首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human beings have a strong tendency to imitate. Evidence from motor priming paradigms suggests that people automatically tend to imitate observed actions such as hand gestures by performing mirror-congruent movements (e.g., lifting one’s right finger upon observing a left finger movement; from a mirror perspective). Many observed actions however, do not require mirror-congruent responses but afford complementary (fitting) responses instead (e.g., handing over a cup; shaking hands). Crucially, whereas mirror-congruent responses don''t require physical interaction with another person, complementary actions often do. Given that most experiments studying motor priming have used stimuli devoid of contextual information, this space or interaction-dependency of complementary responses has not yet been assessed. To address this issue, we let participants perform a task in which they had to mirror or complement a hand gesture (fist or open hand) performed by an actor depicted either within or outside of reach. In three studies, we observed faster reaction times and less response errors for complementary relative to mirrored hand movements in response to open hand gestures (i.e., ‘hand-shaking’) irrespective of the perceived interpersonal distance of the actor. This complementary effect could not be accounted for by a low-level spatial cueing effect. These results demonstrate that humans have a strong and automatic tendency to respond by performing complementary actions. In addition, our findings underline the limitations of manipulations of space in modulating effects of motor priming and the perception of affordances.  相似文献   

2.
3.
Mankind is unique in her ability for observational learning, i.e. the transmission of acquired knowledge and behavioral repertoire through observation of others' actions. In the present study we used electrophysiological measures to investigate brain mechanisms of observational learning. Analysis investigated the possible functional coupling between occipital (alpha) and motor (mu) rhythms operating in the 10 Hz frequency range for translating "seeing" into "doing". Subjects observed movement sequences consisting of six consecutive left or right hand button presses directed at one of two target-buttons for subsequent imitation. Each movement sequence was presented four times, intervened by short pause intervals for sequence rehearsal. During a control task subjects observed the same movement sequences without a requirement for subsequent reproduction. Although both alpha and mu rhythms desynchronized during the imitation task relative to the control task, modulations in alpha and mu power were found to be largely independent from each other over time, arguing against a functional coupling of alpha and mu generators during observational learning. This independence was furthermore reflected in the absence of coherence between occipital and motor electrodes overlaying alpha and mu generators. Instead, coherence analysis revealed a pair of symmetric fronto-parietal networks, one over the left and one over the right hemisphere, reflecting stronger coherence during observation of movements than during pauses. Individual differences in fronto-parietal coherence were furthermore found to predict imitation accuracy. The properties of these networks, i.e. their fronto-parietal distribution, their ipsilateral organization and their sensitivity to the observation of movements, match closely with the known properties of the mirror neuron system (MNS) as studied in the macaque brain. These results indicate a functional dissociation between higher order areas for observational learning (i.e. parts of the MNS as reflected in 10 Hz coherence measures) and peripheral structures (i.e. lateral occipital gyrus for alpha; central sulcus for mu) that provide low-level support for observation and motor imagery of action sequences.  相似文献   

4.
Asperger syndrome (AS) is a neurodevelopmental condition within the Autism Spectrum Disorders (ASD) characterized by specific difficulties in social interaction, communication and behavioural control. In recent years, it has been suggested that ASD is related to a dysfunction of action simulation processes, but studies employing imitation or action observation tasks provided mixed results. Here, we addressed action simulation processes in adolescents with AS by means of a motor imagery task, the classical hand laterality task (to decide whether a rotated hand image is left or right); mental rotation of letters was also evaluated. As a specific marker of action simulation in hand rotation, we assessed the so-called biomechanical effect, that is the advantage for judging hand pictures showing physically comfortable versus physically awkward positions. We found the biomechanical effect in typically-developing participants but not in participants with AS. Overall performance on both hand laterality and letter rotation tasks, instead, did not differ in the two groups. These findings demonstrated a specific alteration of motor imagery skills in AS. We suggest that impaired mental simulation and imitation of goal-less movements in ASD could be related to shared cognitive mechanisms.  相似文献   

5.
Mirror neurons, located in the premotor cortex of macaque monkeys, are activated both by the performance and the passive observation of particular goal-directed actions. Although this property would seem to make them the ideal neural substrate for imitation, the puzzling fact is that monkeys simply do not imitate. Indeed, imitation appears to be a uniquely human ability. We are thus left with a fascinating question: if not imitation, what are mirror neurons for? Recent advances in the study of non-human primate social cognition suggest a surprising potential answer.  相似文献   

