首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between food web dynamics and hydrological connectivity in rivers should be strongly influenced by annual flood pulses that affect primary production dynamics and movement of organic matter and consumer taxa. We sampled basal production sources and fishes from connected lagoons and the main channel of a low-gradient, floodplain river within the Orinoco River Basin in Venezuela. Stable isotope analysis was used to model the contribution of four basal production sources to fishes, and to examine patterns of mean trophic position during the falling-water period of the annual flood cycle. IsoSource, a multi-source mixing model, indicated that proportional contributions from production sources to fish assemblages were similar in lagoons and the main channel. Although distributions differed, the means for trophic positions of fish assemblages as well as individual species were similar between the two habitats. These findings contradict recent food web studies conducted in temperate floodplain rivers that described significant differences in trophic positions of fishes from slackwater and floodplain versus main channel habitats. Low between-habitat trophic variation in this tropical river probably results from an extended annual flood pulse (ca. 5 mo.) that allows mixing of sestonic and allochthonous basal production sources and extensive lateral movements of fishes throughout the riverscape.  相似文献   

2.
Changes in fish densities recorded over 14 years (1996–2009) were studied for effects of long-term variation of the hydrologic regime. We collected field data with an echo sounder in scour holes of minor channels draining an area of floodplain in the middle reach of the Paraná River. Fish densities in 2000–2009 were significantly lower than in the previous decade. The decrease was associated with a marked reduction of water levels, flood magnitudes and connectivity of channels with the nearby floodplain lakes. This distortion of the flood pulse likely had an effect on the life history strategies of the fishes. The effects of damming in the upstream basin and other man-made perturbations are minor in the middle reach. However, the decadal alterations of regime are intimately linked to climate fluctuations in the Paraná River basin during the past century. Tendencies of observed fish densities are similar to results reported in literature on the influence on fishes for similar long-term alterations of the flood regime in river flood plain systems.  相似文献   

3.
Riverine floodplains play many important roles in river ecosystems. However, many floodplains have suffered degradation or loss of ecological function due to excessive river improvements or through changes in agricultural systems. As a result, many floodplain restoration projects are being conducted worldwide. One of the many methods being implemented to restore floodplain vegetation is flood water seed dispersal. In this technique, precisely estimating the effect of seed dispersal by flood water is important in order to achieve successful floodplain revegetation. Here, we focus our attention on sediment transport by flood water into the Azamenose Swamp, a restored floodplain. We attempt to estimate the function of seed deposition in the restored floodplain and explain how the seeds are deposited in the floodplain by flood water. The result suggests that the restored floodplain functions as a more appropriate deposition site for seeds than the riverbanks of the main river. It was also found that the distance from the inflow site and the weight of the sediment were related to seed deposition.  相似文献   

4.
During the flood season of 1992–1993, 139 species of fishes were collected from a floodplain lake system in the central Amazon Basin. Fish species distribution was examined relative to abiotic variables in seven vegetation strata on Marchantaria Island, Solimões River. Both environmental variables and species distributions were influenced by a river channel to floodplain-interior gradient. Species diversity was significantly higher in vegetated areas than in unvegetated areas, with deeper water Paspalum repens stands harbouring the highest diversity. As a result, species richness and catches were positively related to habitat complexity, while catch was also negatively related to dissolved oxygen (DO) and water depth. Low DO and shallow waters appeared to act as a refuge from predation. Fish assemblages were related to water chemistry, but species richness was not. Canonical correspondence analysis provided evidence that floodplain fish assemblages formed by the 76 most common species were influenced by physical variables, macrophyte coverage and habitat complexity, which jointly accounted for 67% of the variance of fish species assemblages. Omnivores showed no pattern relative to the river channel to floodplain-interior gradient while detritivores were more likely to be found at interior floodplain sites and piscivores closer to the river. Piscivores could be further separated into three groups, one with seven species associated with free-floating macrophytes in deep water, a second with five species found in shallow waters with rooted grasses and a third with six open water orientated species. The results suggest that fish assemblages in the Amazon floodplain are not random associations of species.  相似文献   

