首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In carnation shoots (Dianthus caryophyllus cv. Killer), hyperhydricity was induced in in vitro culture using a low agar concentration. Using transmission electron microscopy, cytochemical techniques and immunolocation of JIM5 and JIM7 pectin epitopes, we followed the sub-cellular modifications of cell walls in relation to peroxidase activity and hydrogen peroxide accumulation during hyperhydricity induction. Peroxidase activity revealed a significant induction of the stomatal and epidermal cells as well as of the intercellular spaces of hyperhydric leaves. Similarly, hydrogen peroxide accumulated in the epidermal cell walls and the intercellular spaces of hyperhydric leaves. Immunolocation of an epitope recognised by the JIM5 antibody revealed the main unesterified nature of the cell walls. Such an epitope was located in the epidermal cell walls as well as in the corners of cell junctions in control leaves. However, hyperhydric leaves showed a total reduction of JIM5 labelling in the corners of cell junctions and a significant reduction of the intercellular spaces and the middle lamella. Highly-methylsterified pectin, recognised by the JIM7 antibody, was present to a slight extent in cell walls in control and hyperhydric leaves. We propose that the altered anatomy observed in hyperhydric carnation leaves could be regulated by the concomitant actions of pectin methyl esterases and free radicals, modifying the structure of the pectin and polysaccharides of the cell walls.  相似文献   

2.
We studied oxidative stress and peroxidase activity resulting from application of excess copper in the nutrient medium on the roots of young bean seedlings. The change in H2O2 content, lipid peroxidation and antioxidant enzymes activities were quantified and located. Excess of copper caused a loss of membrane integrity and the formation of hydrogen peroxide (H2O2) as visualized in the transmission electron microscopy and measured using spectrophotometry. H2O2 accumulated in the intercellular spaces and in the cell wall. The production of H2O2 was accompanied by an increase in the activity of soluble and ionic GPX (guaiacol peroxidase, EC 1.11.17), CAPX (coniferyl alcohol peroxidase) and NADH oxidase.  相似文献   

3.
Conrad K 《Bioresource technology》2008,99(17):8476-8484
Plant fibres are capacious for sorption of metal ions, and can be used in water cleaning. Knowledge about the sorption will help in selection of the fibre and optimisation of its chemical modification, if any. The aim of this paper is to investigate the connection, if any, between the distribution of lignin and pectin and the loading of Pb and Zn on coir (mesocarp fibres from Cocos nucifera L.). The coir consisted mainly of xylem and a fibre sheath. The lignin was evenly distributed in the cell walls of the fibre sheath, but in the xylem, there was no detectable content in the compound middle lamella, and a smaller content of lignin in the secondary walls than in the walls of the fibre sheath. The only detectable content of pectin in the fibre sheath walls was in the middle lamella, cell corners and extracellular matrix, while in the xylem, the pectin was almost evenly distributed in the wall, with a higher concentration in the middle lamella and cell corners. All cell walls facing the lacuna had a high content of pectin. The metal ions were mainly loaded on the xylem and cell walls facing the lacuna, maybe with an additional trend to be loaded on the large fibres. Lead was distributed on and across the whole secondary wall. Zinc was loaded on the secondary walls, but there was no information about the distribution across the wall. If there is a simple correlation between the loading of metal ions and the distribution of lignin or pectin, these investigations point at no correlation with lignin and a positive correlation with pectin. It has to be stressed that these conclusions are made on limited material and are therefore preliminary in nature.  相似文献   

4.
The cathodic reduction of oxygen to hydrogen peroxide, the current efficiency for the production of H2O2 and the oxidation of veratryl alcohol with an in situ generated hydrogen peroxide‐lignin peroxidase complex were studied in this paper. The complex was prepared by utilizing a novel preparation technique in an electrochemical reactor. The oxidation of veratryl alcohol (VA; 3,4‐dimethoxybenzyl alcohol) was carried out with or without lignin peroxidase under an electric field. The redox properties of veratryl alcohol on a carbon electrode in the presence of lignin peroxidase have been investigated using cyclic voltammetry. The kinetics of veratryl alcohol oxidation in an electrochemical reactor were compared to the oxidation when hydrogen peroxide was supplied externally. Further, the oxidation of veratryl alcohol by lignin peroxidase was optimized in terms of enzyme dosage, pH, and electrical potential. The novel electroenzymatic method was found to be effective using in situ generated hydrogen peroxide for the oxidation of veratryl alcohol by lignin peroxidase.  相似文献   

