共查询到20条相似文献,搜索用时 0 毫秒
1.
Zolotarev IuA Dadaian AK Vas'kovskiĭ BV Kost NV Garanin SK Makarenkova VP Miasoedov NF 《Bioorganicheskaia khimiia》2000,26(7):512-515
A [3H]Dalargin preparation with a molar radioactivity of 52 Ci/mmol was obtained by the high temperature solid-state catalytic isotope exchange (HSCIE) of tritium for hydrogen at 150 degrees C. This tritium-labeled peptide was shown to completely retain its biological activity in the test of binding to opioid receptors from rat brain. The dissociation constant of the Dalargin-opioid receptor complex was found to be 4.3 nM. The dependencies of the chemical yield and the molar radioactivity on the reaction time and temperature of HSCIE were determined. The activation energy of the HSCIE reaction for the peptide was calculated to be 32 kcal/mol. The amino acid analysis showed that tritium is distributed between all the amino acid residues of [3H]Dalargin at the HSCIE reaction, with the temperature growth significantly increasing the total tritium incorporation and, especially, enhancing the radioactivity incorporation into aromatic residues. 相似文献
2.
We summarize here information on the theoretical and experimental study of high-temperature (150–200°C) solid phase catalytic isotope exchange (HSCIE) carried out with amino acids, peptides, and proteins under the action of spillover hydrogen. Main specific features of the HSCIE reaction, its mechanism, and its use for studying spatial interactions in polypeptides are discussed. A virtually complete absence of racemization makes this reaction a valuable preparative method. The main regularities of the HSCIE reaction with the participation of spillover tritium have been revealed in the case of peptides and proteins, and the dependence of reactivity of peptide fragments on the spatial organization of their molecules has been studied. An important peculiarity of this reaction is that HSCIE proceeds at 150–200°C with a high degree of chirality retention in amino acids and peptides. This is provided by its reaction mechanism, which consists in a synchronous one-center substitution at the saturated carbon atom characterized by the formation of pentacoordinated carbon and a three-center bond between the carbon and the incoming and outgoing hydrogen atoms.Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 1, 2005, pp. 3–21.Original Russian Text Copyright © 2005 by Zolotarev, Dadayan, Borisov. 相似文献
3.
4.
Gorski SA Le Duff CS Capaldi AP Kalverda AP Beddard GS Moore GR Radford SE 《Journal of molecular biology》2004,337(1):183-193
The four-helical immunity protein Im7 folds through an on-pathway intermediate that has a specific, but partially misfolded, hydrophobic core. In order to gain further insight into the structure of this species, we have identified the backbone hydrogen bonds formed in the ensemble by measuring the amide exchange rates (under EX2 conditions) of the wild-type protein and a variant, I72V. In this mutant the intermediate is significantly destabilised relative to the unfolded state (deltadeltaG(ui) = 4.4 kJ/mol) but the native state is only slightly destabilised (deltadeltaG(nu) = 1.8 kJ/mol) at 10 degrees C in 2H2O, pH* 7.0 containing 0.4 M Na2SO4, consistent with the view that this residue forms significant non-native stabilising interactions in the intermediate state. Comparison of the hydrogen exchange rates of the two proteins, therefore, enables the state from which hydrogen exchange occurs to be identified. The data show that amides in helices I, II and IV in both proteins exchange slowly with a free energy similar to that associated with global unfolding, suggesting that these helices form highly protected hydrogen-bonded helical structure in the intermediate. By contrast, amides in helix III exchange rapidly in both proteins. Importantly, the rate of exchange of amides in helix III are slowed substantially in the Im7* variant, I72V, compared with the wild-type protein, whilst other amides exchange more rapidly in the mutant protein, in accord with the kinetics of folding/unfolding measured using chevron analysis. These data demonstrate, therefore, that local fluctuations do not dominate the exchange mechanism and confirm that helix III does not form stable secondary structure in the intermediate. By combining these results with previously obtained Phi-values, we show that the on-pathway folding intermediate of Im7 contains extensive, stable hydrogen-bonded structure in helices I, II and IV, and that this structure is stabilised by both native and non-native interactions involving amino acid side-chains in these helices. 相似文献
5.
