8-12 bound selectively to MC4R over other melanocortin receptor subtypes and behaved as functional antagonists. These compounds were also studied for their permeability using Caco-2 cell monolayers and metabolic stability in human liver microsomes. Most compounds exhibited low permeability and high efflux ratio possibly due to their high molecular weights. They also showed moderate metabolic stability which might be associated with their moderate to high lipophilicity. Pharmacokinetic properties of these MC4R antagonists, including brain penetration, were studied in mice after oral and intravenous administrations. Two compounds identified to possess high binding affinity and selectivity, 10d and 11d, were studied in a murine cachexia model. After intraperitoneal (ip) administration of 1mg/kg dose, mice treated with 10d had significantly more food intake and weight gain than the control animals, demonstrating efficacy by blocking the MC4 receptor. Similar in vivo effects were also observed when 11d was dosed orally at 20mg/kg. These results provide further evidence that a potent and selective MC4R antagonist has potential in the treatment of cancer cachexia.  相似文献   

3.
The melanocortin-4 receptor (MC4R) plays an important role in the regulation of energy homeostasis. Recent studies have shown that blockade of the MC4R reverses tumor-induced weight loss in mice. Herein, we describe the synthesis and identification of potent and selective non-peptide antagonists of the human MC4R from a series of 2-ethoxycarbonylcyclohexyl-piperazines. Compound 12i was found to possess low nanomolar affinity for the MC4R, and exhibit oral bioavailability in rats. More importantly, when administered orally to mice (10 mg/kg), it led to statistically significant increases in food intake over a 24-h period.  相似文献   

4.
U G Sahm  G W Olivier  C W Pouton 《Peptides》1999,20(3):387-394
153N-6 (H-[Met5,Pro6,D-Phe7,D-Trp9,Phe10]-MSH(5-13)) has emerged as the most potent antagonist of alpha-MSH activity on Xenopus laevis melanophores, from a library of 32 360 peptides based on alpha-MSH(5-13) [22]. A recent report has confirmed our observation that 153N-6 also binds to mammalian melanocortin receptors. Here we report the receptor-binding affinities and biologic activities of 153N-6 and 17 selected alpha-MSH analogues at the native MCI receptor expressed by murine B16 melanoma cells. Our intention is to determine the structural requirements for agonism and competitive antagonism of melanocortin activity at the MC1-R and to discover more potent antagonists. 153N-6 was able to inhibit the action of native alpha-MSH and the potent synthetic agonist, [Nle4,D-Phe7]alpha-MSH, at the murine MC1-R. However, the Ki of 153N-6 was 439 times higher than that of alpha-MSH and 4475 times higher than that of [Nle4,D-Phe7]alpha-MSH; too high to allow 153N-6 to be considered as a practical antagonist for use in vivo (Ki of 153N-6 = 9.0 X 10(-6) M). Because Met4 is an important component of alpha-MSH binding at the MC1-R, we investigated alpha-MSH(1-13) and alpha-MSH(4-13) analogues to produce compounds with higher MC1-R-binding affinity than 153N-6. The binding affinity of 153N-6 was not significantly different from alpha-MSH(5-13), but it was 232 times lower than alpha-MSH(4-13). Coupling of H-Nle (as an isosteric replacement for Met) or acetyl-Nle to the N-terminus of 153N-6 raised the binding affinity by a factor of 46, but this and all full-length alpha-MSH analogues with Met or Nle in position 4 were full agonists of the MC1-R. A full-length alpha-MSH(1-13) derivative of 153N-6 with Ala4 did not exhibit significantly greater binding affinity than 153N-6 and appeared to be a partial agonist at the MC1-R in the cAMP assay. These data suggest that Met4 is an important determinant of the intrinsic efficacy of melanocortins as well as their binding affinity at the MCI-R. Pro6 and Phe10 (with respect to alpha-MSH) were found to be the most influential substitutions that determined the antagonist activity of 153N-6.  相似文献   

