首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A variety of data support the existence of an opioid receptor complex composed of distinct but interacting mu cx and delta cx binding sites, where "cx" indicates "in the complex." The ability of subantinociceptive doses of [Leu5]enkephalin and [Met5]enkephalin to potentiate and attenuate morphine-induced antinociception, respectively, is thought to be mediated via their binding to the delta cx binding site. [D-Pen2,D-Pen5]Enkephalin also modulates morphine-induced antinociception, but has very low affinity for the delta cx binding site in vitro. In the present study, membranes were depleted of their delta ncx binding sites by pretreatment with the site-directed acylating agent, (3S,4S)-(+)-trans-N-[1-[2-(4-isothiocyanato)phenyl)-ethyl]-3-methy l-4- piperidyl]-N-phenylpropaneamide hydrochloride, which permits selective labeling of the delta cx binding site with [3H][D-Ala2,D-Leu5]enkephalin. The major findings of this study are that with this preparation of rat brain membranes: a) there are striking differences between the delta cx and mu binding sites; and b) both [D-Pen2,D-Pen5]enkephalin and [D-Pen2,L-Pen5]enkephalin exhibit high affinity for the delta cx binding site.  相似文献   

2.
A series of 2-amino-oxazole (7 and 8) analogs and 2-one-oxazole analogs (9 and 10) were synthesized from cyclorphan (1) or butorphan (2) and evaluated in-vitro by their binding affinity at mu, delta, and kappa opioid receptors and compared with their 2-aminothiozole analogs 5 and 6. Ligands 7-10 showed decreased affinities at kappa and mu receptors. Urea analogs (11-14) were also prepared from 2-aminocyclorphan (3) or 2-aminobutorphan (4) and evaluated in-vitro by their binding affinity at mu, delta, and kappa opioid receptors. The urea derived opioids retained their affinities at mu receptors while showing increased affinities at delta receptors and decreased affinities at kappa receptors. Functional activities of these compounds were measured in the [35S]GTPgammaS binding assay, illustrating that all of these ligands were kappa agonists. At the mu receptor, compounds 11 and 12 were mu agonist/antagonists.  相似文献   

3.
Equilibrium binding studies and viscosity experiments are described that characterize the interaction of delta- and lambda-[Ru(o-phen)3]2+ with calf thymus DNA. The mode of binding of these compounds to DNA is a matter of controversy. Both isomers of [Ru(o-phen)3]2+ were found to bind but weakly to DNA, with binding constants of 4.9 (+/- 0.3) x 10(4) M-1 and 2.8 (+/- 0.2) x 10(4) M-1 determined for the delta and lambda isomers, respectively, at 20 degrees C in a solution containing 5 mM Tris-HCl (pH 7.1) and 10 mM NaCl. We determined that the quantity delta log K/delta log [Na+] equals 1.37 and 1.24 for the delta and lambda isomers, respectively. Application of polyelectrolyte theory allows us to use these values to show quantitatively that both the delta and lambda isomers are essentially electrostatically bound to DNA. Viscosity experiments show that binding the lambda isomer does not alter the relative viscosity of DNA to any appreciable extent, while binding of the delta isomer decreases the relative viscosity of DNA. From these viscosity results, we conclude that neither isomer of [Ru(o-phen)3]2+ binds to DNA by classical intercalation.  相似文献   

4.
Calcium induces both involucrin and transglutaminase-K in normal keratinocytes (NHK) but not in squamous carcinoma cell lines (SCC). The protein kinase C (PKC) agonist phorbol myristoyl acetate potentiates and the PKC antagonist Ro31-8220 blocks the ability of calcium to stimulate the involucrin promoter in normal human keratinocytes but not in SCC4. We thus examined the ability of calcium to regulate the levels of five PKC isozymes in NHK and two SCC. In the normal keratinocytes, the levels of PKC [alpha], PKC [delta], PKC [eta], and PKC [zeta] increased over the first one to two weeks in a calcium-and time-dependent manner. PKC [epsilon] decreased in a time-and calcium-dependent fashion over the three-week period. All five isozymes showed little change during culture in SCC4 at any calcium concentration. Calcium and time of culture had partial effects on SCC12B2, a carcinoma that shows partial differentiation characteristics. Since PKC [alpha] is the only calcium responsive PKC isozyme in keratinocytes and most likely to be directly involved in calcium induced differentiation, we evaluated the effect of inhibiting its production with antisense oligonucleotides on calcium-regulated markers of differentiation. We found that the PKC [alpha] specific antisense oligonucleotide blocked calcium stimulated involucrin promoter activity as well as PKC [alpha], involucrin, and transglutaminase protein production, whereas the sense oligonucleotide control did not. We conclude that although a number of PKC isozymes are regulated during calcium-induced differentiation, PKC [alpha] plays a necessary role in mediating calcium-induced differentiation. Failure to regulate PKC [alpha] in SCC4 may underlie at least part of the failure of calcium to promote differentiation in these cells.  相似文献   