Yu. A. Zolotarev Yu. Yu. Firsova A. Abaimov A. K. Dadayan V. S. Kosik A. V. Novikov N. V. Krasnov B. V. Vaskovskii I. V. Nazimov G. I. Kovalev N. F. Myasoedov 《Russian Journal of Bioorganic Chemistry》2009,35(3):296-305
Abstact A reaction of high-temperature solid-phase catalytic isotope exchange (HSCIE) was studied for the preparation of tritium-
and deuterium-labeled ligands of glutamate and dopamine receptors. Tritium-labeled (5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclopenten-5,1-imine ([G-3H]MK-801) and R(+)-7-hydroxy-N,N-di-n-propyl-2-aminotetraline ([G-3H]-7-OH-DPAT) were obtained with a specific activity of 210 and 120 Ci/mol, respectively. The isotopomeric distribution of
deuterium-labeled ligands was studied using time-of-flight mass-spectrometer MX 5310 (ESI-o-TOF) with electrospray and orthogonal
ion injection. Mean deuterium incorporation per ligand molecule was 11.09 and 3.21 atoms for [G-3H]MK-801 and [G-3H]-7-OH-DPAT, respectively. The isotope label was shown to be distributed all over the ligand molecule. The radioreceptor
binding of tritium-labeled ligands [G-3H]MK-801 and [G-3H]-7-OH-DPAT was analyzed using the brain structure of Vistar rats. It was demonstrated that [G-3H]MK-801 specifically binds to hippocampus membranes with K
d 8.3 ± 1.4 nM, B
max being 3345 ± 300 fmol/mg protein. The [G-3H]-7-OH-DPAT ligand specifically binds to rat striatum membranes with K
d 10.01 ± 0.91 nM and B
max 125 ± 4.5 fmol/mg protein. It was concluded that the HSCIE reaction can be used for the preparation of highly tritium-labeled
(+)-MK-801 and 7-OH-DPAT with retention of their physiological activities.
Original Russian Text ? Yu.A. Zolotarev, Yu.Yu. Firsova, A. Abaimov, A.K. Dadayan, V.S. Kosik, A. V. Novikov, N.V. Krasnov,
B. V. Vaskovskii, I.V. Nazimov, G.I. Kovalev, N.F. Myasoedov, 2009, published in Bioorganicheskaya Khimiya, 2009, Vol. 35,
No. 3, pp. 323–333. 相似文献
6.
Zolotarev YA Dadayan AK Borisov YA Dorokhova EM Kozik VS Vtyurin NN Bocharov EV Ziganshin RN Lunina NA Kostrov SV Ovchinnikova TV Myasoedov NF 《Bioorganic chemistry》2003,31(6):453-463
The effect of the three-dimensional structure of polypeptides and proteins on their ability to undergo isotopic exchange under the action of spillover hydrogen (SH) in the high temperature solid state catalytic isotope exchange reaction (HSCIE) was theoretically and experimentally studied. The HSCIE reaction in the beta-galactosidase protein from Thermoanaerobacter ethanolicus (83kDa) was studied. The influence of the beta-galactosidase structure on isotopic exchange as peptide fragments with spillover tritium was studied. The most accessible peptide fragment, which does not contribute to alpha-helix and beta-strand formations (KEMQKE215-220), had the largest relative reactivity. The one located in the contact area between the subunits (YLRDSE417-422) showed the smallest relative reactivity. The relative reactivities of these peptides differ more than 150 times. Data collected during a study devoted to the HSCIE reaction of the beta-galactosidase protein indicate that the HSCIE reaction might be employed for acquiring information about their three-dimensional structure and protein-protein interactions. The results of ab initio calculations have shown that alpha-helix formation in polypeptides decreases the reactivity in HSCIE. Hydrogen exchange in the alpha-helical fragment Trp1-Leu8 of zervamycin IIB was also analyzed using theoretical methods. It was shown by ab initio quantum-chemical calculations that the high degree of substitution of C(alpha)H for tritium in Gln3 might be associated with the participation of electron donor O and N atoms in transition state stabilization in the HSCIE reaction. 相似文献
7.
