共查询到20条相似文献,搜索用时 15 毫秒
1.
Aster formation in vitro is nucleated by granules isolated from the mitotic apparatus 总被引:2,自引:0,他引:2
Mitotic apparatuses (MAs) isolated from sea urchin eggs contained clusters of granular material in their centrospheres. After cold treatment and mild agitation, the MA fraction formed asters when combined with tubulin. Many microtubules grew from isolated centrospheres most of which were covered with astral residues. Homogenization of the isolated MA fraction dispersed the centrospheres which broke into fragments or into aggregates of small granules that formed small asters when tubulin was added. Electron microscopy showed that more than ten microtubules were nucleated from a granular aggregate composed of several approximately 90-nm granules. The aster-forming activity was lost with time when the MAs were kept at 0 degree C. Only glycerol stabilized this activity. The aster-forming activity also was heat labile and trypsin sensitive, but it was resistant to RNase treatment. When the dispersed MAs were extracted with a buffer solution of high ionic strength, aster-forming activity was recovered only in the extract; that is, when the extract had been dialyzed against a solution of low ionic strength, the fine granules self assembled and retained their aster-forming ability. 相似文献
2.
Huang SC Jagadeeswaran R Liu ES Benz EJ 《The Journal of biological chemistry》2004,279(33):34595-34602
Non-erythroid protein 4.1R (4.1R) consists of a complex family of isoforms. We have shown that 4.1R isoforms localize at the mitotic spindle/spindle poles and associate in a complex with the mitotic-spindle organization proteins Nuclear Mitotic Apparatus protein (NuMA), dynein, and dynactin. We addressed the mitotic function of 4.1R by investigating its association with microtubules, the main component of the mitotic spindles, and its role in mitotic aster assembly in vitro. 4.1R appears to partially co-localize with microtubules throughout the mitotic stages of the cell cycle. In vitro sedimentation assays showed that 4.1R isoforms directly interact with microtubules. Glutathione S-transferase (GST) pull-down assays using GST-4.1R fusions and mitotic cell extracts further showed that the association of 4.1R with tubulin results from both the membrane-binding domain and C-terminal domain of 4.1R. Moreover, 4.1R, but not actin, is a mitotic microtubule-associated protein; 4.1R associates with microtubules in the microtubule pellet of the mitotic asters assembled in mammalian cell-free mitotic extract. The organization of microtubules into asters depends on 4.1R in that immunodepletion of 4.1R from the extract resulted in randomly dispersed microtubules. Furthermore, adding a 135-kDa recombinant 4.1R reconstituted the mitotic asters. Finally, we demonstrated that a mitotic 4.1R isoform appears to form a complex in vivo with tubulin and NuMA in highly synchronized mitotic HeLa extracts. Our results suggest that a 135-kDa non-erythroid 4.1R is important to cell division, because it participates in the formation of mitotic spindles and spindle poles through its interaction with mitotic microtubules. 相似文献
3.
Microtubules induced to polymerize with taxol in a mammalian mitotic extract organize into aster-like arrays in a centrosome-independent process that is driven by microtubule motors and structural proteins. These microtubule asters accurately reflect the noncentrosomal aspects of mitotic spindle pole formation. We show here that colonic-hepatic tumor-overexpressed gene (ch-TOGp) is an abundant component of these asters. We have prepared ch-TOGp-specific antibodies and show by immunodepletion that ch-TOGp is required for microtubule aster assembly. Microtubule polymerization is severely inhibited in the absence of ch-TOGp, and silver stain analysis of the ch-TOGp immunoprecipitate indicates that it is not present in a preformed complex and is the only protein removed from the extract during immunodepletion. Furthermore, the reduction in microtubule polymerization efficiency in the absence of ch-TOGp is dependent on ATP. These results demonstrate that ch-TOGp is a major constituent of microtubule asters assembled in a mammalian mitotic extract and that it is required for robust microtubule polymerization in an ATP-dependent manner in this system even though taxol is present. These data, coupled with biochemical and genetic data derived from analysis of ch-TOGp-related proteins in other organisms, indicate that ch-TOGp is a key factor regulating microtubule dynamics during mitosis. 相似文献
4.