5.
M Mitsuhashi  D G Payan 《Life sciences》1988,43(18):1433-1440
The present study was undertaken in order to examine the effect of protein kinase C (PKC) on histamine H1 receptors (H1R) present on the smooth muscle cell line, DDT1MF-2. [3H]-pyrilamine binding revealed that specific [3H]-pyrilamine binding sites were reduced by pretreatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of PKC, but not the Kd. The TPA analogue, 4 alpha phorbol 12,13-didecanoate, which does not activate PKC, failed to induce down-regulation of H1R. TPA-induced down-regulation of H1R was inhibited by pretreatment with 1-(5-Isoquinilinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), a PKC inhibitor, in a dose dependent manner. The H-7 analogue, H-8, which is a less potent inhibitor of PKC, but a potent inhibitor of cyclic nucleotide dependent protein kinase, had no effect on H1R. Moreover, treatment with TPA inhibited histamine-induced increases in [Ca2+]i in cells loaded with the fluorescent indicator, indo-1. These data suggest that H1R in DDT1MF-2 cells are functionally regulated by PKC.  相似文献   

6.
Protein kinase C contains two phorbol ester binding domains   总被引:10,自引:0,他引:10  
A series of deletion and truncation mutants of protein kinase C (PKC) were expressed in the baculovirus-insect cell expression system in order to elucidate the ability of various domains of the enzyme to bind phorbol dibutyrate (PDBu). A PKC truncation mutant consisting of only the catalytic domain of the enzyme did not bind [3H]PDBu, whereas a PKC truncation mutant consisting of the regulatory domain (containing the tandem cysteine-rich putative zinc finger regions) bound [3H]PDBu. Deletion of the second conserved region (C2) of PKC did not abolish [3H]PDBu binding, whereas a deletion of the first conserved region (C1) of PKC, containing the two cysteine-rich sequences, completely abolished [3H]PDBu binding. Additional truncation and deletion mutants helped to localize the region necessary for [3H]PDBu binding; all PKC mutants that contained either one of the cysteine-rich zinc finger-like regions possessed phorbol ester binding activity. Scatchard analyses of these mutants indicated that each bound [3H]PDBu with equivalent affinity (21-41 nM); approximately 10-20-fold less than the native enzyme. In addition, a peptide of 146 amino acid residues from the first cysteine-rich region, as well as a peptide of only 86 amino acids residues from the second cysteine-rich region, both bound [3H]PDBu with high affinity (31 +/- 4 and 59 +/- 13 nM, respectively). These data establish that PKC contains two phorbol ester binding domains which may function in its regulation.  相似文献   

