首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
COP9 signalosome (CSN) mediates deconjugation of the ubiquitin-like protein Nedd8 from the cullin subunits of SCF and other cullin-RING ubiquitin ligases (CRLs). This process is essential to maintain the proper activity of CRLs in cells. Here, we report a detailed kinetic characterization of CSN-mediated deconjugation of Nedd8 from SCF. CSN is an efficient enzyme, with a k(cat) of ~1 s(-1) and K(m)for neddylated Cul1-Rbx1 of ~200 nm, yielding a k(cat)/K(m) near the anticipated diffusion-controlled limit. Assembly with an F-box-Skp1 complex markedly inhibited deneddylation, although the magnitude varied considerably, with Fbw7-Skp1 inhibiting by ~5-fold but Skp2-Cks1-Skp1 by only ~15%. Deneddylation of both SCF(Fbw7) and SCF(Skp2-Cks1) was further inhibited ~2.5-fold by the addition of substrate. Combined, the inhibition by Fbw7-Skp1 plus its substrate cyclin E was greater than 10-fold. Unexpectedly, our results also uncover significant product inhibition by deconjugated Cul1, which results from the ability of Cul1 to bind tightly to CSN. Reciprocally, CSN inhibits the ubiquitin ligase activity of deneddylated Cul1. We propose a model in which assembled CRL complexes engaged with substrate are normally refractory to deneddylation. Upon consumption of substrate and subsequent deneddylation, CSN can remain stably bound to the CRL and hold it in low state of reduced activity.  相似文献   

2.
Wu JT  Lin HC  Hu YC  Chien CT 《Nature cell biology》2005,7(10):1014-1020
Cullin family proteins organize ubiquitin ligase (E3) complexes to target numerous cellular proteins for proteasomal degradation. Neddylation, the process that conjugates the ubiquitin-like polypeptide Nedd8 to the conserved lysines of cullins, is essential for in vivo cullin-organized E3 activities. Deneddylation, which removes the Nedd8 moiety, requires the isopeptidase activity of the COP9 signalosome (CSN). Here we show that in cells deficient for CSN activity, cullin1 (Cul1) and cullin3 (Cul3) proteins are unstable, and that to preserve their normal cellular levels, CSN isopeptidase activity is required. We further show that neddylated Cul1 and Cul3 are unstable - as suggested by the evidence that Nedd8 promotes the instability of both cullins - and that the unneddylatable forms of cullins are stable. The protein stability of Nedd8 is also subject to CSN regulation and this regulation depends on its cullin-conjugating ability, suggesting that Nedd8-conjugated cullins are degraded en bloc. We propose that while Nedd8 promotes cullin activation through neddylation, neddylation also renders cullins unstable. Thus, CSN deneddylation recycles the unstable, neddylated cullins into stable, unneddylated ones, and promotes cullin-organized E3 activity in vivo.  相似文献   

3.
Wang J  Hu Q  Chen H  Zhou Z  Li W  Wang Y  Li S  He Q 《PLoS genetics》2010,6(12):e1001232
The Cop9 signalosome (CSN) is an evolutionarily conserved multifunctional complex that controls ubiquitin-dependent protein degradation in eukaryotes. We found seven CSN subunits in Neurospora crassa in a previous study, but only one subunit, CSN-2, was functionally characterized. In this study, we created knockout mutants for the remaining individual CSN subunits in N. crassa. By phenotypic observation, we found that loss of CSN-1, CSN-2, CSN-4, CSN-5, CSN-6, or CSN-7 resulted in severe defects in growth, conidiation, and circadian rhythm; the defect severity was gene-dependent. Unexpectedly, CSN-3 knockout mutants displayed the same phenotype as wild-type N. crassa. Consistent with these phenotypic observations, deneddylation of cullin proteins in csn-1, csn-2, csn-4, csn-5, csn-6, or csn-7 mutants was dramatically impaired, while deletion of csn-3 did not cause any alteration in the neddylation/deneddylation state of cullins. We further demonstrated that CSN-1, CSN-2, CSN-4, CSN-5, CSN-6, and CSN-7, but not CSN-3, were essential for maintaining the stability of Cul1 in SCF complexes and Cul3 and BTB proteins in Cul3-BTB E3s, while five of the CSN subunits, but not CSN-3 and CSN-5, were also required for maintaining the stability of SKP-1 in SCF complexes. All seven CSN subunits were necessary for maintaining the stability of Cul4-DDB1 complexes. In addition, CSN-3 was also required for maintaining the stability of the CSN-2 subunit and FWD-1 in the SCF(FWD-1) complex. Together, these results not only provide functional insights into the different roles of individual subunits in the CSN complex, but also establish a functional framework for understanding the multiple functions of the CSN complex in biological processes.  相似文献   