The mitotic apparatus. Identification of the major soluble component of the glycol-isolated mitotic apparatus 下载免费PDF全文
Kane RE 《The Journal of cell biology》1967,33(2):243-253
Particles having ribosome-like characteristics are described in proplastids of dark-grown wheat seedlings as the membranes of the prolamellar body become transformed, under the influence of light, into grana and fret membranes. Three arrangements of particles were noted: (1) a random distribution of discrete particles; (2) particles occurring in helices or parallel rows; and (3) particles arranged in rough squares with six to eight particles per side. It is possible that the third type of particle is a cross-section of long parallel rods. A particle ranges in size from 170 to 220 A, those of group three being somewhat smaller. The particulates vary from diamond shaped with smooth surfaces to circular with irregular surfaces. These particles have the characteristics of ribosomes as visualized by the electron microscope: they are preserved by glutaraldehyde and osmium tetroxide, they stain intensely with uranyl acetate, and are digested by RNase. Their properties do not coincide with those of viruses, smog-induced particles, stromacenter particles, or phytoferritin. They are frequently adjacent to membranes but never attached to membranes. The involvement of ribosomes in membrane development is discussed. 相似文献
5.
6.
A novel protein that associates with interphase nucleus and mitotic apparatus (INMAP) was identified by screening HeLa cDNA expression library with an autoimmune serum followed by tandem mass spectrometry. Its complete cDNA sequence of 1.818 kb encodes 343 amino acids with predicted molecular mass of 38.2 kDa and numerous phosphorylation sites. The sequence is identical with nucleotides 1-1800 bp of an unnamed gene (GenBank accession no. 7022388) and highly homologous with the 3′-terminal sequence of POLR3B. A monoclonal antibody against INMAP reacted with similar proteins in S. cerevisiae, Mel and HeLa cells, suggesting that it is a conserved protein. Confocal microscopy using either GFP-INMAP fusion protein or labeling with the monoclonal antibody revealed that the protein localizes as distinct dots in the interphase nucleus, but during mitosis associates closely with the spindle. Double immunolabeling using specific antibodies showed that the INMAP co-localizes with α-tubulin, γ-tubulin, and NuMA. INMAP also co-immunoprecipitated with these proteins in their native state. Stable overexpression of INMAP in HeLa cell lines leads to defects in the spindle, mitotic arrest, formation of polycentrosomal and multinuclear cells, inhibition of growth, and apoptosis. We propose that INMAP is a novel protein that plays essential role in spindle formation and cell-cycle progression. 相似文献
7.
Krauss SW Lee G Chasis JA Mohandas N Heald R 《The Journal of biological chemistry》2004,279(26):27591-27598
Multifunctional structural proteins belonging to the 4.1 family are components of nuclei, spindles, and centrosomes in vertebrate cells. Here we report that 4.1 is critical for spindle assembly and the formation of centrosome-nucleated and motor-dependent self-organized microtubule asters in metaphase-arrested Xenopus egg extracts. Immunodepletion of 4.1 disrupted microtubule arrays and mislocalized the spindle pole protein NuMA. Remarkably, assembly was completely rescued by supplementation with a recombinant 4.1R isoform. We identified two 4.1 domains critical for its function in microtubule polymerization and organization utilizing dominant negative peptides. The 4.1 spectrin-actin binding domain or NuMA binding C-terminal domain peptides caused morphologically disorganized structures. Control peptides with low homology or variant spectrin-actin binding domain peptides that were incapable of binding actin had no deleterious effects. Unexpectedly, the addition of C-terminal domain peptides with reduced NuMA binding caused severe microtubule destabilization in extracts, dramatically inhibiting aster and spindle assembly and also depolymerizing preformed structures. However, the mutant C-terminal peptides did not directly inhibit or destabilize microtubule polymerization from pure tubulin in a microtubule pelleting assay. Our data showing that 4.1 is a crucial factor for assembly and maintenance of mitotic spindles and self-organized and centrosome-nucleated microtubule asters indicates that 4.1 is involved in regulating both microtubule dynamics and organization. These investigations underscore an important functional context for protein 4.1 in microtubule morphogenesis and highlight a previously unappreciated role for 4.1 in cell division. 相似文献
8.
