首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used single DNA molecule stretching to investigate DNA intercalation by ethidium and three ruthenium complexes. By measuring ligand-induced DNA elongation at different ligand concentrations, we determined the binding constant and site size as a function of force. Both quantities depend strongly on force and, in the limit of zero force, converge to the known bulk solution values, when available. This approach allowed us to distinguish the intercalative mode of ligand binding from other binding modes and allowed characterization of intercalation with binding constants ranging over almost six orders of magnitude, including ligands that do not intercalate under experimentally accessible solution conditions. As ligand concentration increased, the DNA stretching curves saturated at the maximum amount of ligand intercalation. The results showed that the applied force partially relieves normal intercalation constraints. We also characterized the flexibility of intercalator-saturated dsDNA for the first time.  相似文献   

2.
Abstract In this study we tried to detect DNA Naegleria fowleri in artificially contaminated environmental samples, with or without sediments, containing 104 cysts of this pathogenic amoeba. We used two assays to extract DNA from samples: first, direct DNA extraction, which gave positive results only for water samples without sediment; second, DNA extraction after sample incubation on agar plates, which allowed us to remove amoeba growing out of the sediments, and which gave positive results for all samples, even those initially with sediments (5, 500 or 500 mg). Thus, this molecular identification appears as a powerful tool to investigate N. fowleri growth in environmental samples.  相似文献   

3.
We have constructed the potential energy surfaces for all unique tetramers, hexamers and octamers in double helical DNA, as a function of the two principal degrees of freedom, slide and shift at the central step. From these potential energy maps, we have calculated a database of structural and flexibility properties for each of these sequences. These properties include: the values of each of the six step parameters (twist roll, tilt, rise, slide and shift), for each step of the sequence; flexibility measures for both decrease and increase in each property value from the minimum energy conformation for the central step; and the deviation from the path of a hypothetical straight octamer. In an analysis of structural change as a function of sequence length, we observe that almost all DNA tends to B-DNA and becomes less flexible. A more detailed analysis of octamer properties has allowed us to determine the structural preferences of particular sequence elements. GGC and GCC sequences tend to confer bistability, low stability and a predisposition to A-form DNA, whereas AA steps strongly prefer B-DNA and inhibit A-structures. There is no correlation between flexibility and intrinsic curvature, but bent DNA is less stable than straight. The most difficult deformation is undertwisting. The TA step stands out as the most flexible sequence element with respect to decreasing twist and increasing roll. However, as with the structural properties, this behavior is highly context-dependent and some TA steps are very straight.  相似文献   

4.
Large genomes pose a challenge to DNA repair pathways because rare sites of damage must be efficiently located from among a vast excess of undamaged sites. Human alkyladenine DNA glycosylase (AAG) employs nonspecific DNA binding interactions and facilitated diffusion to conduct a highly redundant search of adjacent sites. This ensures that every site is searched, but could be a detriment if the protein is trapped in a local segment of DNA. Intersegmental transfer between DNA segments that are transiently in close proximity provides an elegant solution that balances global and local searching processes. It has been difficult to detect intersegmental transfer experimentally; therefore, we developed biochemical assays that allowed us to observe and measure the rates of intersegmental transfer by AAG. AAG has a flexible amino terminus that tunes its affinity for nonspecific DNA, but we find that it is not required for intersegmental transfer. As AAG has only a single DNA binding site, this argues against the bridging model for intersegmental transfer. The rates of intersegmental transfer are strongly dependent on the salt concentration, supporting a jumping mechanism that involves microscopic dissociation and capture by a proximal DNA site. As many DNA-binding proteins have only a single binding site, jumping may be a common mechanism for intersegmental transfer.  相似文献   

5.
6.
Wang HR  Li L  Gao XR 《生理科学进展》2003,34(2):121-126
基因芯片技术和蛋白质组技术是最近发展起来的高通量技术,二者的出现使同时分析神经系统的大量基因的表达和基因产物蛋白质及其相互作用网络成为可能。它们在神经科学中的应用为了解脑功能提供了前所未有的机会。一个典型的基因芯片实验包括:芯片的准备或购买、靶DNA和探针的准备或标记、标记探针与靶DNA的杂交、芯片扫描和影象信息的数据分析。蛋白质组技术较为复杂,包括蛋白质分离、鉴定和信息分析三方面的内容。其中,分离技术多种多样。若分离技术以二维电泳为基础,则该实验通常由以下步骤组成:蛋白质样品的准备、电泳分离、染胶、分离蛋白点的切除、蛋白质的酶解(常用胰蛋白酶)、质谱分析(鉴定)和数据的信息处理。本文综述这两项技术的内容和实验步骤,然后着重叙述它们在神经科学中的应用,讨论其优缺点和面临的挑战,展望其发展前景。  相似文献   