5.
Joppa MA  Ling N  Chen C  Gogas KR  Foster AC  Markison S 《Peptides》2005,26(11):2294-2301
We investigated the effect of melanocortin 4 receptor (MC4) antagonists on food intake in mice. Food intake during the light phase was significantly increased by ICV administration of mixed MC3/MC4 antagonists (AgRP and SHU9119) or MC4 selective antagonist peptide [(Cyclo (1-5)[Suc-D-Nal-Arg-Trp-Lys]NH2] (MBP10) and the small molecule antagonists THP and NBI-30. Both mixed and selective antagonists significantly reversed anorexia induced by ICV administration of the MC4 agonist (c (1-6) HfRWK-NH2) and the cytokine IL-1beta. These findings provide pharmacological evidence that the MC4 receptor mediates the effects of melanocortin agonists and antagonists on food intake in mice, and support the idea that selective small molecule MC4 antagonists may be useful as therapeutics for cachexia.  相似文献   

6.
The melanocortin 3 and 4 receptors are G-protein-coupled receptors found in the hypothalamus with important role in regulation of the energy balance. In this study, we performed pharmacological comparison of the rat and human melancortin (MC) 3 and MC4 receptors. We transiently expressed the genes for these receptors individually in a mammalian cell line and determined the binding affinities to several MSH peptides. The results showed no major difference between the rat and human MC3 receptors while the rat MC4 receptor had higher affinity to several peptides compared with the human MC4 receptor. NDP-, alpha-, beta-, gamma-MSH, ACTH(1-24), HS014 and MTII had from 5- to 34-fold higher affinity for the rat MC4 receptor, while SHU9119, HS024 and HS028 had similar affinity for both the MC4 receptors. Pharmacological species difference have earlier been reported for the MC1 and MC5 receptors but this is the first report showing important differences between the rat and human MC4 receptors.  相似文献   

7.
In order to define which structure of alpha-melanocyte-stimulating hormone (MSH) analogues plays a critical role for ligand-receptor interaction and selectivity, we analysed receptor-binding and cAMP-generating activity in Chinese hamster ovary cell lines stably transfected with rMC3R and hMC4R, as well as the NMR structures of chemically synthesized alpha-MSH analogues. Compared with [Ahx4]alpha-MSH, the linear MTII designated as alpha-MSH-ND revealed a preference for the MC4R, whereas its IC50 and EC50 values were comparable to those of MTII reported previously. Truncation of Ahx4 and Asp5 of alpha-MSH-ND remarkably decreased the receptor-binding and cAMP-generating activity. Meanwhile, maximum cAMP-generating activity was observed at a higher concentration (10(-5) M) of alpha-MSH-ND(6-10), and MC4R preference was changed into MC3R preference. In contrast, [Gln6]alpha-MSH-ND(6-10) lost its cAMP-generating activity almost completely, even though it bound to both receptors. Whereas the solution conformation of alpha-MSH-ND revealed a stable type I beta-turn structure, [Gln6]alpha-MSH-ND(6-10) revealed a tight gamma-turn composed of Gln6-D-Phe7-Arg8. Replacement of the His6 residue of alpha-MSH-ND by Gln, Asn, Arg or Lys decreased not only the receptor binding, but also the cAMP-generating activity in both the MC3R and the MC4R. The structure of [Gln6]alpha-MSH-ND exhibited a stable type I' beta-turn comprising Asp5, Gln6, D-Phe7 and Arg8. [Lys6]alpha-MSH-ND showed a greatly reduced binding affinity and cAMP-generating activity with the loss of MC4R selectivity. In NMR studies, [Lys6]alpha-MSH-ND also demonstrated a gamma-turn conformation around Lys6-DPhe7-Arg8. From the above results, we conclude that a type I beta-turn conformation comprising the residues Asp5-His6-(D-Phe7)-Arg8 was important for receptor binding and activation, as well as the selectivity of MSH analogues.  相似文献   

8.
A series of cyclohexylpiperazines was synthesized as potent and selective antagonists of the human MC4 receptor. Compound 14t displayed binding affinity (Ki) of 4.2 and 1100 nM at MC4R and MC3R, respectively.  相似文献   