4.
Jab1 interacts with a variety of signaling molecules and regulates their stability in mammalian cells. As the fifth component of the COP9 signalosome (CSN) complex, Jab1 (CSN5) plays a central role in the deneddylation of the cullin subunit of the Skp1-Cullin-F box protein ubiquitin ligase complex. In addition, a CSN-independent function of Jab1 is suggested but is less well characterized. To elucidate the function of Jab1, we targeted the Jab1 locus by homologous recombination in mouse embryonic stem cells. Jab1-null embryos died soon after implantation. Jab1-/- embryonic cells, which lacked other CSN components, expressed higher levels of p27, p53, and cyclin E, resulting in impaired proliferation and accelerated apoptosis. Jab1 heterozygous mice were healthy and fertile but smaller than their wild-type littermates. Jab1+/- mouse embryonic fibroblast cells, in which the amount of Jab1-containing small subcomplex, but not that of CSN, was selectively reduced, proliferated poorly, showed an inefficient down-regulation of p27 during G1, and was delayed in the progression from G0 to S phase by 3 h compared with the wild-type cells. Most interestingly, in Jab1+/- mouse embryonic fibroblasts, the levels of cyclin E and deneddylated Cul1 were unchanged, and p53 was not induced. Thus, Jab1 controls cell cycle progression and cell survival by regulating multiple cell cycle signaling pathways.  相似文献   

5.
BACKGROUND: SCF (Skp1-Cullin-F-box) complexes are a major class of E3 ligases that are required to selectively target substrates for ubiquitin-dependent degradation by the 26S proteasome. Conjugation of the ubiquitin-like protein Nedd8 to the cullin subunit (neddylation) positively regulates activity of SCF complexes, most likely by increasing their affinity for the E2 conjugated to ubiquitin. The Nedd8 conjugation pathway is required in C. elegans embryos for the ubiquitin-mediated degradation of the microtubule-severing protein MEI-1/Katanin at the meiosis-to-mitosis transition. Genetic experiments suggest that this pathway controls the activity of a CUL-3-based E3 ligase. Counteracting the Nedd8 pathway, the COP9/signalosome has been shown to promote deneddylation of the cullin subunit. However, little is known about the role of neddylation and deneddylation for E3 ligase activity in vivo. RESULTS: Here, we identified and characterized the COP9/signalosome in C. elegans and showed that it promotes deneddylation of CUL-3, a critical target of the Nedd8 conjugation pathway. As in other species, the C. elegans signalosome is a macromolecular complex containing at least six subunits that localizes in the nucleus and the cytoplasm. Reducing COP9/signalosome function by RNAi results in a failure to degrade MEI-1, leading to severe defects in microtubule-dependent processes during the first mitotic division. Intriguingly, reducing COP9/signalosome function suppresses a partial defect in the neddylation pathway; this suppression suggests that deneddylation and neddylation antagonize each other. CONCLUSIONS: We conclude that both neddylation and deneddylation of CUL-3 is required for MEI-1 degradation and propose that cycles of CUL-3 neddylation and deneddylation are necessary for its ligase activity in vivo.  相似文献   