7.
Pedigree assessment using RAPD-DGGE in cereal crop species   总被引:9,自引:0,他引:9  
Summary The introduction of molecular biology methodologies to plant improvement programs offers an invaluable opportunity for extensive germplasm characterization. However, the detection of adequate DNA polymorphism in self-pollinating species remains on obstacle. We have optimized a denaturing-gradient-gel electrophoresis (DGGE) system which, when used in combination with random amplified polymorphic DNA (RAPD) analysis, greatly facilitates the detection of reproducible DNA polymorphism among closely related plant lines. We have used this approach to estimate pedigree relationships among a spectrum of plant materials in wheat, barley and oat. Based on analysis with one or two primers, we were able to distinguish soft from hard winter wheat, and 2-rowed from 6-rowed barley. Further analysis with additional primers allowed resolution of polymorpisms even among closely related lines in highly selected populations. We placed 17 cultivars of oat into two distinct clusters that differed significantly from previous oat pedigree assessments. We believe that DGGE-RAPD is a superior method for detecting DNA polymorphism when compared to RFLP, agarose-RAPD, or polyacrylamide-RAPD methods.  相似文献   

8.
The bacteriophage 434 repressor distinguishes between its six naturally occurring binding sites using indirect readout. In indirect readout, sequence-dependent differences in the structure and flexibility of non-contacted bases in a protein's DNA-binding site modulate the affinity of DNA for protein. The conformation and flexibility of a DNA sequence can be influenced by the interaction of the DNA bases or backbone with solution components. We examined the effect of changing the cation-type present in solution on the stability and structure of 434 repressor complexes with wild-type and mutant OR1 and OR3, binding sites that differ in their contacted and non-contacted base sequences. We find that the affinity of repressor for OR1, but not for OR3, depends remarkably on the type and concentration of monovalent cation. Moreover, the formation of a stable, specific repressor-OR1 complex requires the presence of monovalent cations; however, repressor-OR3 complex formation has no such requirement. Changing monovalent cation type alters the ability of repressor to protect OR1, but not OR3, from *OH radical cleavage. Altering the relative length of the poly(dA) x poly(dT) tract in the non-contacted regions of the OR1 and OR3 can reverse the cation sensitivity of repressor's affinities for these two sites. Taken together these findings show that cation-dependent alterations in DNA structure underlies indirect readout of DNA sequence by 434 repressor and perhaps other proteins.  相似文献   

9.
The conformational flexibility inherent in the polynucleotide chain plays an important role in deciding its three-dimensonal structure and enables it to undergo structural transitions in order to fulfil all its functions. Following certain stereochemical guidelines, both right and left handed double-helical models have been built in our laboratory and they are in reasonably good agreement with the fibre patterns for various polymorphous forms of DNA. Recently, nuclear magnetic resonance spectroscopy has become an important technique for studying the solution conformation and polymorphism of nucleic acids. Several workers have used 1H nuclear magnetic resonance nuclear Overhauser enhancement measurements to estimate the interproton distances for the various DNA oligomers and compared them with the-interproton distances for particular models of A and B form DNA. In some cases the solution conformation does not seem to fit either of these models. We have been studying various models for DNA with a view to exploring the full conformational space allowed for nucleic acid polymers. In this paper, the interproton distances calculated for the different stereochemically feasible models of DNA are presented and they are compared and correlated against those obtained from1H nuclear magnetic resonance nuclear Overhauser enhancement measurements of various nucleic acid oligomers.  相似文献   

10.
Alternative search strategies for the directed evolution of proteins are presented and compared with each other. In particular, two different machine learning strategies based on partial least-squares regression are developed: the first contains only linear terms that represent a given residue's independent contribution to fitness, the second contains additional nonlinear terms to account for potential epistatic coupling between residues. The nonlinear modeling strategy is further divided into two types, one that contains all possible nonlinear terms and another that makes use of a genetic algorithm to select a subset of important interaction terms. The performance of each modeling type as a function of training set size is analysed. Simulated molecular evolution on a synthetic protein landscape shows the use of machine learning techniques to guide library design can be a powerful addition to library generation methods such as DNA shuffling.  相似文献   