6.
We examined the visual capture of perceived hand position in forty-five 5- to 7-year-olds and in fifteen young adults, using a mirror illusion task. In this task, participants see their left hand on both the left and right (by virtue of a mirror placed at the midline facing the left arm, and obscuring the right). The accuracy of participants’ reaching was measured when proprioceptive and visual cues to the location of the right arm were put into conflict (by placing the arms at different distances from the mirror), and also when only proprioceptive information was available (i.e., when the mirror was covered). Children in all age-groups (and adults) made reaching errors in the mirror condition in accordance with the visually-specified illusory starting position of their hand indicating a visual capture of perceived hand position. Data analysis indicated that visual capture increased substantially up until 6 years of age. These findings are interpreted with respect to the development of the visual guidance of action in early childhood.  相似文献   

7.
In this paper, we describe the possibility of navigating in a virtual environment using the output signal of an EEG-based Brain-Computer Interface (BCI). The graphical capabilities of virtual reality (VR) should help to create new BCI-paradigms and improve feedback presentation. The objective of this combination is to enhance the subject's learning process of gaining control of the BCI. In this study, the participant had to imagine left or right hand movements while exploring a virtual conference room. By imaging a left hand movement the subject turned virtually to the left inside the room and with right hand imagery to the right. In fact, three trained subjects reached 80% to 100% BCI classification accuracy in the course of the experimental sessions. All subjects were able to achieve a rotation in the VR to the left or right by approximately 45 degrees during one trial.  相似文献   

8.
Bisio A  Stucchi N  Jacono M  Fadiga L  Pozzo T 《PloS one》2010,5(10):e13506
Automatic imitation is the tendency to reproduce observed actions involuntarily. Though this topic has been widely treated, at present little is known about the automatic imitation of the kinematic features of an observed movement. The present study was designed to understand if the kinematics of a previously seen stimulus primes the executed action, and if this effect is sensitive to the kinds of stimuli presented. We proposed a simple imitation paradigm in which a dot or a human demonstrator moved in front of the participant who was instructed either to reach the final position of the stimulus or to imitate its motion with his or her right arm. Participants' movements were automatically contaminated by stimulus velocity when it moved according to biological laws, suggesting that automatic imitation was kinematic dependent. Despite that the performance, in term of reproduced velocity, improved in a context of voluntary imitation, subjects did not replicate the observed motions exactly. These effects were not affected by the kind of stimuli used, i.e., motor responses were influenced in the same manner after dot or human observation. These findings support the existence of low-level sensory-motor matching mechanisms that work on movement planning and represent the basis for higher levels of social interaction.  相似文献   

9.
According to the ideomotor theory, actions are represented in terms of their perceptual effects, offering a solution for the correspondence problem of imitation (how to translate the observed action into a corresponding motor output). This effect-based coding of action is assumed to be acquired through action-effect learning. Accordingly, performing an action leads to the integration of the perceptual codes of the action effects with the motor commands that brought them about. While ideomotor theory is invoked to account for imitation, the influence of action-effect learning on imitative behavior remains unexplored. In two experiments, imitative performance was measured in a reaction time task following a phase of action-effect acquisition. During action-effect acquisition, participants freely executed a finger movement (index or little finger lifting), and then observed a similar (compatible learning) or a different (incompatible learning) movement. In Experiment 1, finger movements of left and right hands were presented as action-effects during acquisition. In Experiment 2, only right-hand finger movements were presented during action-effect acquisition and in the imitation task the observed hands were oriented orthogonally to participants’ hands in order to avoid spatial congruency effects. Experiments 1 and 2 showed that imitative performance was improved after compatible learning, compared to incompatible learning. In Experiment 2, although action-effect learning involved perception of finger movements of right hand only, imitative capabilities of right- and left-hand finger movements were equally affected. These results indicate that an observed movement stimulus processed as the effect of an action can later prime execution of that action, confirming the ideomotor approach to imitation. We further discuss these findings in relation to previous studies of action-effect learning and in the framework of current ideomotor approaches to imitation.  相似文献   

10.
The present study examined the development of bimanual interaction during the imitation of a live demonstration. To this end, children of five different age groups observed an adult model performing in an object manipulation task consisting to open a box with one hand, taking out an object with the other hand, and closing the box again, before they were asked to imitate this motor task under different imitation conditions. The children's responses were videotaped, coded in dichotomous data, and then transformed in percentage scores. The main results showed that all children were able to imitate/attain the goal of the task. However, differences were observed for the different imitation conditions, which were also reflected in some age effects, while hand dominance was a strong constraint on imitation. Also, practice did not seem to increase the likelihood of model imitation. These findings confirm that imitation is a reconstruction mechanism hierarchically organized.  相似文献   