7.
Androgen receptors in crude and partially purified 105,000 X g supernatant fractions from rat testis, epididymis, and prostate were studied in vitro using a charcoal adsorption assay and sucrose gradient centrifugation. Androgen metabolism was eliminated during receptor purification allowing determination of the kinetics of [3H]-androgen-receptor complex formation. In all three tissues, receptors were found to have essentially identical capabilities to bind androgen, with the affinity for [3H] dihydrotestosterone being somewhat higher than for [3H] testosterone. Equilibrium dissociation constants for [3H] dihydrotestosterone and [3H] testosterone (KD = 2 to 5 X 10(-10) M) were estimated from independently determined rates of association (ka congruent to 6 X 10(7) M-1 h-1 for [3H] dihydrotestosterone and 2 X 10(8) M-1 h-1 for [3H] testosterone) and dissociation (t 1/2 congruent to 40 hr for [3H] dihydrotestosterone and 15 h [3H] testosterone). Evaluation of the effect of temperature on androgen receptor binding of [3H]testosterone allowed estimation of several thermodynamic parameters, including activation energies of association and dissociation (delta H congruent to 14 kcal/mol), the apparent free energy (delta G congruent to -12 kcal/mol), enthalpy (delta H congruent to -2.5 kcal/mol), and entropy (delta S congruent to 35 cal col-1 K-1). Optimum receptor binding occurred at a pH of 8. Receptor stability was greatly enhanced when bound with androgen. Receptor specificity for testosterone and dihydrotestosterone was demonstrated by competitive binding assays. The potent synthetic androgen, 7 alpha, 17 alpha-dimethyl-19-nortestosterone, inhibited binding of [3H] testosterone or [3H] dihydrotesterone nearly as well as testosterone and dihydrotestosterone while larger amounts of 5 alpha-androstane-3alpha, 17 beta-diol and nonandrogenic steroids were required. Sedimentation coefficients of androgen receptors in all unfractionated supernatants were 4 and 5 to 8 S. Differences in sedimentation coefficients were observed following (NH4)2SO4 precipitation which did not influence the binding properties of the receptors. These results, together with measurements of3alpha/beta-hydroxysteroid oxidoreductase activity in vitro, suggest that organ differences in receptor binding of [3H] dihydrotestosterone and [3H] testosterone in vivo result from relative differences in intracellular concentrations of these androgens rather than from differences in receptor affinities.  相似文献   

8.
Selective binding of [3H]bremazocine and [3H]-ethylketocyclazocine to kappa-opioid receptor sites in frog (Rana esculenta) brain membranes is irreversibly inactivated by the sulfhydryl group alkylating agent N-ethylmaleimide (NEM). Pretreatment of the membranes with kappa-selective compounds [ethylketocyclazocine (EKC), dynorphin (1-13), or U-50,488H] but not with [D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin (DAGO; mu specific ligand) or [D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin (DADLE; delta specific ligand) strongly protects the binding of the radioligands against NEM inactivation. These results provide more evidence for the existence of kappa-opioid receptors in frog brain. The relatively high concentrations of NEM that are needed to decrease the specific binding of [3H]bremazocine together with the observation of an almost complete protection of its binding sites by NaCl suggest that bremazocine may act as an opioid antagonist in frog brain.  相似文献   

9.
During rat pregnancy the placenta may provide androgens as a source of precursor for estradiol (E2) formation by the ovary. However, the relative importance of testosterone (T) and delta 4-androstenedione (delta 4 A) for ovarian E2 production is unknown. The present study therefore determined the ability of the rat placenta to convert [3H] pregnenolone (P5) substrate to [3H] delta 4 A and [3H] T, and to [3H] progesterone (P4) in vitro on Days 12, 14, 16 and 18 of gestation. The placental formation of delta 4 A and T was correlated with the uterine vein and peripheral sera concentrations of both androgens, and with their ability to be aromatized to E2 in vitro by the ovary. Placental androgen formation from P5 increased and formation of P4 decreased with advancing gestation, with the formation of delta 4 A being approximately 2- to 4-fold greater (P less than 0.01) than the formation of T on Days 12 to 16 of gestation. The conversion of P5 to delta 4 A increased (P less than 0.001) from 18 +/- 0.9 (mean percent conversion +/- SEM) on Day 12 to 53 +/- 3 and 57 +/- 4 on Days 14 and 16, respectively, then decreased (P less than 0.05) to 42 +/- 2 on Day 18. The uterine vein and peripheral sera concentrations of delta 4 A were 2- and 3-fold greater (P less than 0.05-0.001) than T, respectively, on Days 12 to 16.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
Piperazinyl benzamidines were prepared and found to bind to the rat delta (delta) opioid receptor. The most active compounds had a N,N-diethylcarboxamido group and a N-benzyl piperazine. The most potent among these was N,N-diethyl-4-[4-(phenylmethyl)-1-piperazinyl][2-(trifluoromethyl)phenyl]iminomethyl]benzamide (27) with a 1.22nM K(i) for the rat delta opioid receptor and ca. 1000 x selectivity relative to the mu opioid subtype.  相似文献   