11.
Proteins recognize a specific DNA sequence not only through direct contact (direct readout) with base pairs but also through sequence-dependent conformation and/or flexibility of DNA (indirect readout). However, it is difficult to assess the contribution of indirect readout to the sequence specificity. What is needed is a straightforward method for quantifying its contributions to specificity. Using Bayesian statistics, we derived the probability of a particular sequence for a given DNA structure from the trajectories of molecular dynamics (MD) simulations of DNAs containing all possible tetramer sequences. Then, we quantified the specificity of indirect readout based on the information entropy associated with the probability. We tested this method with known structures of protein-DNA complexes. This method enabled us to correctly predict those regions where experiments suggested the involvement of indirect readout. The results also indicated new regions where the indirect readout mechanism makes major contributions to the recognition. The present method can be used to estimate the contribution of indirect readout without approximations to the distributions in the conformational ensembles of DNA, and would serve as a powerful tool to study the mechanism of protein-DNA recognition.  相似文献   

12.
The persistence length of DNA, a, depends both on the intrinsic curvature of the double helix and on the thermal fluctuations of the angles between adjacent base-pairs. We have evaluated two contributions to the value of a by comparing measured values of a for DNA containing a generic sequence and for an "intrinsically straight" DNA. In each 10 bp segment of the intrinsically straight DNA an initial sequence of five bases is repeated in the sequence of the second five bases, so any bends in the first half of the segment are compensated by bends in the opposite direction in the second half. The value of a for the latter DNA depends, to a good approximation, on thermal fluctuations only; there is no intrinsic curvature. The values of a were obtained from measurements of the cyclization efficiency for short DNA fragments, about 200 bp in length. This method determines the persistence length of DNA with exceptional accuracy, due to the very strong dependence of the cyclization efficiency of short fragments on the value of a. We find that the values of a for the two types of DNA fragment are very close and conclude that the contribution of the intrinsic curvature to a is at least 20 times smaller than the contribution of thermal fluctuations. The relationship between this result and the angles between adjacent base-pairs, which specify the intrinsic curvature, is analyzed.  相似文献   

13.
In order to better understand the involvement of the DNA molecule in the replication initiation process we have characterized the structure of the DNA at Autonomously Replicating Sequences (ARSs) in Saccharomyces cerevisiae. Using a new method for anti-bent DNA analysis, which allowed us to take into account the bending contribution of each successive base plate, we have investigated the higher-order structural organization of the DNA in the region which immediately surrounds the ARS consensus sequence (ACS). We have identified left- and right-handed anti-bent DNAs which flank this consensus sequence. The data show that this organization correlates with an active ACS. Analysis of the minimum nucleotide sequence providing ARS function to plasmids reveals an example where the critical nucleotides are restricted to the ACS and the right-handed anti-bent DNA domain, although most of the origins considered contained both left- and right-handed anti-bent DNAs. Moreover, mutational analysis shows that the right-handed form is necessary in order to sustain a specific DNA conformation which is correlated with the level of plasmid maintenance. A model for the role of these individual structural components of the yeast replication origin is presented. We discuss the possible role of the right-handed anti-bent DNA domain, in conjunction with the ACS, in the process of replication initiation, and potentialities offered by the combination of left- and right-handed structural components in origin function. Received: 29 October 1999 / Accepted: 14 March 2000  相似文献   

14.
15.
《Genomics》2019,111(4):567-578
Single molecule analysis can help us study genomics efficiently. It involves studying single DNA molecules for genomic studies. DNA combing is one of such techniques which allowed us to study single DNA molecules for multiple uses. DNA combing technology can be used to perform Fiber-FISH and optical mapping. Physical mapping of genomes can be studied by restriction digestion of combed DNA on glass slides. Restriction fragments can be arranged into optical maps by gathering fluorescent intensity data by CCD camera and image analysis by softwares. Physical mapping and DNA segment rearrangements can be studied by Fiber-FISH which involves application of probes on genomic DNA combed over glass slides. We developed a novel methodology involving combing solution optimization, denatured combed DNA and performed restriction digestion of combed DNA. Thus we provided an efficient and robust combing platform for its application in Fiber-FISH and optical mapping.  相似文献   

16.
Nucleosome formation and positioning, which play important roles in a number of biological processes, are thought to be related to the distinctive periodic dinucleotide patterns observed in the DNA sequence wrapped around the protein octamer. Previous research shows that flexibility is a key structural property of a nucleosomal DNA sequence. However, the relationship between the flexibility and the periodic dinucleotide patterns has received little attention in research in the past. In this study, we propose the use of three different models to measure the flexibility of yeast DNA sequences. Although the three models involve different parameters, they deliver consistent results showing that yeast nucleosomal DNA sequences are more flexible than non-nucleosomal ones. In contrast to random flexibility values along non-nucleosomal DNA sequences, the flexibility of nucleosomal DNA sequences shows a clear periodicity of 10.14 base pairs, which is consistent with the periodicity of dinucleotide distributions. We also demonstrate that there is a strong relationship between the peak positions of the flexibility and the dinucleotide frequencies. Correlation between the flexibility and the dinucleotide patterns of CA/TG, CG, GC, GG/CC, AG/CT, AC/GT and GA/TC are positive with an average value of 0.5946. The highest correlation is shown by CA/TG with a value of 0.7438 and the lowest correlation is shown by AA/TT with a value of −0.7424. The source codes and data sets are available for downloading on http://www.hy8.com/bioinformatics.htm.  相似文献   