Differences in hydrogen exchange behavior between the oxidized and reduced forms of Escherichia coli thioredoxin.
下载免费PDF全文

S. M. Kaminsky F. M. Richards 《Protein science : a publication of the Protein Society》1992,1(1):10-21
Amide proton exchange of thioredoxin is used to monitor the structural effects of reduction of its single disulfide. An effective 3-5-proton difference between the oxidized and reduced protein form is observed early in proton out-exchange of the whole protein, which is independent of temperature in the range of 5-45 degrees C, indicating that redox-sensitive changes are probably not due to low-energy structural fluctuations. Medium resolution hydrogen exchange experiments have localized the redox-sensitive amide protons to two parts of the sequence that are distant from each other in the three-dimensional structure: the active-site turn and the first beta-strand. The sum of the proton differences observed in the peptides from these regions is equal to that of the whole protein, indicating that all redox-sensitive hydrogen exchange effects are observed in the peptide experiments. A model combining structural changes within the protein matrix with changes in the surface hydration properties is proposed as a mechanism for the communication between distant sites within the protein. Sound velocity and density measurements of reduced and oxidized thioredoxin are presented in the accompanying paper (Kaminsky, S.M. & Richards, F.M., 1992, Protein Sci. 1, 22-30). 相似文献
8.
Yawen Bai 《Journal of biomolecular NMR》1999,15(1):65-70
The classical Linderstrøm-Lang hydrogen exchange (HX) model is extended to describe the relationship between the HX behaviors (EX1 and EX2) and protein folding kinetics for the amide protons that can only exchange by global unfolding in a three-state system including native (N), intermediate (I), and unfolded (U) states. For these slowly exchanging amide protons, it is shown that the existence of an intermediate (I) has no effect on the HX behavior in an off-pathway three-state system (IUN). On the other hand, in an on-pathway three-state system (UIN), the existence of a stable folding intermediate has profound effect on the HX behavior. It is shown that fast refolding from the unfolded state to the stable intermediate state alone does not guarantee EX2 behavior. The rate of refolding from the intermediate state to the native state also plays a crucial role in determining whether EX1 or EX2 behavior should occur. This is mainly due to the fact that only amide protons in the native state are observed in the hydrogen exchange experiment. These new concepts suggest that caution needs to be taken if one tries to derive the kinetic events of protein folding from equilibrium hydrogen exchange experiments. 相似文献
9.
The rate of exchange of peptide group NH hydrogens with the hydrogens of aqueous solvent is sensitive to neighboring side chains. To evaluate the effects of protein side chains, all 20 naturally occurring amino acids were studied using dipeptide models. Both inductive and steric blocking effects are apparent. The additivity of nearest-neighbor blocking and inductive effects was tested in oligo-and polypeptides and, suprisingly, confirmed. Reference rates for alanine-containing peptides were determined and effects of temperature considered. These results provide the information necessary to evaluate measured protein NH to ND exchange rates by comparing them with rates to be expected for the same amino acid sequence is unstructured aligo- and polypeptides. The application of this approach to protein studies is discussed. © 1993 Wiley-Liss, Inc. 相似文献
10.