12.
Abstract : Agonist-induced down-regulation of opioid receptors appears to require the phosphorylation of the receptor protein. However, the identities of the specific protein kinases that perform this task remain uncertain. Protein kinase C (PKC) has been shown to catalyze the phosphorylation of several G protein-coupled receptors and potentiate their desensitization toward agonists. However, it is unknown whether opioid receptor agonists induce PKC activation under physiological conditions. Using cultured SH-SY5Y neuroblastoma cells, which naturally express μ- and δ-opioid receptors, we investigated whether μ-opioid receptor agonists can activate PKC by measuring enzyme translocation to the membrane fraction. PKC translocation and opioid receptor densities were simultaneously measured by 3H-phorbol ester and [3H]diprenorphine binding, respectively, to correlate alterations in PKC localization with changes in receptor binding sites. We observed that μ-opioid agonists have a dual effect on membrane PKC density depending on the period of drug exposure. Exposure for 2-6 h to [ d -Ala2, N -Me-Phe4, Gly-ol]enkephalin or morphine promotes the translocation of PKC from the cytosol to the plasma membrane. Longer periods of opioid exposure (>12 h) produce a decrease in membrane-bound PKC density to a level well below basal. A significant decrease in [3H]diprenorphine binding sites is first observed at 2 h and continues to decline through the last time point measured (48 h). The opioid receptor antagonist naloxone attenuated both opioid-mediated PKC translocation and receptor down-regulation. These results demonstrate that opioids are capable of activating PKC, as evidenced by enhanced translocation of the enzyme to the cell membrane, and this finding suggests that PKC may have a physiological role in opioid receptor plasticity.  相似文献   

13.
Kim KW  Kim SJ  Shin BS  Choi HY 《Life sciences》2001,68(14):1649-1656
In this study, receptor binding profiles of opioid ligands for subtypes of opioid delta-receptors were examined employing [3H]D-Pen2,D-Pen5-enkephalin ([3H]DPDPE) and [3H]Ile(5,6)-deltorphin II ([3H]Ile-Delt II) in human cerebral cortex membranes. [3H]DPDPE, a representative ligand for delta1 sites, labeled a single population of binding sites with apparent affinity constant (Kd) of 2.72 +/- 0.21 nM and maximal binding capacity (Bmax) value of 20.78 +/- 3.13 fmol/mg protein. Homologous competition curve of [3H]Ile-Delt II, a representative ligand for delta2 sites, was best fit by the one-site model (Kd = 0.82 +/- 0.07 nM). Bmax value (43.65 +/- 2.41 fmol/mg) for [3H]Ile-Delt II was significantly greater than that for [3H]DPDPE. DPDPE, [D-Ala2,D-Leu5]enkephalin (DADLE) and 7-benzylidenaltrexone (BNTX) were more potent in competing for the binding sites of [3H]DPDPE than for those of [3H]Ile-Delt II. On the other hand, deltorphin II (Delt II), [D-Ser2,Leu5,Thr6]enkephalin (DSLET), naltriben (NTB) and naltrindole (NTI) were found to be equipotent in competing for [3H]DPDPE and [3H]Ile-Delt II binding sites. These results indicate that both subtypes of opioid delta-receptors, delta1 and delta2, exist in human cerebral cortex with different ligand binding profiles.  相似文献   

14.
The ability of selective mu- ([D-Ala2, NHPhe4, Gly-ol]enkephalin: DAMGO), delta1- ([D-Pen2, Pen5]enkephalin: DPDPE) and delta2- ([D-Ala2]deltorphin II: DELT II) opioid receptor agonists to activate G-proteins in the midbrain and forebrain of mice and rats was examined by monitoring the binding of guanosine-5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS). The levels of [35S]GTPgammaS binding stimulated by DAMGO in the mouse and rat midbrain were significantly greater than those by DPDPE or DELT II. However, relatively lower levels of stimulation of [35S]GTPgammaS binding by all of the agonists than would have been predicted from the receptor densities were observed in either the limbic forebrain or striatum of mice and rats. The effects of DAMGO, DPDPE and DELT II in all three regions were completely reversed by selective mu-, delta1- and delta2-antagonists, respectively. The results indicate that the levels of mu-, delta1- and delta2-opioid receptor agonist-induced G-protein activation in the midbrain are in good agreement with the previously determined distribution densities of each receptor type. Furthermore, the discrepancies observed in the forebrain might reflect differential catalytic efficiencies of receptor-G-protein coupling.  相似文献   