11.
The present study was designed in order to contribute towards the understanding of the physiology of motor imagery. DC potentials were recorded when subjects either imagined or executed a sequence of unilateral or bilateral hand movements. The sequence consisted of hand movements in 4 directions, forwards, backwards, to the right and to the left, and varied from trial to trial. The sequence had been cued by visual targets on a computer screen and had to be memorized before the trial was initiated. Changes of DC potentials between task execution and imagination were localized in central recordings (C3, Cz, C4) with larger amplitudes when executing the task than when imagining to do so. Stimulation of peripheral receptors associated with task execution or a different level of activation of the cortico-motoneural system could account for this finding. The main result of the present study was that with unilateral performance, the side of the performing hand (right, left) had localized effects in recordings over the sensorimotor hand area (C3, C4) which were qualitatively the same with imagination and execution and quantitatively similar (i.e., without significant difference). Performance of the right hand augmented negative DC potentials in C3, performance of the left hand augmented amplitudes in C4. This result is consistent with the assumption that the primary motor cortex is active with motor imagery. Finally, the question has been addressed whether motor imagery may involve the left hemisphere to a larger extent than the execution of the movement. It is shown that a particular contribution of the left hemisphere associated with motor imagery may only show up under strictly controlled conditions.  相似文献   

12.
Electromyographically determined reaction times (EMG-RTs) of the finger flexor and extensor of both forearms were measured for four different motions: inward (task 1), flexion of both wrists; outward (task 2), extension of both wrists; to the left (task 3), extension of the left wrist and flexion of the right; and to the right (task 4), flexion of the left and extension of the right. The EMG-RTs were shorter and synchronization errors in terms of left to right differences of EMG-RTs were smaller in tasks 1 and 2 than in tasks 3 and 4. Comparing the flexors and the extensors, the extent of prolongation of EMG-RTs in tasks 3 and 4 differed significantly on the left side, being larger in the flexor than in the extensor, but there was no difference in the extent of prolongation between the flexor and the extensor on the right. It was suggested that the timing of initiation of movements in simultaneous motions was primarily determined by the pattern of muscle coupling in both limbs, and not by the direction of movements. The steadiness of motor function and of the right hand in right-handed subjects was also discussed in regard to hand preference.  相似文献   

13.
Influential theories of imitation have proposed that humans inherit a neural mechanism – an “active intermodal matching “ (AIM) mechanism or a mirror neuron system - that functions from birth to automatically match sensory input from others’ actions to motor programs for performing those same actions, and thus produces imitation. To test these proposals, 160 1- to 2½-year-old toddlers were asked to imitate two simple movements– bending the arm to make an elbow, and moving the bent elbow laterally. Both behaviors were almost certain to be in each child’s repertoire, and the lateral movement was goal-directed (used to hit a plastic cup). Thus, one or both behaviors should have been imitable by toddlers with a functioning AIM or mirror neuron system. Each child saw the two behaviors repeated 18 times, and was encouraged to imitate. Children were also asked to locate their own elbows. Almost no children below age 2 imitated either behavior. Instead, younger children gave clear evidence of a developmental progression, from reproducing only the outcome of the models’ movements (hitting the object), through trying (but failing) to reproduce the model’s arm posture and/or the arm-cup relations they had seen, to accurate imitation of arm bending by age 2 and of both movements by age 2½. Across age levels, almost all children who knew the word ‘elbow’ imitated both behaviors: very few who did not know the word imitated either behavior. The evidence is most consistent with a view of early imitation as the product of a complex system of language, cognitive, social, and motor competencies that develop in infancy. The findings do not rule out a role for an inherited neural mechanism, but they suggest that such a system would not by itself be sufficient to explain imitation at any age.  相似文献   

14.
Sensorimotor experience enhances automatic imitation of robotic action   总被引:1,自引:0,他引:1  
Recent research in cognitive neuroscience has found that observation of human actions activates the 'mirror system' and provokes automatic imitation to a greater extent than observation of non-biological movements. The present study investigated whether this human bias depends primarily on phylogenetic or ontogenetic factors by examining the effects of sensorimotor experience on automatic imitation of non-biological robotic, stimuli. Automatic imitation of human and robotic action stimuli was assessed before and after training. During these test sessions, participants were required to execute a pre-specified response (e.g. to open their hand) while observing a human or robotic hand making a compatible (opening) or incompatible (closing) movement. During training, participants executed opening and closing hand actions while observing compatible (group CT) or incompatible movements (group IT) of a robotic hand. Compatible, but not incompatible, training increased automatic imitation of robotic stimuli (speed of responding on compatible trials, compared with incompatible trials) and abolished the human bias observed at pre-test. These findings suggest that the development of the mirror system depends on sensorimotor experience, and that, in our species, it is biased in favour of human action stimuli because these are more abundant than non-biological action stimuli in typical developmental environments.  相似文献   