R B Gregory 《Biopolymers》1988,27(11):1699-1709
Hydrogen isotope exchange rates for lysozyme in glycerol cosolvent mixtures [D. G. Knox and A. Rosenberg (1980) Biopolymers 19 , 1049–1068] have been analyzed as functions of solvent viscosity and glycerol activity in an attempt to determine which solvent properties influence protein internal dynamics. The effect of glycerol on the fast- and slow-exchanging protons is different. Slow-exchanging protons [H(t) < 20] are slowed by ever-increasing amounts as H(t) decreases. However, comparison with data for the effect of glycerol on the thermal unfolding of lysozyme [K. Gekko (1982) J. Biochem. 19 , 1197–1204] indicates that the large decrease in exchange rates for the slow protons is not consistent with a local unfolding mechanism of exchange. These effects are also too large to be easily rationalized in terms of solvent viscosity. Instead, we suggest that the large effect of glycerol on exchange of the slow protons is due to a “compression” of the protein, as a result of thermodynamically unfavorable interactions of glycerol with the protein surface. This reduces the protein void volume, which in turn decreases the probability of conformational transitions required for exchange of the slowest protons. Present data do not allow a distinction to be made between thermodynamic (glycerol activity) and dynamic (solvent viscosity) influences on exchange rates for the fast-exchanging protons, although the effect of glycerol on these protons is also probably too large to be consistent with a local unfolding mechanism. In this case, glycerol decreases the rate of catalyst diffusion within the protein matrix, either by decreasing the probabilities or amplitudes of “gating” reactions that allow passage of the catalyst from the solvent to the exchange site, or by increasing the relaxation times for these conformational rearrangements. 相似文献
11.
Native state hydrogen exchange study of suppressor and pathogenic variants of transthyretin 总被引:3,自引:0,他引:3
Transthyretin (TTR) is an amyloidogenic protein whose aggregation is responsible for numerous familial amyloid diseases, the exact phenotype being dependent on the sequence deposited. Many familial disease variants display decreased stability in vitro, and early onset pathology in vivo. Only subtle structural differences were observed upon crystallographic comparison of the disease-associated variants to the T119M interallelic trans-suppressor. Herein three human TTR single amino acid variant homotetramers including two familial amyloidotic polyneuropathy (FAP) causing variants (V30M and L55P), and a suppressor variant T119M (known to protect V30M carriers from disease by trans-suppression) were investigated in a residue-specific fashion by monitoring (2)H-(1)H exchange employing NMR spectroscopy. The measured protection factors for slowly exchanging amide hydrogen atoms reveal destabilization of the protein core in the FAP variants, the core consisting of strands A, B, E and G and the loop between strands A and B. The same core exhibits much slower exchange in the suppressor variant. Accelerated exchange rates were observed for residues at the subunit interfaces in L55P, but not in the T119M or V30M TTR. The correlation between destabilization of the TTR core strands and the tendency for amyloid formation supports the view that these strands are involved in amyloidogenicity, consistent with previous (2)H-(1)H exchange analysis of the WT-TTR amyloidogenic intermediate. 相似文献
12.
Amide protection factors have been determined from NMR measurements of hydrogen/deuterium amide NH exchange rates measured on assigned signals from Lactobacillus casei apo-DHFR and its binary and ternary complexes with trimethoprim (TMP), folinic acid and coenzymes (NADPH/NADP(+)). The substantial sizes of the residue-specific DeltaH and TDeltaS values for the opening/closing events in NH exchange for most of the measurable residues in apo-DHFR indicate that sub-global or global rather than local exchange mechanisms are usually involved. The amide groups of residues in helices and sheets are those most protected in apo-DHFR and its complexes, and the protection factors are generally related to the tightness of ligand binding. The effects of ligand binding that lead to changes in amide protection are not localised to specific binding sites but are spread throughout the structure via a network of intramolecular interactions. Although the increase in protein stability in the DHFR.TMP.NADPH complex involves increased ordering in the protein structure (requiring TDeltaS energy) this is recovered, to a large extent, by the stronger binding (enthalpic DeltaH) interactions made possible by the reduced motion in the protein. The ligand-induced protection effects in the ternary complexes DHFR.TMP.NADPH (large positive binding co-operativity) and DHFR.folinic acid.NADPH (large negative binding co-operativity) mirror the co-operative effects seen in the ligand binding. For the DHFR.TMP.NADPH complex, the ligand-induced protection factors result in DeltaDeltaG(o) values for many residues being larger than the DeltaDeltaG(o) values in the corresponding binary complexes. In contrast, for DHFR.folinic acid.NADPH, the DeltaDeltaG(o) values are generally smaller than many of those in the corresponding binary complexes. The results indicate that changes in protein conformational flexibility on formation of the ligand complex play an important role in determining the co-operativity in the ligand binding. 相似文献
13.