5.
利用紫外光显微镜、透射电子显微镜结合免疫胶体金标记,研究了杜仲(Eucommia ulmoides Oliv.)次生木质部分化过程中木质素与半纤维素组分(木葡聚糖和木聚糖)在细胞壁分布的动态变化。在形成层及细胞伸展区域,细胞壁具有木葡聚糖的分布,而没有木聚糖和木质素沉积,随着次生壁S1层的形成,木质素出现在细胞角隅和胞间层,木聚糖开始出现在S1层中,此时木葡聚糖则分布在初生壁和胞间层;随着次生,壁S2层及S3层的形成和加厚,木质逐逐步由细胞角隅和胞间层扩展到S1、S2和S3层,其沉积呈现出不均匀的块状或片状沉积模式,在次生壁各层形成与其木质化的同时,木聚糖逐渐分布于整个次生壁中,而木糖聚糖仍局限分布于初生壁和胞间层。结果表明,随着细胞次生壁的形成与木质化,细胞壁结构发生较大变化。细胞壁的不同区域,如细胞角隅、胞间层、初生壁和次生壁各层,具有不同的半纤维素组成,其与木质等细胞壁组分结构构成不同的细胞壁分子结构。  相似文献   

6.
The dynamic changes in the distribution of lignin and hemicelluloses (xylans and xyloglucans) in cell walls during the differentiation of secondary xylem in Eucommia ulmoides Oliv. were studied by means of ultraviolet light microscopy and transmission electron microscopy combined with immunogold labelling. In the cambial zone and cell expansion zone, xyloglucans were localized both in the tangential and radial walls, but no xylans or lignin were found in these regions. With the formation of secondary wall S1 layer, lignin occurred in the cell corners and middle lamella, while xylans appeared in S1 layer, and xyloglucans were localized in the primary walls and middle lamella. In pace with the formation of secondary wall S2 and S3 layer, lignification extended to S1, S2 and S3 layer in sequence, showing a patchy style of lignin deposition. Concurrently, xylans distributed in the whole secondary walls and xyloglucans, on the other hand, still localized in the primary walls and middle lamella. The results indicated that along with the formation and lignification of the secondary wall, great changes had taken place in the cell walls. Different parts of cell walls, such as cell corners, middle lamella, primary walls and various layers of secondary walls, had different kinds of hemicelluloses, which formed various cell wall architecture combined with lignin and other cell wall components.  相似文献   

7.
STAINED PECTIN AS SEEN IN THE ELECTRON MICROSCOPE   总被引:4,自引:0,他引:4       下载免费PDF全文
This paper describes electron microscopic studies on the distribution of pectin within young plant cells. Dark-grown onion roots, from 1 to 3 mm. in length, were used. In order to make the pectic substances selectively dense to electrons, they were first reacted with basic hydroxylamine. This treatment produces pectic hydroxamic acids, which in turn were treated with ferric ion to form insoluble complexes. The tissue was imbedded, sectioned, and then observed by electron microscopy. Dense deposits of iron were found in the region of the middle lamella and in a second area near the surface of the primary wall. Transverse walls of varying maturity were noted. The pectin of the more frequent, immature cross-walls, leads directly into the inner reacting layer of the axillary (longitudinal) wall. The pectin of the more mature transverse walls becomes, on the other hand, intimately associated with the middle lamella pectin of the axillary wall. It is shown that the pectin of the middle lamella represents the hot water-soluble portion of the pectic substance, while the internal layer of the axillary wall and the transverse wall pectin represent the so called residual fraction. Hot versene extraction removes essentially all electron-dense material.  相似文献   

