首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In plants, most of the above-ground body is formed post-embryonically by the continuous organogenic potential of the shoot apical meristem (SAM). Proper function of the SAM requires maintenance of a delicate balance between the depletion of stem cell daughters into developing primordia and proliferation of the central stem cell population. Here we show that initiation and maintenance of the Arabidopsis SAM, including that of floral meristems, requires the combinatorial action of three members of the BELL-family of TALE homeodomain proteins, ARABIDOPSIS THALIANA HOMEOBOX 1 (ATH1), PENNYWISE (PNY) and POUND-FOOLISH (PNF). All three proteins interact with the KNOX TALE homeodomain protein STM, and combined lesions in ATH1 , PNY and PNF result in a phenocopy of stm mutations. Therefore, we propose that ath1 pny pnf meristem defects result from loss of combinatorial BELL-STM control. Further, we demonstrate that heterodimerization-controlled cellular localization of BELL and KNOX proteins involves a CRM1/exportin-1-mediated nuclear exclusion mechanism that is probably generic to control the activity of BELL and KNOX combinations. We conclude that in animals and plants corresponding mechanisms regulate the activity of TALE homeodomain proteins through controlled nuclear-cytosolic distribution of these proteins.  相似文献   

3.
4.
Plant Molecular Biology - Comprehensive yeast and protoplast two-hybrid analyses illustrated the protein–protein interaction network of the TALE homeodomain protein family, KNOX and BLH...  相似文献   

5.
6.
7.
The three amino acid loop extension (TALE) homeodomain superfamily, which comprises the KNOTTED-like and BEL1-like families, plays a critical role in regulating meristem activity. We previously demonstrated a function for KNAT6 (for KNOTTED-like from Arabidopsis thaliana 6) in shoot apical meristem and boundary maintenance during embryogenesis. KNAT2, the gene most closely related to KNAT6, does not play such a role. To investigate the contribution of KNAT6 and KNAT2 to inflorescence development, we examined their interactions with two TALE genes that regulate internode patterning, BREVIPEDICELLUS (BP) and PENNYWISE (PNY). Our data revealed distinct and overlapping interactions of KNAT6 and KNAT2 during inflorescence development. Removal of KNAT6 activity suppressed the pny phenotype and partially rescued the bp phenotype. Removal of KNAT2 activity had an effect only in the absence of both BP and KNAT6 or in the absence of both BP and PNY. Consistent with this, KNAT6 and KNAT2 expression patterns were enlarged in both bp and pny mutants. Thus, the defects seen in pny and bp are attributable mainly to the misexpression of KNAT6 and to a lesser extent of KNAT2. Hence, our data showed that BP and PNY restrict KNAT6 and KNAT2 expression to promote correct inflorescence development. This interaction was also revealed in the carpel.  相似文献   

8.
9.
10.
11.
Plant development: A TALE story   总被引:2,自引:0,他引:2  
  相似文献   

12.
The asymmetric leaves 1 ( as1 ) and as2 mutants of Arabidopsis thaliana exhibit pleiotropic phenotypes. Expression of a number of genes, including three class-1 KNOTTED -like homeobox ( KNOX ) genes ( BP , KNAT2 and KNAT6 ) and ETTIN / ARF3 , is enhanced in these mutants. In the present study, we attempted to identify the phenotypic features of as1 and as2 mutants that were generated by ectopic expression of KNOX genes, using multiple loss-of-function mutations of KNOX genes as well as as1 and as2 . Our results revealed that the ectopic expression of class-1 KNOX genes resulted in reductions in the sizes of leaves, reductions in the size of sepals and petals, the formation of a less prominent midvein, the repression of adventitious root formation and late flowering. Our results also revealed that the reduction in leaf size and late flowering were caused by the repression, by KNOX genes, of a gibberellin (GA) pathway in as1 and as2 plants. The formation of a less prominent midvein and the repression of adventitious root formation were not, however, related to the GA pathway. The asymmetric formation of leaf lobes, the lower complexity of higher-ordered veins, and the elevated frequency of adventitious shoot formation on leaves of as1 and as2 plants were not rescued by multiple mutations in KNOX genes. These features must, therefore, be controlled by other genes in which expression is enhanced in the as1 and as2 mutants.  相似文献   