Neurons are terminally post-mitotic cells that utilize their microrubule arrays for the growth and maintenance of axons and dendrites rather than for the formation of mitotic spindles. Recent studies from our laboratory suggest that the mechanisms that organize the axonal and dendritic microtubule arrays may be variations on the same mechanisms that organize the mitotic spindle in dividing cells. In particular, we have identified molecular motor proteins that serve analogous functions in the establishment of these seemingly very different microtubule arrays. In the present study, we have sought to determine whether a non-motor protein termed NuMA is also a component of both systems. NuMA is a ~230 kDa structural protein that is present exclusively in the nucleus during interphase. During mitosis, NuMA forms aggregates that interact with microtubules and certain motor proteins. As a result of these interactions, NuMA is thought to draw together the minus-ends of microtubules, thereby helping to organize them into a bipolar spindle. In contrast to mitotic cells, post-mitotic neurons display NuMA both in the nucleus and in the cytoplasm. NuMA appears as multiple small particles within the somatodendritic compartment of the neuron, where its levels increase during early dendritic differentation. A partial but not complete colocalization with minus-ends of microtubules is suggested by the distribution of the particles during development and during drug treatments that alter the microtubule array. These observations provide an initial set of clues regarding a potentially important function of NuMA in the organization of microtubules within the somatodendritic compartment of the neuron. 相似文献
9.
Raemaekers T Ribbeck K Beaudouin J Annaert W Van Camp M Stockmans I Smets N Bouillon R Ellenberg J Carmeliet G 《The Journal of cell biology》2003,162(6):1017-1029
Here, we report on the identification of nucleolar spindle-associated protein (NuSAP), a novel 55-kD vertebrate protein with selective expression in proliferating cells. Its mRNA and protein levels peak at the transition of G2 to mitosis and abruptly decline after cell division. Microscopic analysis of both fixed and live mammalian cells showed that NuSAP is primarily nucleolar in interphase, and localizes prominently to central spindle microtubules during mitosis. Direct interaction of NuSAP with microtubules was demonstrated in vitro. Overexpression of NuSAP caused profound bundling of cytoplasmic microtubules in interphase cells, and this relied on a COOH-terminal microtubule-binding domain. In contrast, depletion of NuSAP by RNA interference resulted in aberrant mitotic spindles, defective chromosome segregation, and cytokinesis. In addition, many NuSAP-depleted interphase cells had deformed nuclei. Both overexpression and knockdown of NuSAP impaired cell proliferation. These results suggest a crucial role for NuSAP in spindle microtubule organization. 相似文献
10.
11.
Kremerskothen J Plaas C Kindler S Frotscher M Barnekow A 《Journal of neurochemistry》2005,94(3):597-606
Synaptopodin (SYNPO) is a cytoskeletal protein that is preferentially located in mature dendritic spines, where it accumulates in the spine neck and closely associates with the spine apparatus. Formation of the spine apparatus critically depends on SYNPO. To further determine its molecular action, we screened for cellular binding partners. Using the yeast two-hybrid system and biochemical assays, SYNPO was found to associate with both F-actin and alpha-actinin. Ectopic expression of SYNPO in neuronal and non-neuronal cells induced actin aggregates, thus confirming a cytoplasmic interaction with the actin cytoskeleton. Whereas F-actin association is mediated by a central SYNPO motif, binding to alpha-actinin requires the C-terminal domain. Notably, the alpha-actinin binding domain is also essential for dendritic targeting and postsynaptic accumulation of SYNPO in primary neurons. Taken together, our data suggest that dendritic spine accumulation of SYNPO critically depends on its interaction with postsynaptic alpha-actinin and that SYNPO may regulate spine morphology, motility and function via its distinct modes of association with the actin cytoskeleton. 相似文献
12.