8.
The active site amino acid residues of lignin peroxidase are homologous to those of other peroxidases; however, in contrast to other peroxidases, no pH dependence is observed for the reaction of ferric lignin peroxidase with H2O2 to form compound I (Andrawis, A., Johnson, K.A., and Tien, M. (1988) J. Biol. Chem. 263, 1195-1198). Chloride binding is used in the present study to investigate this reaction further. Chloride binds to lignin peroxidase at the same site as cyanide and hydrogen peroxide. This is indicated by the following. 1) Chloride competes with cyanide in binding to lignin peroxidase. 2) Chloride is a competitive inhibitor of lignin peroxidase with respect to H2O2. The inhibition constant (Ki) is equal to the dissociation constant (Kd) of chloride at all pH values studied. Chloride binding is pH dependent: chloride binds only to the protonated form of lignin peroxidase. Transient-state kinetic studies demonstrate that chloride inhibits lignin peroxidase compound I formation in a pH-dependent manner with maximum inhibition at low pH. An apparent pKa was calculated at each chloride concentration; the pKa increased as the chloride concentration increased. Extrapolation to zero chloride concentration allowed us to estimate the intrinsic pKa for the ionization in the lignin peroxidase active site. The results reported here provide evidence that an acidic ionizable group (pKa approximately 1) at the active site controls both lignin peroxidase compound I formation and chloride binding. We propose that the mechanism for lignin peroxidase compound I formation is similar to that of other peroxidases in that it requires the deprotonated form of an ionizable group near the active site.  相似文献   

9.
Monochlorodimedone (MCD), commonly used as a halogen acceptor for haloperoxidase assays, was oxidized by hydrogen peroxide in the presence of lignin peroxidase isoenzymes H2 and H8. When oxidized, it produced a weak absorption band with an intensity that varied with pH. This absorbance was used as a simple method for the product analysis because it disappeared when MCD was brominated or chlorinated. We assessed the activity of the lignin peroxidases for oxidation of bromide by measuring the bromination of MCD, the formation of tribromide, the bromide-mediated oxidation of glutathione, and the bromide-mediated catalase-like activity. We analyzed the reaction products of MCD and the halide-mediated oxidation of glutathione when bromide was replaced by chloride. These enzymes demonstrated no significant activity for oxidation of chloride. Unlike other peroxidases, the lignin peroxidases exhibited similar pH-activity curves for the iodide and bromide oxidations. The optimum pH for activity was about 2.5. Surprisingly, this pH dependence of lignin peroxidase activity for the halides was nearly the same in the reactions with hydrogen donors, such as hydroquinone and guaiacol. The results suggested that protonation of the enzymes with pKa approximately 3.2 is necessary for the catalytic function of lignin peroxidases, irrespective of whether the substrates are electron or hydrogen donors. These unique reaction profiles of lignin peroxidases are compared to those of other peroxidases, such as lactoperoxidase, bromoperoxidase, chloroperoxidase, and horseradish peroxidase. Isozyme H2 was more active than isozyme H8, but isozyme H8 was more stable at very acidic pH.  相似文献   

10.
An effluent containing soluble lignin fragments was treated with potato-polyphenoloxidases (PPO) or horseradish peroxidase/hydrogen peroxide system (HRP/H(2)O(2)). In both cases the reaction was evidenced by the formation of a brown precipitate that was a consequence of the polymerization of lignin fragments. The effect of reaction time, pH, and amount of soluble lignin per unit of enzyme activity on the insolubilization yield was evaluated for PPO-initiated reactions. For HRP-initiated reactions, the amount of H(2)O(2) per unit of enzyme activity was also evaluated. Mathematical models were calculated to predict the insolubilization yield as a function of the significant variables. Based on these models, the insolubilization reaction was optimized and reached maximal values of ca. 50% in both reaction systems. Higher insolubilization yields were not achieved. Chemical characterization of the soluble lignin fragments indicated that the insolubilization yield could not be improved, because the lignin fragments had limited amounts of free phenolic substructures available for the initial steps of the polymerization reaction.  相似文献   