13.
14.
Smith HM  Hake S 《The Plant cell》2003,15(8):1717-1727
Plant architecture results from the activity of the shoot apical meristem, which initiates leaves, internodes, and axillary meristems. KNOTTED1-like homeobox (KNOX) genes are expressed in specific patterns in the shoot apical meristem and play important roles in plant architecture. KNOX proteins interact with BEL1-like (BELL) homeodomain proteins and together bind a target sequence with high affinity. We have obtained a mutation in one of the Arabidopsis BELL genes, PENNYWISE (PNY), that appears phenotypically similar to the KNOX mutant brevipedicellus (bp). Both bp and pny have randomly shorter internodes and display a slight increase in the number of axillary branches. The double mutant shows a synergistic phenotype of extremely short internodes interspersed with long internodes and increased branching. PNY is expressed in inflorescence and floral meristems and overlaps with BP in a discrete domain of the inflorescence meristem where we propose the internode is patterned. The physical association of the PNY and BP proteins suggests that they participate in a complex that regulates early patterning events in the inflorescence meristem.  相似文献   

15.
Peng J  Yu J  Wang H  Guo Y  Li G  Bai G  Chen R 《The Plant cell》2011,23(11):3929-3943
Medicago truncatula is a legume species belonging to the inverted repeat lacking clade (IRLC) with trifoliolate compound leaves. However, the regulatory mechanisms underlying development of trifoliolate leaves in legumes remain largely unknown. Here, we report isolation and characterization of fused compound leaf1 (fcl1) mutants of M. truncatula. Phenotypic analysis suggests that FCL1 plays a positive role in boundary separation and proximal-distal axis development of compound leaves. Map-based cloning indicates that FCL1 encodes a class M KNOX protein that harbors the MEINOX domain but lacks the homeodomain. Yeast two-hybrid assays show that FCL1 interacts with a subset of Arabidopsis thaliana BEL1-like proteins with slightly different substrate specificities from the Arabidopsis homolog KNATM-B. Double mutant analyses with M. truncatula single leaflet1 (sgl1) and palmate-like pentafoliata1 (palm1) leaf mutants show that fcl1 is epistatic to palm1 and sgl1 is epistatic to fcl1 in terms of leaf complexity and that SGL1 and FCL1 act additively and are required for petiole development. Previous studies have shown that the canonical KNOX proteins are not involved in compound leaf development in IRLC legumes. The identification of FCL1 supports the role of a truncated KNOX protein in compound leaf development in M. truncatula.  相似文献   

16.
In Arabidopsis thaliana, the female gametophyte is a highly polarized structure consisting of four cell types: one egg cell and two synergids, one central cell, and three antipodal cells. In this report, we describe the characterization of a novel female gametophyte mutant, eostre, which affects establishment of cell fates in the mature embryo sac. The eostre phenotype is caused by misexpression of the homeodomain gene BEL1-like homeodomain 1 (BLH1) in the embryo sac. It is known that BELL-KNAT proteins function as heterodimers whose activities are regulated by the Arabidopsis ovate family proteins (OFPs). We show that the phenotypic effect of BLH1 overexpression is dependent upon the class II knox gene KNAT3, suggesting that KNAT3 must be expressed and functional during megagametogenesis. Moreover, disruption of At OFP5, a known interactor of KNAT3 and BLH1, partially phenocopies the eostre mutation. Our study indicates that suppression of ectopic activity of BELL-KNOX TALE complexes, which might be mediated by At OFP5, is essential for normal development and cell specification in the Arabidopsis embryo sac. As eostre-1 embryo sacs also show nuclear migration abnormalities, this study suggests that a positional mechanism might be directing establishment of cell fates in early megagametophyte development.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号