Brorsson AC Kjellson A Aronsson G Sethson I Hambraeus C Jonsson BH 《Journal of molecular biology》2004,340(2):333-344
We have analysed the folding energy landscape of the 72 amino acid protein MerP by monitoring native state hydrogen exchange as a function of temperature in the range of 7-55 degrees C. The temperature dependence of the hydrogen exchange has allowed us to determine DeltaG, DeltaH and DeltaC(p) values for the conformational processes that permit hydrogen exchange. When studied with the traditional probes, fluorescence and CD, MerP appears to behave as a typical two-state protein, but the results from the hydrogen exchange analysis reveal a much more complex energy landscape. Analysis at the individual amino acid level show that exchange is allowed from an ensemble of partially unfolded structures (i.e. intermediates) in which the stabilities at the amino acid level form a broad distribution throughout the protein. The formation of partially unfolded structures might contribute to the unusually slow folding of MerP. 相似文献
14.
15.
16.
Unfolding and refolding of rabbit muscle triosephosphate isomerase (TIM), a model for (betaalpha)8-barrel proteins, has been studied by amide hydrogen exchange/mass spectrometry. Unfolding was studied by destabilizing the protein in guanidine hydrochloride (GdHCl) or urea, pulse-labeling with 2H2O and analyzing the intact protein by HPLC electrospray ionization mass spectrometry. Bimodal isotope patterns were found in the mass spectra of the labeled protein, indicating two-state unfolding behavior. Refolding experiments were performed by diluting solutions of TIM unfolded in GdHCl or urea and pulse-labeling with 2H2O at different times. Mass spectra of the intact protein labeled after one to two minutes had three envelopes of isotope peaks, indicating population of an intermediate. Kinetic modeling indicates that the stability of the folding intermediate in water is only 1.5 kcal/mol. Failure to detect the intermediate in the unfolding experiments was attributed to its low stability and the high concentrations of denaturant required for unfolding experiments. The folding status of each segment of the polypeptide backbone was determined from the deuterium levels found in peptic fragments of the labeled protein. Analysis of these spectra showed that the C-terminal half folds to form the intermediate, which then forms native TIM with folding of the N-terminal half. These results show that TIM folding fits the (4+4) model for folding of (betaalpha)8-barrel proteins. Results of a double-jump experiment indicate that proline isomerization does not contribute to the rate-limiting step in the folding of TIM. 相似文献
17.
The abundance of the hydrogen isotope deuterium (D) in tree rings is an attractive record of climate; however, use of this record has proved difficult so far, presumably because climatic and physiological influences on D abundance are difficult to distinguish. Using D labelling, we created a D gradient in trees. Leaf soluble sugars of relatively low D abundance entered cellulose synthesis in stems containing strongly D-labelled water. We used nuclear magnetic resonance (NMR) spectroscopy to quantify D in the C-H groups of leaf glucose and of tree-ring cellulose. Ratios of D abundances of individual C-H groups of leaf glucose depended only weakly on leaf D labelling, indicating that the D abundance pattern was determined by physiological influences. The D abundance pattern of tree-ring cellulose revealed C-H groups that exchanged strongly (C(2)-H) or weakly (C(6)-H2) with water during cellulose synthesis. We propose that strongly exchanging C-H groups of tree-ring cellulose adopt a climate signal stemming from the D abundance of source water. C-H groups that exchange weakly retain their D abundance established in leaf glucose, which reflects physiological influences. Combining both types of groups may allow simultaneous reconstruction of climate and physiology from tree rings. 相似文献
18.