15.
Deltorphin N-terminal tetrapeptides [DEL A: H-Tyr-D-Met-Phe-His-R, where R = -NH2, -NH-NH2, -OCH3, -OH, -NH-NH-CO-R' (R' = -CH3 or adamantane); DEL C: H-Tyr-D-Ala-Asp-R (R = -OH, -NHCH3)], were used in a receptor binding assay with [3H]DADLE and [3H]DPDPE for delta sites, and [3H]DAGO for mu sites; tetrapeptide Ki delta values were similar with either [3H]-delta ligand. DEL A tetrapeptides C-terminally substituted with -NH2, -NH-NH2, -OCH3, and -OH had 10 to greater than 1,000-fold decreased Ki delta values, while Ki mu increased 5 to 100-fold to yield mu selectivity. C-Terminal substitution with -NH-NH2 and -OCH3 conferred highest mu selectivities; adamantyl and acetyl hydrazide derivatives were non-selective. DEL-(1-4)-OH peptides had decreased delta and mu affinities: DEL A-[Asp4]-(1-4)-OH and DEL C-(1-4)-OH had low affinities (greater than 1 microM), however, the Ki delta of the former was 5-fold greater than the latter, and the Ki mu was less by 15-fold. The data suggest that the "message" domain of DEL exhibits receptor selectivity different from that of the heptapeptide.  相似文献   

16.
Dopamine Release via Protein Kinase C Activation in the Fish Retina   总被引:2,自引:2,他引:0  
Calcium-dependent phospholipid-sensitive protein kinase [protein kinase C (PKC)] was partially purified from the carp (Cyprinus carpio) retina through DE 52 ion exchange and Cellulofine gel filtration chromatography. The phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) activated PKC in the nanomolar range. A major 38-kDa protein in the retinal supernatants (105,000 g) was phosphorylated in vitro by PKC during a short period (3 min). Other phosphoproteins also appeared during a further prolonged period (greater than 15 min). Rod-bipolar and dopamine (DA) interplexiform cells in the fish retina were immunoreactive to a monoclonal antibody to PKC (alpha/beta-subtype). The PKC antibody recognized a 78-kDa native PKC enzyme by means of an immunoblotting method. Subsequently, the effects of two kinds of PKC activators were investigated on [3H]DA release from retinal cell fractions containing DA cells that had been preloaded with [3H]DA. A phorbol ester (TPA) induced a calcium- and dose-dependent [3H]DA release during a short period (2 min), with the minimal effective dose being approximately 1 nM. Other phorbols having no tumor-promoting activity, such as 4 beta-phorbol and 4 alpha-phorbol 12,13-didecanoate, were ineffective on [3H]DA release. A synthetic diacylglycerol [1-oleoyl-2-acetylglycerol (OAG)], which is an endogenous PKC activator, was also able to induce a significant release of [3H]DA. Furthermore, TPA was found to release endogenous DA from isolated fish retina by a highly sensitive HPLC with electrochemical detection method. The OAG- or TPA-induced [3H]DA or DA release was completely blocked by inhibitors of PKC, such as 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7) and staurosporine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The involvement of protein kinase C (PKC) in the regulation of [3H]choline cotransport was studied in Limulus brain hemi-slice preparations. The PKC activators, phorbol 12-myristate 13-acetate (PMA) or phorbol 12,13-dibutyrate (PDBu), significantly decreased [3H]choline cotransport. Conversely, the PKC inhibitors, staurosporine (STAURO) and polymyxin B (PMB), each increased [3H]choline cotransport. These PKC inhibitors prevented the phorbol ester-induced reduction of transport. Both the PMA induced decrease and the STAURO induced increase in [3H]choline cotransport were paralleled by respective and comparable changes in [3H]hemicholinium-3 (HC-3) specific binding. Pre-exposure of brain hemi-slices to elevated potassium chloride (120 mM KCl) resulted in a doubling of [3H]choline cotransport and [3H]HC-3 binding. The enhancement of [3H]choline cotransport by STAURO and antecedent 120 mM KCl treatment were additive. PMA did not significantly alter elevated potassium stimulated transport. Moreover, arachidonyltrifluoromethyl ketone (AACOCF3) and quinacrine (QUIN), both phospholipase A2 (PLA2) inhibitors, markedly decreased enhanced [3H]choline transport and [3H]HC-3 binding induced by antecedent exposure to depolarizing concentrations of potassium. These results suggest that PKC and PLA2 are involved in the regulation of [3H]choline cotransport but at different regulatory sites.  相似文献   