9.
Neuropeptide Y (NPY) and melanocortin (MC) peptides have opposite effects on food intake: NPY-like peptides and MC receptor antagonists stimulate feeding and increase body weight, whereas melanocortins and NPY antagonists inhibit food intake. In this study we tested whether the orexigenic effect of the selective MC4 receptor antagonist HS014 (1 nmol) could be inhibited by three different NPY antagonists, (R)-N2-(diphenylacetyl)-N-[(4-hydroxy-phenyl)methyl]D-argininam ide (BIBP3226), (R)-N-[[4-(aminocarbonylaminomethyl)-phenyl]methyl]-N2(diphenyl acetyl)-argininamidetrifluoroacetate (BIBO3304), and decapeptide [D-Tyr(27,36)D-Thr32]NPY(27-36), after icv administration in freely feeding male rats. All three NPY receptor antagonists inhibited the orexigenic effects of HS014 partially and with markedly different potency. [D-Tyr(27,36)D-Thr32]NPY(27-36) was active only in subconvulsive dose. The NPY Y1 selective antagonist BIBP3226 was more effective in inhibiting the effect of HS014 than BIBO3304 despite in vitro data indicating that BIBP3226 is about 10 times less potent than BIBO3304 at NPY Y1 receptor. An enantiomer of BIBO3304, BIBO3457, failed to inhibit HS014-induced feeding, indicating that the effects of BIBO3304 were stereoselective. These results suggest that stimulation of food intake caused by weakening of melanocortinergic tone at the MC4 receptor is partially but not exclusively related to NPY Y1 receptor activation.  相似文献   

10.
Aliphatic carbocyclic replacement of the benzyl group of compound 1 yielded compounds with high affinity for the melanocortin-4 receptor (MC4R). Compounds with a cyclohexyl group showed a consistent high affinity, while different polar groups with less basicity were good replacements for the original diethyl amines. Substitution of the polar group found in these privileged structures with an aliphatic moiety produced compounds with high affinity for MC4R.  相似文献   

11.
A novel series of piperazines appended to a succinamide backbone were synthesized and found to have a high affinity for the melanocortin-4 receptor (IC(50)s ranging from <0.1 to 200 nM). Both agonists and antagonists of MC4R were prepared by modifying the groups attached to the right-hand side of the succinamide. This series also exhibits a high level of selectivity (up to 7000-fold) over mouse MC1R and human MC3R.  相似文献   

12.
The synthesis of a series of 4-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl)methyl-2-arylbenzofuran and 4-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl)methylbenzofuran-2-carboxamide derivatives as novel alpha(2C)-adrenergic receptor antagonists are described. Their affinity at three different human alpha(2)-adrenergic receptors is reported, and some of these compounds exhibited high affinity for the alpha(2C)-adrenergic receptor with high subtype selectivity. Among them, compound 10e has been found to show the anti-L-dopa-induced dyskinetic activity in marmosets. The structure-activity relationship of these compounds is also discussed.  相似文献   

13.
Melanocortin peptides regulate a variety of physiological processes. Five melanocortin receptors (MC-R) have been cloned and the MC3R and MC4R are the main brain MC receptors. The aim of this study was to identify structural requirements in both ligand and receptor that determine gamma-melanocyte-stimulating hormone (MSH) selectivity for the MC3R versus the MC4R. Substitution of Asp10 in [Nle4]Lys-gamma2-MSH for Gly10 from [Nle4]alpha-MSH, increased both activity and affinity for the MC4R while the MC3R remained unaffected. Analysis of chimeric MC3R/MC4Rs and mutant MC4Rs showed that Tyr268 of the MC4R mainly determined the low affinity for [Nle4]Lys-gamma2-MSH. The data demonstrate that Asp10 determines selectivity for the MC3R, however, not through direct side chain interactions, but probably by influencing how the melanocortin core sequence is presented to the receptor-binding pocket. This is supported by mutagenesis of Tyr268 to Ile in the MC4R which increased affinity and activity for [Nle4]Lys-gamma2-MSH, but decreased affinity for two peptides with constrained cyclic structure of the melanocortin core sequence, MT-II and [D-Tyr4]MT-II, that also displayed lower affinity for the MC3R. This study provides a general concept for peptide receptor selectivity, in which the major determinant for a selective receptor interaction is the conformational presentation of the core sequence in related peptides to the receptor-binding pocket.  相似文献   