6.
The bacterial effector protein cycle inhibiting factor (CIF) converts glutamine 40 of NEDD8 to glutamate (Q40E), causing cytopathic effects and inhibiting cell proliferation. Although these have been attributed to blocking the functions of cullin-RING ubiquitin ligases, how CIF modulates NEDD8-dependent signaling is unclear. Here we use conditional NEDD8-dependent yeast to explore the effects of CIF on cullin neddylation. Although CIF causes cullin deneddylation and the generation of free NEDD8 Q40E, inhibiting the COP9 signalosome (CSN) allows Q40E to form only on NEDD8 attached to cullins. In the presence of the CSN, NEDD8 Q40E is removed from cullins more rapidly than NEDD8, leading to a decrease in steady-state cullin neddylation. As NEDD8 Q40E is competent for cullin conjugation in the absence of functional CSN and with overexpression of the NEDD8 ligase Dcn1, our data are consistent with NEDD8 deamidation causing enhanced deneddylation of cullins by the CSN. This leads to a dramatic change in the extent of activated cullin-RING ubiquitin ligases.  相似文献   

7.
Cand1 inhibits cullin RING ubiquitin ligases by binding unneddylated cullins. The Cand1 N-terminus blocks the cullin neddylation site, whereas the C-terminus inhibits cullin adaptor interaction. These Cand1 binding sites can be separated into two functional polypeptides which bind sequentially. C-terminal Cand1 can directly bind to unneddylated cullins in the nucleus without blocking the neddylation site. The smaller N-terminal Cand1 cannot bind to the cullin neddylation region without C-terminal Cand1. The separation of a single cand1 into two independent genes represents the in vivo situation of the fungus Aspergillus nidulans, where C-terminal Cand1 recruits smaller N-terminal Cand1 in the cytoplasm. Either deletion results in an identical developmental and secondary metabolism phenotype in fungi, which resembles csn mutants deficient in the COP9 signalosome (CSN) deneddylase. We propose a two-step Cand1 binding to unneddylated cullins which initiates at the adaptor binding site and subsequently blocks the neddylation site after CSN has left.  相似文献   

8.
Cullin RING ligases (CRLs) are the largest family of cellular E3 ubiquitin ligases and mediate polyubiquitination of a number of cellular substrates. CRLs are activated via the covalent modification of the cullin protein with the ubiquitin-like protein Nedd8. This results in a conformational change in the cullin carboxy terminus that facilitates the ubiquitin transfer onto the substrate. COP9 signalosome (CSN)-mediated cullin deneddylation is essential for CRL activity in vivo. However, the mechanism through which CSN promotes CRL activity in vivo is currently unclear. In this paper, we provide evidence that cullin deneddylation is not intrinsically coupled to substrate polyubiquitination as part of the CRL activation cycle. Furthermore, inhibiting substrate-receptor autoubiquitination is unlikely to account for the major mechanism through which CSN regulates CRL activity. CSN also did not affect recruitment of the substrate-receptor SPOP to Cul3, suggesting it may not function to facilitate the exchange of Cul3 substrate receptors. Our results indicate that CSN binds preferentially to CRLs in the neddylation-induced, active conformation. Binding of the CSN complex to active CRLs may recruit CSN-associated proteins important for CRL regulation. The deneddylating activity of CSN would subsequently promote its own dissociation to allow progression through the CRL activation cycle.  相似文献   

9.
DDB1, a subunit of the damaged-DNA binding protein DDB, has been shown to function also as an adaptor for Cul4A, a member of the cullin family of E3 ubiquitin ligase. The Cul4A-DDB1 complex remains associated with the COP9 signalosome, and that interaction is conserved from fission yeast to human. Studies with fission yeast suggested a role of the Pcu4-Ddb1-signalosome complex in the proteolysis of the replication inhibitor Spd1. Here we provide evidence that the function of replication inhibitor proteolysis is conserved in the mammalian DDB1-Cul4A-signalosome complex. We show that small interfering RNA-mediated knockdown of DDB1, CSN1 (a subunit of the signalosome), and Cul4A in mammalian cells causes an accumulation of p27Kip1. Moreover, expression of DDB1 reduces the level of p27Kip1 by increasing its decay rate. The DDB1-induced proteolysis of p27Kip1 requires signalosome and Cul4A, because DDB1 failed to increase the decay rate of p27Kip1 in cells deficient in CSN1 or Cul4A. Surprisingly, the DDB1-induced proteolysis of p27Kip1 also involves Skp2, an F-box protein that allows targeting of p27Kip1 for ubiquitination by the Skp1-Cul1-F-box complex. Moreover, we provide evidence for a physical association between Cul4A, DDB1, and Skp2. We speculate that the F-box protein Skp2, in addition to utilizing Cul1-Skp1, utilizes Cul4A-DDB1 to induce proteolysis of p27Kip1.  相似文献   