18.
Fab fragments from a monoclonal antibody, OR-689.2.4, directed against the opioid receptor, selectively inhibited opioid binding to rat and guinea pig neural membranes. In a titratable manner, the Fab fragments noncompetitively inhibited the binding of the mu selective peptide [D-Ala2,(Me)Phe4,Gly(OH)5][3H] enkephalin and the delta selective peptide [D-Pen2,D-Pen5] [3H]enkephalin (where Pen represents penicillamine) to neural membranes. In contrast, kappa opioid binding, as measured by the binding of [3H]bremazocine to rat neural membranes and guinea pig cerebellum in the presence of mu and delta blockers, was not significantly altered by the Fab fragments. In addition to blocking the binding of mu and delta ligands, the Fab fragments displaced bound opioids from the membranes. When mu sites were blocked with [D-Ala2,(Me)Phe4,Gly(OH)5]enkephalin, the Fab fragments suppressed the binding of [D-Pen2,D-Pen5][3H]enkephalin to the same degree as when the mu binding site was not blocked. The Fab fragments also inhibited binding to the mu site regardless of whether or not the delta site was blocked with [D-Pen2,D-Pen5]enkephalin. This monoclonal antibody is directed against a 35,000-dalton protein. Since the antibody is able to inhibit mu and delta binding but not kappa opioid binding, it appears that this 35,000-dalton protein is an integral component of mu and delta opioid receptors but not kappa receptors.  相似文献   

19.
Chronic treatment of rats with delta9-tetrahydrocannabinol (delta9-THC) results in tolerance to its acute behavioral effects. In a previous study, 21-day delta9-THC treatment in rats decreased cannabinoid activation of G proteins in brain, as measured by in vitro autoradiography of guanosine-5'-O-(3-[35S]thiotriphosphate) ([35S]GTPgammaS) binding. The present study investigated the time course of changes in cannabinoid-stimulated [35S]GTPgammaS binding and cannabinoid receptor binding in both brain sections and membranes, following daily delta9-THC treatments for 3, 7, 14, and 21 days. Autoradiographic results showed time-dependent decreases in WIN 55212-2-stimulated [35S]GTPgammaS and [3H]WIN 55212-2 binding in cerebellum, hippocampus, caudate-putamen, and globus pallidus, with regional differences in the rate and magnitude of down-regulation and desensitization. Membrane binding assays in these regions showed qualitatively similar decreases in WIN 55212-2-stimulated [35S]GTPgammaS binding and cannabinoid receptor binding (using [3H]SR141716A), and demonstrated that decreases in ligand binding were due to decreases in maximal binding values, and not ligand affinities. These results demonstrated that chronic exposure to delta9-THC produced time-dependent and region-specific down-regulation and desensitization of brain cannabinoid receptors, which may represent underlying biochemical mechanisms of tolerance to cannabinoids.  相似文献   

20.
PO +Dehydrophenylalanine (delta Phe) having the E-configuration (delta EPhe ; phenyl and C = O cis) was incorporated into [Leu5]-enkephalin in order to restrict its conformation. Compared with the Z-isomer, in the radio-ligand receptor binding assays, [D-Ala2, delta EPhe4 , Leu5] enkephalin showed drastically decreased potency for the delta and mu opiate receptors, i.e., 260- and 150-fold loss of affinity, respectively. The results strongly indicate that the opiate receptors require the Z-configuration (phenyl and C = O, trans) of the delta Phe4 residue and may require a specific interrelationship between the aromatic rings of the Tyr1 and Phe4 residues in the molecule for binding. The conformation of [Leu5]-enkephalin specific for the delta receptors was analyzed and a comparison made with its crystal structure recently elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号