14.
The melanocortin-4 (MC4) receptor is a potential therapeutic target for obesity and cachexia, for which nonpeptide agonists and antagonists are being developed, respectively. The aim of this study was to identify molecular interactions between the MC4 receptor and nonpeptide ligands, and to compare the mechanism of binding between agonist and antagonist ligands. Nonpeptide ligand interaction was affected by mutations that reduce peptide ligand binding (D122A, D126A, S190A, M200A, F261A, and F284A), confirming overlapping binding determinants for peptide and nonpeptide ligands. The common halogenated phenyl group of nonpeptide ligands was a determinant of F261A and F284A mutations' affinity-reducing effect, implying this group interacts with the aromatic side chains of these residues. All affected compounds contain this group, the mutations reduced binding of 2,4-dichloro-substituted compounds more than 4-chloro-substituted-compounds, and F284A mutation eliminated the affinity-enhancing effect of 2-chloro-substitution. F261A and F284A mutations reduced the affinity of antagonists more than agonists, suggesting that the stronger ligand interaction with these residues, the lower the ligand efficacy. Supporting this hypothesis, F261A mutation increased the efficacy of nonpeptide antagonist and partial agonist ligands. D122A and D126A mutations reduced nonpeptide ligand interaction. Removing the ligands' derivatized amide group eliminated the effect of the mutations. Interaction of agonists, which bear a common amine within this group, was strongly reduced by D126A mutation (550-3300-fold), suggesting an electrostatic interaction between the amine and the acidic group of D126. These postulated interactions with aromatic and acidic regions of the MC4 receptor are consistent with a molecular model of the receptor. Furthermore, the strength of interaction with the aromatic pocket, and potentially the acidic pocket, controls the signaling efficacy of the ligand.  相似文献   

15.
We have developed fluorescence polarization (FP) assays of human melanocortin 4 receptor (MC4R) in 384-well microtiter plates using TAMRA-NDP-MSH as a tracer. The rank order of potency of agonists and antagonists agrees well relative to the published assays: SHU9119>MTII>NDP alphaMSH>alphaMSH. We have screened libraries of Korean plant extracts and frog peptide analogues in search of MC4R ligands using FP assays and cell-based CRE luciferase reporter assays. We report that FLGFLFKVASK, FLGWLFKVASK, FLGALFKWASK, and FLGWLFKWASK are the peptide analogues, which bind to human MC4R receptor with good affinity in vitro. FLGWLFKVASK and FLGWLFKWASK stimulated CRE-driven reporter gene via MC4R. In luciferase reporter assays, they possess the pharmacological and functional profiles of full agonists. We demonstrate the interaction of MC4R with 11-residue antimicrobial peptides derived from the Korean frog, Rana rugosa. The results suggest that MC4R interacts promiscuously with bioactive analogues of antimicrobial peptide, gaegurin-5.  相似文献   

16.
Introduction of 1,4-disubstituted cyclohexane ring in the structure of flexible long chain arylpiperazines resulted in linearly constrained, potent serotonin (5-HT)(1A) ligands. In order to trace structure-intrinsic activity relationships in this group, a new series of 1-substituted 4-(4-arylpiperazin-1-yl)cyclohexane derivatives with different cyclic imide/amide termini, and their flexible, tetramethylene analogues were synthesized and pharmacologically evaluated for 5-HT(1A) receptors. In vitro binding experiments revealed that all the compounds were potent 5-HT(1A) receptor agents (K(i) = 1.9-74 nM). Some derivatives tested additionally showed also high affinity for alpha(1)-adrenergic receptors (K(i) = 2.9-101 nM) and for 5-HT(7) receptors. Functional in vivo examination revealed that rigid ligands with o-OCH(3) group in the aryl moiety and cyclic imide system in the opposite terminal behaved like postsynaptic 5-HT(1A) receptor antagonists. On the other hand, unsubstituted, m-Cl, or m-CF(3) substituted derivatives as well as those with cyclic amide group in the terminal fragment exhibited agonistic or partial agonistic activity. Three out of four derivatives tested, that is, postsynaptic 5-HT(1A) antagonists 9 and 10, and partial agonist 16, showed anxiolytic-like activity in the conflict drinking (Vogel) test in rats.  相似文献   