17.
It is a great privilege to contribute to the Reflections essays. In my particular case, this essay has allowed me to weave some of my major scientific contributions into a tapestry held together by what I have learned from three colleagues (Robert Letsinger, Gobind Khorana, and George Rathmann) who molded my career at every important junction. To these individuals, I remain eternally grateful, as they always led by example and showed many of us how to break new ground in both science and biotechnology. Relative to my scientific career, I have focused primarily on two related areas. The first is methodologies we developed for chemically synthesizing DNA and RNA. Synthetic DNA and RNA continue to be an essential research tool for biologists, biochemists, and molecular biologists. The second is developing new approaches for solving important biological problems using synthetic DNA, RNA, and their analogs.  相似文献   

18.
We applied multitude multicolor banding (mMCB) in combination with a novel FISH DNA probe set including subcentromeric, subtelomeric and whole chromosome painting probes (subCTM) to characterize a Pan paniscus (PPA) cell line. These powerful techniques allowed us to refine the breakpoints of a pericentric inversion on chimpanzee chromosome 4, and discovered a novel cryptic pericentric inversion in chimpanzee chromosome 11. mMCB provided a starting point for mapping and high resolution analysis of breakpoints on PPA chromosome 4, which are within a long terminal repeat (LTR) and surrounded by segmental duplications, as well as the integration/expansion sites of the interstitial heterochromatin on chimpanzee chromosomes 6 and 14. Moreover, we found evidence at hand for different types of heterochromatin in the chimpanzee genome. Finally, shedding new light on the human/chimpanzee speciation, karyotypes of three members of the genus Pan were studied by mMCB and no cytogenetic differences were found although the phylogenetic distance between these subspecies is suggested to be 2.5 million years.  相似文献   

19.
Reliable field methods for the storage of tissues to be used for DNA extraction and amplification are critical to many studies employing molecular techniques. Protection from DNA degradation was compared among three commonly used methods of noncryogenic storage of tissues over a time scale of 2 years. All three methods prevented DNA degradation during storage for at least 6 months. DMSO (dimethyl sulfoxide)-salt solution provided the best protection from DNA degradation of tissues stored for up to 2 years. High molecular weight DNA was recovered from lysis buffer in which tissue was stored for 2 years, however, moderate amounts of degraded DNA was also present. High molecular weight DNA was recovered from tissues stored in ethanol for 2 years, however, the yield was relatively small compared to the other two noncryogenic storage techniques. Much of the DNA degradation in ethanol preserved tissues appeared to occur during the extraction procedure and can be reduced by soaking the tissue in lysis buffer for a few hours prior to beginning the extraction. The yield of PCR products was greatest from DNA extracted from DMSO-salt solution preserved tissues, whereas DNA from tissues stored in either lysis buffer or ethanol produced lower yields.  相似文献   

20.
Recent advances in DNA analysis allow us to identify an unprecedented number of insect samples collected by mass sampling techniques such as insect traps. In these circumstances, a preservative that can be applied from trap to storage is necessary to prevent degradation of DNA before analysis and save on the cost of labor for collecting insects from traps. Propylene glycol has a prominent feature as a trap solution. We aimed to examine the DNA preservability of 98% propylene glycol at 2 weeks and more than 6 months after initial collection in comparison with 99.5% ethanol, which is commonly used for storage of specimens for genetic analysis. We compared amplification performance of PCR targeting a specific region of the mitochondrial cytochrome c oxidase subunit I (COI) gene in the orders Hymenoptera, Diptera, and Coleoptera using two extraction methods varying in extraction efficiency. Even after 6 months, more than 75% of samples were recognized to have succeeded in PCR amplification irrespective of preservatives by the extraction method with higher extraction efficiency. It suggested that mitochondrial DNA was preserved in both solutions. However, dim bands in the electrophoreses of PCR products increased with time in extracts by another method with lower extraction efficiency. In Diptera and Coleoptera, the rate of dim bands increased more rapidly for ethanol-preserved than for propylene glycol-preserved specimens, indicating higher DNA preservability of propylene glycol over time for these taxa. On the other hand, in Hymenoptera, the preservatives did not affect PCR amplification performance. Considering its safer characteristics and high DNA preservability in a wide range of taxa, propylene glycol can be a promising solution from trapping of insects to storage for genetic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号