10.
Skp1-Cdc53/Cul1-F-box (SCF) complexes constitute a class of E3 ubiquitin ligases. Recently, a multiprotein complex containing pVHL, elongin C and Cul2 (VEC) was shown to structurally and functionally resemble SCF complexes. Cdc53 and the Cullins can become covalently linked to the ubiquitin-like molecule Rub1/NEDD8. Inhibition of neddylation inhibits SCF function in vitro and in yeast and plants. Here we show that ongoing neddylation is likewise required for VEC function in vitro and for the degradation of SCF and VEC targets in mammalian cells. Thus, neddylation regulates the activity of two specific subclasses of mammalian ubiquitin ligases.  相似文献   

11.
In ubiquitination, cullin-RING E3 ubiquitin ligases (CRLs) assist in ubiquitin transfer from ubiquitin-conjugating enzyme E2 to the substrate. Neddylation, which involves NEDD8 transfer from E2 to E3-cullin, stimulates ubiquitination by inducing conformational change in CRLs. However, deneddylation, which removes NEDD8 from cullin, does not suppress ubiquitination in vivo, raising the question of how neddylation/deneddylation exerts its effects. Using molecular-dynamics simulations, we demonstrate that before neddylation occurs, the linker flexibility of Rbx1, a CRL component, leads to conformational changes in CRLs that allow neddylation and initiation of ubiquitination. These large NEDD8-induced conformational changes are retained after deneddylation, allowing both initiation of the ubiquitination process and ubiquitin chain elongation after deneddylation. Furthermore, mutation of lysine, the cullin residue to which NEDD8 covalently attaches, dramatically reduces CRL conformational changes, suggesting that the acceptor lysine allosterically regulates CRLs. Thus, our results imply that neddylation stimulates ubiquitination by CRL conformational control via lysine modification.  相似文献   

12.
13.
The COP9 signalosome (CSN) is known to bind cullin-RING ubiquitin ligases (CRLs) and to promote their activity in vivo. The mechanism of this stimulation has remained enigmatic because CSN's intrinsic and associated enzymatic activities paradoxically inhibit CRL activity in vitro. Reconciling this paradox, we show here that Csn5-catalysed cullin (Cul) deneddylation and Ubp12-mediated deubiquitination cooperate in maintaining the stability of labile substrate adapters, thus facilitating CRL function. Various fission-yeast csn and ubp12 deletion mutants have lower levels of the Cul3p adapter Btb3p. This decrease is due to increased autocatalytic, Cul3p-dependent, ubiquitination and the subsequent degradation of Btb3p. The CSN-Ubp12p pathway also maintains the stability of the Cul1p adapter Pop1p, a mechanism required for the efficient destruction of its cognate substrate Rum1p. Emphasizing the physiological importance of this mechanism, we found that the dispensable csn5 and ubp12 genes become essential for viability when adapter recruitment to Cul1p is compromised. Our data suggest that maintenance of adapter stability is a general mechanism of CRL control by the CSN.  相似文献   