The isotope exchange between35S-labeled sulfur compounds of sulfate (SO42–), elemental sulfur (S0), polysulfide (Sn2–), hydrogen sulfide (HS–: H2S + HS– + S2–), iron sulfide (FeS), and pyrite (FeS2) was studied at pH 7.6 and 20 °C in anoxic, sterile seawater. Isotope exchange was observed between S0, S22– HS–, and FeS, but not between35S labeled SO42– or FeS2 and the other sulfur compounds. Polysulfide mediated the isotope exchange between S0 and bisulfide (HS–). The isotope exchange between S0 and Sn2–) reached 50% of equilibrium within < 2 min while exchange between S22– and HS– approached equilibrium within 0.5-1 h. In all the experiments HS–, revealed a fraction exchange from 0.79 to 1.00. Isotope exchange between S2– and FeS took place only via S22– and/or HS–. The isotope exchange between iron sulfide and the other sulfur compounds was not complete within 24 h as shown by a fraction exchange of 0.07–0.83. This lack of equilibrium (fraction exchange < 1) was due to the isotope exchange between dissolved compounds and surfaces of sulfur particles. The isotopic exchange reactions limit the usefulness of radiotracers in process studies of the inorganic sulfur species. Exchange reactions will also affect the stable isotope distribution among the sulfur species. The kinetics of the isotopic exchange reactions, however, depend on both pH and temperature. 相似文献
19.
Carbon isotope composition in relation to leaf gas exchange and environmental conditions in Hawaiian Metrosideros polymorpha populations 总被引:3,自引:0,他引:3
Summary Carbon isotope composition, photosynthetic gas exchange, and nitrogen content were measured in leaves of three varieties of Metrosideros polymorpha growing in sites presenting a variety of precipitation, temperature and edaphic regimes. The eight populations studied could be divided into two groups on the basis of their mean foliar 13C values, one group consisting of three populations with mean 13C values ca.-26 and another group with 13C values ca.-28. Less negative 13C values appeared to be associated with reduced physiological availability of soil moisture resulting from hypoxic conditions at a poorly drained high elevation bog site and from low precipitation at a welldrained, low elevation leeward site. Gas exchange measurements indicated that foliar 13C and intrinsic wateruse efficiency were positively correlated. Maximum photosynthetic rates were nearly constant while maximum stomatal conductance varied substantially in individuals with foliar 13C ranging from-29 to-24. In contrast with the patterns of 13C observed, leaf nitrogen content appeared to be genetically determined and independent of site characteristics. Photosynthetic nitrogenuse efficiency was nearly constant over the range of 13C observed, suggesting that a compromise between intrinsic water- and N-use efficiency did not occur. In one population variations in foliar 13C and gas exchange with leaf cohort age, caused the ratio of intercellular to atmospheric partial pressure of CO2 predicted from gas exchange and that calculated from 13C to be in close agreement only in the two youngest cohorts of fully expanded leaves. The results indicated that with suitable precautions concerning measurement protocol, foliar 13C and gas exchange measurements were reliable indicators of potential resource use efficiency by M. polymorpha along environmental gradients. 相似文献
20.
The exchange kinetics for the slowly exchanging amide hydrogens in three defensins, rabbit NP-2, rabbit NP-5, and human HNP-1, have been measured over a range of pH at 25°C using 1D and 2D NMR methods. These NHs have exchange rates 102 to 105 times slower than rates from unstructured model peptides. The observed distribution of exchange rates under these conditions can be rationalized by intramolecular hydrogen bonding of the individual NHs, solvent accessibility of the NHs, and local fluctuations in structure. The temperature dependencies of NH chemical shifts (NH temperature coefficients) were measured for the defensins and these values are consistent with the defensin structure. A comparison is made between NH exchange kinetics, NH solvent accessibility, and NH temperature coefficients of the defensins and other globular proteins. Titration of the histidine side chain in NP-2 was examined and the results are mapped to the three-dimensional structure. © 1994 Wiley-Liss, Inc. 相似文献