17.
18.
Although mutations in the melanocortin-4 receptor (MC4R) gene cause severe early-onset obesity, we still do not have effective approaches to correct the defects of these mutations. Several antagonists have been identified as pharmacoperones of the MC4R whereas no agonist of the MC4R has been reported. In the present study, we investigated the effect of a small molecule agonist of the MC4R, THIQ, on the cell surface expression and signaling of ten intracellularly retained MC4R mutants using different cell lines. We showed that THIQ increased the cell surface expression of three mutants (N62S, C84R, and C271Y) and two of them (N62S and C84R) had increased signaling in HEK293 cells. Interestingly, THIQ increased the signaling of two other mutants (P78L and P260Q) without increasing their cell surface expression in HEK293 cells. In neuronal cells, THIQ exhibited a more potent effect, correcting the cell surface expression and signaling of seven mutants (N62S, I69R, P78L, C84R, W174C, P260Q, and C271Y). Other mutants were not rescued by THIQ. We also showed that THIQ did not rescue MC4R mutants defective in ligand binding or signaling or one intracellularly retained mutant of the melanocortin-3 receptor. In summary, we demonstrated that a small molecule agonist acted as a pharmacoperone of the MC4R rescuing the cell surface expression and signaling of some intracellularly retained MC4R mutants.  相似文献   

19.
Agouti-related protein (AGRP) is an endogenous antagonist of melanocortin action that functions in the hypothalamic control of feeding behavior. Although previous studies have shown that AGRP binds three of the five known subtypes of melanocortin receptor, the receptor domains participating in binding and the molecular interactions involved are presently unknown. The present studies were designed to examine the contribution of extracytoplasmic domains of the melanocortin-4 receptor (MC4R) to AGRP binding by making chimerical receptor constructs of the human melanocortin-1 receptor (MC1R; a receptor that is not inhibited by AGRP) and the human MC4R (a receptor that is potently inhibited by AGRP). Substitutions of the extracytoplasmic NH2 terminus and the first extracytoplasmic loop (exoloop) of the MC4R with homologous domains of the MC1R had no effect on AGRP (87-132) binding affinity or inhibitory activity (the ability to inhibit melanocortin-stimulated cAMP generation). In contrast, cassette substitutions of exoloops 2 and 3 of the MC4R with the homologous exoloops of the MC1R resulted in a substantial loss of AGRP binding affinity and inhibitory activity. Conversely, the exchange of exoloops 2 and 3 of the MC1R with the homologous exoloops of the MC4R was found to confer AGRP binding and inhibitory activity to the basic structure of the MC1R. Importantly, these substitutions did not affect the ability of the alpha-melanocyte stimulating hormone analogue [Nle4,D-Phe7] melanocyte stimulating hormone to bind or activate the chimeric receptors. These data indicate that exoloops 2 and 3 of the melanocortin receptors are important for AGRP binding.  相似文献   

20.
The solution structure of a potent melanocortin receptor agonist, Ac-Nle-cyclo[Asp-Pro-DPhe-Arg-Trp-Lys]-NH(2) (1) was calculated using distance restraints determined from 1H NMR spectroscopy. Eight of the lowest energy conformations from this study were used to identify non-peptide cores that mimic the spatial arrangement of the critical tripeptide region, DPhe-Arg-Trp, found in 1. From these studies, compound 2a, containing the cis-cyclohexyl core, was identified as a functional agonist of the melanocortin-4 receptor (MC4R) with an IC(50) and EC(50) below 10 nM. Compound 2a also showed 36- and 7-fold selectivity over MC3R and MC1R, respectively, in the binding assays. Subtle changes in cyclohexane stereochemistry and removal of functional groups led to analogues with lower affinity for the MC receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号