14.
In concert with the ubiquitin (Ub) proteasome system (UPS) the COP9 signalosome (CSN) controls the stability of cellular regulators. The CSN interacts with cullin-RING Ub ligases (CRLs) consisting of a specific cullin, a RING protein as Rbx1 and substrate recognition proteins. The Ub-like protein Nedd8 is covalently linked to cullins and removed by the CSN-mediated deneddylation. Cycles of neddylation and deneddylation regulate CRLs. Apoptotic stimuli cause caspase-dependent modifications of the UPS. However, little is known about the CSN during apoptosis. We demonstrate in vitro and in vivo that CSN6 is cleaved most effectively by caspase 3 at D23 after 2–3 h of apoptosis induced by anti-Fas-Ab or etoposide. CSN6 processing occurs in CSN–CRL complexes and is followed by the cleavage of Rbx1, the direct interaction partner of CSN6. Caspase-dependent cutting of Rbx1 is accompanied by decrease of neddylated proteins in Jurkat T cells. Another functional consequence of CSN6 cleavage is the enhancement of CSN-mediated deneddylating activity causing deneddylation of cullin 1 in cells. The CSN-associated deubiquitinating as well as kinase activity remained unchanged in presence of active caspase 3. The cleavage of Rbx1 and increased deneddylation of cullins inactivate CRLs and presumably stabilize pro-apoptotic factors for final apoptotic steps. Bettina K. J. Hetfeld and Andreas Peth contributed equally.  相似文献   

15.
Regulated protein destruction involving SCF (Skp1/Cullin/F-box, E3 ubiquitin ligase) complexes is required for multicellular development of Dictyostelium discoideum. Dynamic modification of cullin by nedd8 is required for the proper action of SCF. The COP9 signalosome (CSN), first identified in a signaling pathway for light response in plants, functions as a large multi-protein complex that regulates cullin neddylation in eukaryotes. Still, there is extreme sequence divergence of CSN subunits of the yeasts in comparison to the multicellular plants and animals. Using the yeast two-hybrid system, we have identified the CSN5 subunit as a potential interacting partner of a cell surface receptor of Dictyostelium. We further identified and characterized all 8 CSN subunits in Dictyostelium discoideum. Remarkably, despite the ancient origin of Dictyostelium, its CSN proteins cluster very closely with their plant and animal counterparts. We additionally show that the Dictyostelium subunits, like those of other systems are capable of multi-protein interactions within the CSN complex. Our data also indicate that CSN5 (and CSN2) are essential for cell proliferation in Dictyostelium, a phenotype similar to that of multicellular organisms, but distinct from that of the yeasts. Finally, we speculate on a potential role of CSN in cullin function and regulated protein destruction during multicellular development of Dictyostelium.  相似文献   

16.
Int6 is a proto-oncogene implicated in various types of cancer, but the mechanisms underlying its activity are not clear. Int6 encodes a subunit of the eukaryotic translation initiation factor 3, and interacts with two related complexes, the proteasome, whose activity is regulated by Int6 in S. pombe, and the COP9 signalosome. The COP9 signalosome regulates the activity of Cullin-Ring Ubiquitin Ligases via deneddylation of their cullin subunit. We report here the generation and analysis of two Drosophila mutants in Int6. The mutants are lethal demonstrating that Int6 is an essential gene. The mutant larvae accumulate high levels of non-neddylated Cul1, suggesting that Int6 is a positive regulator of cullin neddylation. Overexpression in Int6 in cell culture leads to accumulation of neddylated cullins, further supporting a positive role for Int6 in regulating neddylation. Thus Int6 and the COP9 signalosome play opposing roles in regulation of cullin neddylation.  相似文献   

17.
SCF is a ubiquitin ligase and is composed of Skp1, Cul1, F-box protein, and Roc1. The catalytic site of the SCF is the Cul1/Roc1 complex and RING-finger protein Roc1. It was shown earlier that when Cul1 was co-expressed with Roc1 in Sf-9 cells in a baculovirus protein expression system, Cul1 was highly neddylated in the cell, suggesting that Roc1 may function as a Nedd8-E3 ligase. However, there is no direct evidence that Roc1 is a Nedd8-E3 in an in vitro enzyme system. Here we have shown that Roc1 binds to Ubc12, E2 for Nedd8, but not to Ubc9, E2 for SUMO-1 and Roc1 RING-finger mutant, H77A, did not bind to Ubc12. In in vitro neddylation system using purified Cul1/Roc1 complex expressed in bacteria, Roc1 promotes neddylation of Cul1. These results demonstrate that Roc1 functions as a Nedd8-E3 ligase toward Cul1. Furthermore, Roc1 and Cul1 were ubiquitinylated in a manner dependent on the neddylation of Cul1 in vitro. In addition, Cul1 was degraded through the ubiquitin-proteasome pathway, and a non-neddylated mutant Cul1, K720R, was more stable than wild-type in intact cells. Thus, neddylation of Cul1 might regulate SCF function negatively via degradation of Cul1/Roc1 complex.  相似文献   