11.
The mechanism of organosulfur oxygenation by peroxidases [lactoperoxidase (LPX), chloroperoxidase, thyroid peroxidase, and horseradish peroxidase] and hydrogen peroxide was investigated by use of para-substituted thiobenzamides and thioanisoles. The rate constants for thiobenzamide oxygenation by LPX/H2O2 were found to correlate with calculated vertical ionization potentials, suggesting rate-limiting single-electron transfer between LPX compound I and the organosulfur substrate. The incorporation of oxygen from 18O-labeled hydrogen peroxide, water, and molecular oxygen into sulfoxides during peroxidase-catalyzed S-oxygenation reactions was determined by LC- and GC-MS. All peroxidases tested catalyzed essentially quantitative oxygen transfer from 18O-labeled hydrogen peroxide into thiobenzamide S-oxide, suggesting that oxygen rebound from the oxoferryl heme is tightly coupled with the initial electron transfer in the active site. Experiments using H2(18)O2, 18O2, and H2(18)O showed that LPX catalyzed approximately 85, 22, and 0% 18O-incorporation into thioanisole sulfoxide oxygen, respectively. These results are consistent with a active site controlled mechanism in which the protein radical form of LPX compound I is an intermediate in LPX-mediated sulfoxidation reactions.  相似文献   

12.
Summary. The nature of pectins (acidic, methyl-, or acetyl-esterified) in the shoot meristem of Sinapis alba was assessed by immunocytochemistry with the 2F4 monoclonal antibody in light and electron microscopy. This antibody is specific for “egg-boxes” – the polygalacturonic acid conformation induced by calcium as described in Liners et al. (Plant Physiol. 99: 1099–1104, 1992). Hardly any acidic pectin was detected in meristem walls; the pectins were largely methyl-esterified and esterified by acetyl groups and/or other esters. After in situ chemical or enzymatic de-esterification, labeling was distributed over the primary wall and the middle lamella of meristematic cells. Acidic pectin and Ca2+-cross-linked homogalacturonans were absent from the pit fields, where plasmodesmata traverse the middle lamella. The type and distribution of pectins are discussed in relation to cellular adhesion between active meristem cells. Correspondence and reprints: Unité de Recherches en Biologie Cellulaire Végétale, Département de Biologie, Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles 61, 5000 Namur, Belgium.  相似文献   

13.
Formation of macromolecular lignin in ginkgo cell walls. In the lignifying process of xylem cell walls, macromolecular lignin is formed by polymerization of monolignols on the pectic substances, hemicellulose and cellulose microfibrils that have deposited prior to the start of lignification. Observation of lignifying secondary cell walls of ginkgo tracheids by field emission scanning electron microscopy suggested that lignin-hemicellulose complexes are formed as tubular bead-like modules surrounding the cellulose microfibrils (CMFs), and that the complexes finally fill up the space between CMFs. The size of one tubular bead-like module in the middle layer of the secondary wall (S2) was tentatively estimated to be about 16+/-2 nm in length, about 25+/-1 nm in outer diameter, with a wall thickness of 4+/-2 nm; the size of the modules in the outer layer of the secondary wall (S1) was larger and they were thicker-walled than that in the middle layer (S2). Aggregates of large globular modules were observed in the cell corner and compound middle lamella. It was suggested that the structure of non-cellulosic polysaccharides and mode of their association with CMFs may be important factors controlling the module formation and lignin concentration in the different morphological regions of the cell wall.  相似文献   