The mitotic apparatus. Physical chemical characterization of the 22S protein component and its subunits 下载免费PDF全文
Stephens RE 《The Journal of cell biology》1967,32(2):255-275
The major 22S protein of the hexylene glycol-isolated mitotic apparatus has been characterized from spindle isolates and extracts of whole eggs and acetone powders of eggs from the sea urchins Strongylocentrotus purpuratus, Strongylocentrotus droebachiensis, and Arbacia punctulata. The protein is free of nucleotide, lipid, and ATPase activity. Essentially identical in amino acid composition, proteins from these species show a relatively high content of glutamic and aspartic acids and are fairly rich in hydrophobic amino acids. Optical rotatory dispersion studies indicate a helical content of about 20%, a value consistent with the proline content of the protein. The purified proteins have sedimentation rates in the range of 22-24S, diffusion constants of 2.4-2.5F, intrinsic viscosities of 3.7-4.3 ml/g, a partial specific volume of 0.74, and an average molecular weight of 880,000. Electron microscopy indicates a globular molecule with dimensions of approximately 150 by 200 A; such size and symmetry are consistent with hydrodynamic measurements. The 22S protein yields 6-7S, 9-10S, and 13-14S subunits below pH 4 or above pH 11. The 13-14S component has an estimated molecular weight of 600,000-700,000. A 5-6S particle is formed in 8 M urea or 5 M guanidine hydrochloride, while at pH 12 the 6-7S subunit is seen; each particle has a molecular weight of 230,000-240,000. In 8 M urea plus 2% mercaptoethanol or at pH 13, the molecular weight becomes 105,000-120,000; under these conditions the particle sediments at 2.5-3S and 4S, respectively. On the basis of these molecular weights, the 6-7S, 9-10S, 13-14S, and the parent 22S particle should be dimer, tetramer, hexamer, and octamer, respectively, of the 105,000-120,000 molecular weight subunit. The various subunits will reform the 22S particle when returned to neutral buffer, with the exception of the mercaptoethanol-treated urea subunit where breakage of disulfide bonds results in a polydisperse aggregate. The 22S particle itself is not susceptible to sulfhydryl reagents, implying either that the disulfide bonds are inaccessible or that they are unnecessary for maintenance of tertiary structure once the 22S particle has formed from subunits. 相似文献
13.
Vanessa Tillement Marie‐Hélène Remy Brigitte Raynaud‐Messina Laurent Mazzolini Laurence Haren Andreas Merdes 《Biology of the cell / under the auspices of the European Cell Biology Organization》2009,101(1):1-11
Mitotic spindle formation in animal cells involves microtubule nucleation from two centrosomes that are positioned at opposite sides of the nucleus. Microtubules are captured by the kinetochores and stabilized. In addition, microtubules can be nucleated independently of the centrosome and stabilized by a gradient of Ran—GTP, surrounding the mitotic chromatin. Complex regulation ensures the formation of a bipolar apparatus, involving motor proteins and controlled polymerization and depolymerization of microtubule ends. The bipolar apparatus is, in turn, responsible for faithful chromosome segregation. During recent years, a variety of experiments has indicated that defects in specific motor proteins, centrosome proteins, kinases and other proteins can induce the assembly of aberrant spindles with a monopolar morphology or with poorly separated poles. Induction of monopolar spindles may be a useful strategy for cancer therapy, since ensuing aberrant mitotic exit will usually lead to cell death. In this review, we will discuss the various underlying molecular mechanisms that may be responsible for monopolar spindle formation. 相似文献
14.
15.
Wnt signalling is known to promote G1/S progression through the stimulation of gene expression, but whether this signalling regulates mitotic progression is not clear. Here, the function of dishevelled 2 (Dvl2), which transmits the Wnt signal, in mitosis was examined. Dvl2 localized to the spindles and spindle poles during mitosis. When cells were treated with nocodazole, Dvl2 was observed at the kinetochores (KTs). Dvl2 bound to and was phosphorylated at Thr206 by a mitotic kinase, Polo‐like kinase 1 (Plk1), and this phosphorylation was required for spindle orientation and stable microtubule (MT)‐KT attachment. Dvl2 was also found to be involved in the activation of a spindle assembly checkpoint (SAC) kinase, Mps1, and the recruitment of other SAC components, Bub1 and BubR1, to the KTs. However, the phosphorylation of Dvl2 by Plk1 was dispensable for SAC. Furthermore, Wnt receptors were involved in spindle orientation, but not in MT‐KT attachment or SAC. These results suggested that Dvl2 is involved in mitotic progression by regulating the dynamics of MT plus‐ends and the SAC in Plk1‐dependent and ‐independent manners. 相似文献
16.
Yoshigaki T 《Bulletin of mathematical biology》2002,64(4):643-672
Astral microtubules are elongated greatly during anaphase and telophase in sea urchin eggs. The surface density of microtubules
reaching the cell surface can be defined at each surface point. Gradients of the surface-density function were assumed to
drive membrane proteins whose accumulation causes the formation of contractile-ring microfilaments. An equation was constructed
to calculate the movements of the membrane proteins on a curved surface. The equation was applied to eggs compressed between
a coverslip and a glass slide by regarding the egg shape as an oblate spheroid. The simulations explained the observations
that contractile-ring microfilaments locally appeared and then developed into a complete ring in compressed eggs. When one
aster in the mitotic apparatus stopped growing during anaphase, the equation predicted that the zone of contractile-ring microfilaments
is displaced toward the inactivated aster, curves in the view from above and tapers off toward the cell edge. The curve gets
sharper as eggs are compressed more greatly and as microtubules from the growing aster penetrate more deeply into the opposite
hemisphere. The predictions were compared with the observations by Ishii and Shimizu in 1995 and by Hamaguchi in 1998 regarding
the furrow formation by the asymmetric mitotic apparatus. 相似文献
17.