5.
Although floodplains are known to be tightly controlled by the flood cycle, we know comparatively little about how flooding influences predators and their consumption of secondary production, particularly in highly seasonal floodplains typical of Mediterranean climates. In this study, we investigate how the seasonal dynamics of a central California floodplain influence the timing and magnitude of fish predation and the abundance and composition of invertebrates. For 3 years (2000–2002), we compared changes in abundances and size distributions of invertebrates through the flood season (January–June) with seasonal changes in the abundance of larval and juvenile fishes. Using diet analysis of fishes and manipulative feeding experiments with fishes in field enclosures, we link specific changes in invertebrate populations directly to feeding preferences of seasonally abundant fish. Early in the flood season prior to March, we found little influence of fish predation, consistent with the near absence of larval and juvenile fishes during this period. Coinciding with the midseason increase in the abundance of larval and juvenile fishes in April, we found significant declines in zooplankton abundance as well as declines in the size of zooplankton consistent with fish feeding preferences. Our results were consistent with results from feeding enclosure experiments that showed that fish rapidly depressed populations of larger cladocerans with much less effect on smaller cladocerans and calanoid copepods. At the end of the flood season, zooplankton abundances rapidly increased, consistent with a switch in the feeding of juvenile fish to aquatic insects and subsequent fish mortality. We also found that zooplankton biomass on the floodplain reached a maximum 2–3 weeks after disconnection with the river. We suggest that floodplain restoration in this region should consider management strategies that would ensure repeated flooding every 2–3 weeks during periods that would best match the peaks in abundance of native fishes. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

6.
River flooding is important for the ecological functioning of river floodplains. It is implicitly assumed that in many river floodplains during floods, river water is spreading all over the floodplain. We hypothesize that during flood events a spatial distribution of water types exists, which is correlated to different water sources (river water, atmospheric water and groundwater) and to the spatial distribution of vegetation types. The objective of this paper is to assess a new methodology to determine the extent of flooding and the spatial distribution of different water sources during the flood, using GPS, multispectral remote sensing and hydrochemical analyses. This methodology is applied to the Biebrza River Lower Basin, which has little human impact. Remote sensing resulted in a map distinguishing inundated areas from dry areas, which showed 85% agreement with GPS field measurements. Principal Component Analyses and Cluster Analyses on the measured water chemistry identified different water sources during the flood (river water, groundwater, rainwater) and showed the effects of human impact on water quality. River flood water dominated the entire inundation zone in the northern Lower Basin, which is narrower and steeper than the southern Lower Basin where groundwater and rainwater were significant contributors to the major part of the inundated area. Vegetation in the river flood zone is distinctly different from the rest of the floodplain. Due to mixing of ground- and rainwater, correlation analyses between vegetation and water type were not possible outside the river flood zone. The new methodology is effective in distinguishing inundated areas from dry regions and in separating river flood water from other water sources during a flood.  相似文献   

7.
The meanders and floodplains of the Kushiro River were restored in March 2011. A 1.6‐km stretch of the straightened main channel was remeandered by reconnecting the cutoff former channel and backfilling the straightened reach, and a 2.4‐km meander channel was restored. Additionally, flood levees were removed to promote river–floodplain interactions. There were four objectives of this restoration project: to restore the in‐stream habitat for native fish and invertebrates; to restore floodplain vegetation by increasing flooding frequency and raising the groundwater table; to reduce sediment and nutrient loads in the core wetland areas; to restore a river–floodplain landscape typical to naturally meandering rivers. In this project, not only the natural landscape of a meandering river but also its function was successfully restored. The monitoring results indicated that these goals were likely achieved in the short term after the restoration. The abundance and species richness of fish and invertebrate species increased, most likely because the lentic species that formerly inhabited the cutoff channel remained in the backwater and deep pools created in the restored reach. In addition, lotic species immigrated from neighboring reaches. The removal of flood levees and backfilling of the formerly straightened reach were very effective in increasing the frequency of flooding over the floodplains and raising the water table. The wetland vegetation recovered rapidly 1 year after the completion of the meander restoration. Sediment‐laden floodwater spread over the floodplain, and approximately 80–90% of the fine sediment carried by the water was filtered out by the wetland vegetation.  相似文献   

8.
The fish assemblages of an arid zone floodplain river, Cooper Creek, Queensland, Australia, were sampled during two dry periods in isolated waterholes and on the inundated floodplain during the early and late phase of a major flood event. Diets were described for nine native species and compared within and between dry and flood periods. In the dry season, when fishes were restricted to waterholes, diets were characteristically simple with narrow diet breadths. Movement onto the floodplain during flooding clearly increased feeding opportunities, with greater diet breadths evident in all species. Despite obvious potential for terrestrial inputs, diets tended to be dominated by aquatic resources in both the waterholes and on the floodplain. Stomach fullness, however, varied little between dry season waterhole and floodplain samples. Fishes appeared to feed on potentially lower value resources such as detritus and calanoid copepods during the dry season, when waterholes were isolated and food resources were limited. They were then able to capitalize on the 'boom' of aquatic production and more diverse food resources associated with episodic flood events.  相似文献   