15.
16.
Simple reaction times to lateralized visual stimuli were studied in normal subjects while they were carrying out a concomitant task. The concomitant task consisted in the exploration of a visual maze presented in the middle of a screen. Regardless of the hand used, the concomitant task produced a specific lengthening of the responses to stimuli located in the left visual field. It is concluded that the right hemisphere plays a major role in the organization of ocular movements during active exploration of visual environment.  相似文献   

17.
Previous studies have suggested that the left and right hands have different specialties for motor control that can be represented as two agents in the brain. This study examined how coordinated movements are performed during bimanual reaching tasks to highlight differences in the characteristics of the hands. We examined motor movement accuracy, reaction time, and movement time in right-handed subjects performing a three-dimensional motor control task (visually guided reaching). In the no-visual-feedback condition, right-hand movement had lower accuracy and a shorter reaction time than did left-hand movement, whereas bimanual movement had the longest reaction time, but the best accuracy. This suggests that the two hands have different internal models and specialties: closed-loop control for the right hand and open-loop control for the left hand. Consequently, during bimanual movements, both models might be used, creating better control and planning (or prediction), but requiring more computation time compared to the use of one hand only.  相似文献   

18.
Using studies of the right and left hemisphere’s specialization for positional and vector coding, we analyzed the errors made by right- and left-handers while reproducing sequences of right and left hand movements in a task that activates vector coding by changing the order of movements in memorized sequences. The task was performed first with one hand (starting) and then with the other (continuing). Both right- and lefthanders were found to use information about previous movements of the starting hand only when the dominant hand was starting. After changing the hand, right-handers used information about previous movements of the continuing hand, while left-handers did not. The results were compared with data from earlier experiments wherein positional coding was activated. The comparison showed that vector coding was predominantly involved in memorizing sequences of movements made by the dominant hand, while positional coding was used in the case of the opposite hand in both right- and left-handers. Patterns of errors after changing the hand differed between right- and left-handers, and the conclusion was made that skills are transferred in different ways in right- and left-handers, depending on the type of coding.  相似文献   

19.
How humans produce cognitively driven fine motor movements is a question of fundamental importance in how we interact with the world around us. For example, we are exposed to a constant stream of information and we must select the information that is most relevant by which to guide our actions. In the present study, we employed a well-known behavioral assay called the Simon task to better understand how humans are able to learn to filter out irrelevant information. We trained subjects for four days with a visual stimulus presented, alternately, in central and lateral locations. Subjects responded with one hand moving a joystick in either the left or right direction. They were instructed to ignore the irrelevant location information and respond based on color (e.g. red to the right and green to the left). On the fifth day, an additional testing session was conducted where the task changed and the subjects had to respond by shape (e.g. triangle to the right and rectangle to the left). They were instructed to ignore the color and location, and respond based solely on the task relevant shape. We found that the magnitude of the Simon effect decreases with training, however it returns in the first few trials after a break. Furthermore, task-defined associations between response direction and color did not significantly affect the Simon effect based on shape, and no significant associative learning from the specific stimulus-response features was found for the centrally located stimuli. We discuss how these results are consistent with a model involving route suppression/gating of the irrelevant location information. Much of the learning seems to be driven by subjects learning to suppress irrelevant location information, however, this seems to be an active inhibition process that requires a few trials of experience to engage.  相似文献   

20.
Several investigations suggest that actual and mental actions trigger similar neural substrates. Yet, neurophysiological evidences on the nature of interhemispheric interactions during mental movements are still meagre. Here, we asked whether the content of mental images, investigated by task complexity, is finely represented in the inhibitory interactions between the two primary motor cortices (M1s). Subjects’ left M1 was stimulated by means of transcranial magnetic stimulation (TMS) while they were performing actual or mental movements of increasing complexity with their right hand and exerting a maximum isometric force with their left thumb and index. Thus, we simultaneously assessed the corticospinal excitability in the right opponent pollicis muscle (OP) and the ipsilateral silent period (iSP) in the left OP during actual and mental movements. Corticospinal excitability in right OP increased during actual and mental movements, but task complexity-dependent changes were only observed during actual movements. Interhemispheric motor inhibition in the left OP was similarly modulated by task complexity in both mental and actual movements. Precisely, the duration and the area of the iSP increased with task complexity in both movement conditions. Our findings suggest that mental and actual movements share similar inhibitory neural circuits between the two homologous primary motor cortex areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号