18.
Neddylation, a process that conjugates the ubiquitin-like polypeptide NEDD8 to cullin proteins, activates cullin-RING ubiquitin ligases (CRLs). Deneddylation, in which the COP9 signalosome (CSN) removes NEDD8 from cullins, inactivates CRLs. However, genetic studies of CSN function conclude that deneddylation also promotes CRL activity. It has been proposed that a cyclic transition through neddylation and deneddylation is required for the regulation of CRL activity in vivo. Recent discoveries suggest that an additional level of complexity exists, whereby CRL components are targets for degradation, mediated either by autocatalytic ubiquitination or by unknown mechanisms. Deneddylation by CSN and deubiquitylation by CSN-associated ubiquitin-specific protease 12 protect CRL components from cellular depletion, thus maintaining the physiological CRL activities.  相似文献   

19.
Regulated protein destruction involving SCF (Skp1/Cullin/F-box, E3 ubiquitin ligase) complexes is required for multicellular development of Dictyostelium discoideum. Dynamic modification of cullin by nedd8 is required for the proper action of SCF. The COP9 signalosome (CSN), first identified in a signaling pathway for light response in plants, functions as a large multi-protein complex that regulates cullin neddylation in eukaryotes. Still, there is extreme sequence divergence of CSN subunits of the yeasts in comparison to the multicellular plants and animals. Using the yeast two-hybrid system, we have identified the CSN5 subunit as a potential interacting partner of a cell surface receptor of Dictyostelium. We further identified and characterized all 8 CSN subunits in Dictyostelium discoideum. Remarkably, despite the ancient origin of Dictyostelium, its CSN proteins cluster very closely with their plant and animal counterparts. We additionally show that the Dictyostelium subunits, like those of other systems are capable of multi-protein interactions within the CSN complex. Our data also indicate that CSN5 (and CSN2) are essential for cell proliferation in Dictyostelium, a phenotype similar to that of multicellular organisms, but distinct from that of the yeasts. Finally, we speculate on a potential role of CSN in cullin function and regulated protein destruction during multicellular development of Dictyostelium.  相似文献   

20.
The COP9 signalosome (CSN) is an evolutionarily conserved multiprotein complex with a role in the regulation of cullin-RING type E3 ubiquitin ligases (CRLs). CSN exerts its function on E3 ligases by deconjugating the ubiquitin-related protein NEDD8 from the CRL cullin subunit. Thereby, CSN has an impact on multiple CRL-dependent processes. In recent years, advances have been made in understanding the structural organisation and biochemical function of CSN: Crystal structure analysis and mass spectrometry-assisted studies have come up with first models of the pair-wise and complex interactions of the 8 CSN subunits. Based on the analysis of mutant phenotypes, it can now be taken as an accepted fact that – at least in plants –the major biochemical function of CSN resides in its deneddylation activity, which is mediated by CSN subunit 5 (CSN5). Furthermore, it could be demonstrated that CSN function and deneddylation are required but not essential for CRL-mediated processes, and models for the role of neddylation and deneddylation in controlling CRL activity are emerging. Significant advances have also been made in identifying pathways that are growth restricting in the Arabidopsis csn mutants. Recently it has been shown that a G2 phase arrest, possibly due to genomic instability, restricts growth in Arabidopsis csn mutants. This review provides an update on recent advances in understanding CSN structure and function and summarises the current knowledge on its role in plant development and cell cycle progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号