14.
Mast cells, when incubated in vitro with hydrogen peroxide (H2O2) and iodide, are cytotoxic to schistosomula of Schistosoma mansoni, as determined morphologically by dye exclusion, motility, and refractility and by transmission and scanning electron microscopy. When intact mast cells were incubated with schistosomula, mast cell degranulation with extracellular release of mast cell granules (MCG) was only observed in the presence of added H2O2 (10(-4) M). The secreted MCG, which contain small amounts of endogenous peroxidase activity, adhered to the surface of schistosomula. By 15 to 30 min, the mast cell-H2O2 system in the presence of iodide (10(-4) M) produced marked disruption of the tegumental and internal structures of the schistosomula. No helminthic damage was noted if any component of the incubation mixture (mast cells, H2O2 or iodide) was omitted. MCG could substitute for intact mast cells in the H2O2 and iodide-dependent cytotoxic system; MCG-mediated killing of schistosomula was inhibited by the hemeprotein inhibitor azide, suggesting that the cytotoxic reaction required endogenous peroxidase. The cytotoxicity was increased by eosinophil peroxidase bound to the MCG surface. These findings suggest a mechanism by which mast cells may contribute to the host cytotoxic response to helminths. H2O2 formed by nearby inflammatory cells may induce mast cell secretion, and the released MCG, through their endogenous peroxidase content (or bound eosinophil or neutrophil peroxidase), may react with H2O2 and a halide to form a system toxic to the adjacent helminth.  相似文献   

15.
A biosensor to detect hydrogen peroxide, by coulometry, down to submicromolar concentration using a monomolecular layer of horseradish peroxidase was developed. In this device 0.3 pmol of the enzyme were covalently immobilized on the glass surface of the biosensor and the enzyme layer was characterized by atomic force microscopy and activity measurements. The glass surface bearing the peroxidase was faced to a carbon electrode in a cell of 1 microl of active volume. The polarization of the working electrode at -100 mV versus Ag/AgCl, in the presence of 1,4-hydroquinone as mediator, allowed the fast reduction of the injected hydrogen peroxide via the hydroquinone-peroxidase system. This device permitted to measure the total number of H(2)O(2) molecules present in the cell in the concentration range of 0.3-100 microM H(2)O(2), with a sensitivity of 196 nC/microM H(2)O(2), which is close to the theoretical value (193 nC/microM).  相似文献   

16.
Activity of a number of enzymes related to lignin formation was measured in a Picea abies (L) Karsten suspension culture that is able to produce native-like lignin into the nutrient medium. This cell culture is an attractive model for studying lignin formation, as the process takes place independently of the complex macromolecular matrix of the native apoplast. Suspension culture proteins were fractionated into soluble cellular proteins, ionically and covalently bound cell wall proteins and nutrient medium proteins. The nutrient medium contained up to 5.3% of total coniferyl alcohol peroxidase (EC 1.11.1.7) activity and a significant NADH oxidase activity that is suggested to be responsible for hydrogen peroxide (H2O2) production. There also existed some malate dehydrogenase (EC 1.1.1.37) activity in the apoplast of suspension culture cells (in ionically and covalently bound cell wall protein fractions), possibly for the regeneration of NADH that is needed for peroxidase-catalysed H2O2 production. However, there is no proof of the existence of NADH in the apoplast. Nutrient medium peroxidases could be classified into acidic, slightly basic and highly basic isoenzyme groups by isoelectric focusing. Only acidic peroxidases were found in the covalently bound cell wall protein fraction. Several peroxidase isoenzymes across the whole pI range were detected in the protein fraction ionically bound to cell walls and in the soluble cellular protein fraction. One laccase-like isoenzyme with pI of approximately 8.5 was found in the nutrient medium that was able to form dehydrogenation polymer from coniferyl alcohol in the absence of H2O2. The total activity of this oxidase towards coniferyl alcohol was, however, several orders of magnitude smaller than that of peroxidases in vitro. According to 2D 1H-13C correlation NMR spectra, most of the abundant structural units of native lignin and released suspension culture lignin are present in the oxidase produced dehydrogenation polymer but in somewhat different amounts compared to peroxidase derived synthetic lignin preparations. A coniferin beta-glucosidase (EC 3.2.1.21) was observed to be secreted into the culture medium.  相似文献   