Kinetics of microtubule formation after cold disaggregation of the mitotic apparatus 总被引:1,自引:0,他引:1
D Goode 《Journal of molecular biology》1973,80(3):531-538
The rate of spindle-fiber reformation following cold treatment of the giant amoeba, Chaos carolinensis, has been determined and used to test a single growth point, subunit incorporation model of microtubule assembly. Mitotic apparatuses isolated at one-minute intervals after rewarming contain progressively longer spindle fibers; re-assembly begins at the kinetochore region, proceeds at a rate of 1·5 μm per minute, then slows as the normal length of 5 μm is approached. From information on microtubule ultrastructure, the total number of 40-Å subunits in mitotic apparatuses per amoeba, and hence the concentration released during disassembly, was calculated to be 1·0 × 1015 molecules per cm3. Calculation of diffusion and assembly kinetics indicates that this concentration of microtubule subunits is equal to the concentration required to produce a growth rate of 1·5 μm per minute by diffusion of single subunits to one assembly point per microtubule. 相似文献
18.
In the fission yeast Schizosaccharomyces pombe, as in other eukaryotic cells, Cdc2/cyclin B complex is the key regulator of mitosis. Perhaps the most important regulation of Cdc2 is the inhibitory phosphorylation of tyrosine-15 that is catalyzed by Wee1 and Mik1. Cdc25 and Pyp3 phosphatases dephosphorylate tyrosine-15 and activate Cdc2. To isolate novel activators of Cdc2 kinase, we screened synthetic lethal mutants in a cdc25-22 background at the permissive temperature (25 degrees ). One of the genes, slm9, encodes a novel protein of 807 amino acids. Slm9 is most similar to Hir2, the histone gene regulator in budding yeast. Slm9 protein level is constant and Slm9 is localized to the nucleus throughout the cell cycle. The slm9 disruptant is delayed at the G(2)-M transition as indicated by cell elongation and analysis of DNA content. Inactivation of Wee1 fully suppressed the cell elongation phenotype caused by the slm9 mutation. The slm9 mutant is defective in recovery from G(1) arrest after nitrogen starvation. The slm9 mutant is also UV sensitive, showing a defect in recovery from the cell cycle arrest after UV irradiation. 相似文献
19.
20.
In vitro unfolding,refolding, and polymerization of human gammaD crystallin,a protein involved in cataract formation 总被引:1,自引:0,他引:1 下载免费PDF全文
Kosinski-Collins MS King J 《Protein science : a publication of the Protein Society》2003,12(3):480-490
Human gammaD crystallin (HgammaD-Crys), a major protein of the human eye lens, is a primary component of cataracts. This 174-residue primarily beta-sheet protein is made up of four Greek keys separated into two domains. Mutations in the human gene sequence encoding HgammaD-Crys are implicated in early-onset cataracts in children, and the mutant protein expressed in Escherichia coli exhibits properties that reflect the in vivo pathology. We have characterized the unfolding, refolding, and competing aggregation of human wild-type HgammaD-Crys as a function of guanidinium hydrochloride (GuHCl) concentration at neutral pH and 37 degrees C, using intrinsic tryptophan fluorescence to monitor in vitro folding. Wild-type HgammaD-Crys exhibited reversible refolding above 1.0 M GuHCl. The GuHCl unfolded protein was more fluorescent than its native counterpart despite the absence of metal or ion-tryptophan interactions. Aggregation of refolding intermediates of HgammaD-Crys was observed in both equilibrium and kinetic refolding processes. The aggregation pathway competed with productive refolding at denaturant concentrations below 1.0 M GuHCl, beyond the major conformational transition region. Atomic force microscopy of samples under aggregating conditions revealed the sequential appearance of small nuclei, thin protofibrils, and fiber bundles. The HgammaD-Crys fibrous aggregate species bound bisANS appreciably, indicating the presence of exposed hydrophobic pockets. The mechanism of HgammaD-Crys aggregation may provide clues to understanding age-onset cataract formation in vivo. 相似文献