17.
The lignin distribution in cell walls of spruce and beech wood was determined by high-voltage transmission-electron-microscopy (TEM) in sections stained with potassium permanganate as well as by field-emission-scanning-electron-microscopy (FE-SEM) combined with a back-scattered electron detector on mercurized specimens. The latter is a new technique based on the mercurization of lignin and the concomitant visualization of mercury by back-scattered electron microscopy (BSE). Due to this combination it was possible to obtain a visualized overview of the lignin distribution across the different layers of the cell wall. To our knowledge, this combined method was used the first time to analyse the lignin distribution in cell walls. In agreement with previous work the highest lignin levels were found in the compound middle lamella and the cell corners. Back-scattered FE-SEM allows the lignin distribution in the pit membrane of bordered pits as well as in the various cell wall layers to be shown. In addition, by using TEM as well as SEM we observed that lignin closely follows the cellulose microfibril orientation in the secondary cell wall. From these observations, we conclude that the polymerisation of monolignols is affected by the arrangement of the polysaccharides which constitute the cell wall.  相似文献   

18.
Manganese peroxidase and lignin peroxidase are ligninolytic heme-containing enzymes secreted by the white-rot fungus Phanerochaete chrysosporium. Despite structural similarity, these peroxidases oxidize different substrates. Veratryl alcohol is a typical substrate for lignin peroxidase, while manganese peroxidase oxidizes chelated Mn2+. By a single mutation, S168W, we have added veratryl alcohol oxidase activity to recombinant manganese peroxidase expressed in Escherichia coli. The kcat for veratryl alcohol oxidation was 11 s-1, Km for veratryl alcohol approximately 0.49 mM, and Km for hydrogen peroxide approximately 25 microM at pH 2.3. The Km for veratryl alcohol was higher and Km for hydrogen peroxide was lower for this manganese peroxidase mutant compared to two recombinant lignin peroxidase isoenzymes. The mutant retained full manganese peroxidase activity and the kcat was approximately 2.6 x 10(2) s-1 at pH 4.3. Consistent with relative activities with respect to these substrates, Mn2+ strongly inhibited veratryl alcohol oxidation. The single productive mutation in manganese peroxidase suggested that this surface tryptophan residue (W171) in lignin peroxidase is involved in catalysis.  相似文献   

19.
The respective distribution of superoxide (O(2) (.-)) and hydrogen peroxide (H(2)O(2)), two reactive oxygen species (ROS) involved in root growth and differentiation, was determined within the Arabidopsis root tip. We investigated the effect of changing the levels of these ROS on root development and the possible interactions with peroxidases. H(2)O(2) was detected by confocal laser-scanning microscopy using hydroxyphenyl fluorescein (HPF). Both O(2) (.-) accumulation and peroxidase distribution were assessed by light microscopy, using nitroblue tetrazolium (NBT) and o-dianisidine, respectively. Root length and root hair length and density were also quantified following ROS scavenging. O(2) (.-) was predominantly located in the apoplast of cell elongation zone, whereas H(2)O(2) accumulated in the differentiation zone and the cell wall of root hairs in formation. Treatments that decrease O(2) (.-) concentration reduced root elongation and root hair formation, while scavenging H(2)O(2) promoted root elongation and suppressed root hair formation. The results allow to precise the respective role of O(2) (.-) and H(2)O(2) in root growth and development. The consequences of their distinct accumulation sites within the root tip are discussed, especially in relation to peroxidases.  相似文献   

20.
Protein gels formed by crosslinking bovine serum albumin and horseradish peroxidase with glutaraldehyde were used to measure effects on peroxidase activity of 400-MHz (CW) radiofrequency radiation (RFR) at an average specific absorption rate (SAR) of 1.45 W/kg. The enzyme activity was measured by luminol chemiluminescence recorded on photographic film after hydrogen peroxide activation. Activity was measured during RFR exposure of gels or after exposure of gels polymerized in the RFR field. During exposure, a significant (P less than .05) reversible increase occurred in overall mean peroxidase activity of gels activated with 0.88 M H2O2 but not in those activated with 8.8 M H2O2. Gels containing solubilized luminol and formed in the field showed no overall mean increase in peroxidase activity, but did display a highly significant (P less than .001) alteration in the distribution of local activities when compared to unexposed gels. These results are apparently due to changes in the rate of diffusion (concentration equilibration) of hydrogen peroxide in the gel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号