9.
Primary productivity, community respiration, chlorophyll a concentration, phytoplankton species composition, and environmental factors were compared in the Yolo Bypass floodplain and adjacent Sacramento River in order to determine if passage of Sacramento River through floodplain habitat enhanced the quantity and quality of phytoplankton carbon available to the aquatic food web and how primary productivity and phytoplankton species composition in these habitats were affected by environmental conditions during the flood season. Greater net primary productivity of Sacramento River water in the floodplain than the main river channel was associated with more frequent autotrophy and a higher P:R ratio, chlorophyll a concentration, and phytoplankton growth efficiency (αB). Total irradiance and water temperature in the euphotic zone were positively correlated with net primary productivity in winter and early spring but negatively correlated with net primary productivity in the late spring and early summer in the floodplain. In contrast, net primary productivity was correlated with chlorophyll a concentration and streamflow in the Sacramento River. The flood pulse cycle was important for floodplain production because it facilitated the accumulation of chlorophyll a and wide diameter diatom and green algal cells during the drain phase. High chlorophyll a concentration and diatom and green algal biomass enabled the floodplain to export 14–37% of the combined floodplain plus river load of total, diatom and green algal biomass and wide diameter cells to the estuary downstream, even though it had only 3% of the river streamflow. The study suggested the quantity and quality of riverine phytoplankton biomass available to the aquatic food web could be enhanced by passing river water through a floodplain during the flood season.  相似文献   

10.
Copp  G. H.  Carter  M. G.  & Faulkner  H. 《Journal of fish biology》2003,63(S1):248-249
Population behaviours associated with the migrations of coarse (non‐salmonid) fishes within river basins are amongst the most poorly understood dispersion mechanisms of temperate freshwater organisms, which in rivers are expected to be influenced by river discharge. We examined the timing and intensity of fish movements (via trapping) between the River Avon (Hampshire, England) and a small floodplain tributary, Ibsley Brook, and tested for correlations with trends in river discharge (i.e. mean cm of change in stage during trapping), water temperature and brook water velocity over twelve months in 1999–2000. 0‐group fishes dominated the catches. Intensities of movement between the brook and the river were similar in most months, but seasonal patterns were observed overall and for individual species. Few significant differences in overall numbers of fish were observed between the discharge trends, but many individual species demonstrated differences, mostly as more intense movement under fast rising discharge. Fish numbers in five species were correlated with river discharge trend, and movements in some species were correlated with the rate of temperature change (Δ° C 10 h sampling), and with changes in brook water velocity. Our results suggest daily movements between the river and small tributary brooks are triggered by changes in light intensity and water velocity, whereas seasonal movements of species between the river and brook are driven by changes in river discharge and water temperature, in particular associated with flood events. This study emphasizes the importance of connectivity in river systems, as fish movement between the Avon and its annexes occur under all flow regimes, but especially with rapidly rising discharge.  相似文献   

11.
Studies have demonstrated the importance of the synergistic relationship between large rivers and adjacent floodplain connectivity. The majority of large rivers and their associated floodplain have been isolated through a series of expansive levee systems. Thus, evaluations of the relative importance of floodplain connectivity are limited due to the aforementioned anthropogenic perturbations. However, persistent elevated river levels during spring 2011 at the confluence of the Mississippi River and Ohio River prompted the U.S. Army Corps of Engineers to create large gaps in the levee system producing an expansive floodplain (i.e. the New Madrid Floodway). Specifically, the New Madrid Floodway (approximately 475 km2) in southeast Missouri was created to divert part of the Mississippi River flow during catastrophic floods and thus alleviate flood risk on nearby population centers. Given the historic flooding of 2011, the floodway was opened and provided an unprecedented opportunity to evaluate the influence of floodplain inundation on fish species diversity, relative abundance, and growth. We sampled the floodplain and the adjacent river at three stratified random locations with replication biweekly from the commencement of inundation (late May) through early October. Overall, we found that species diversity, relative abundance, and growth were higher in the floodplain than the main river. Our data support previous examinations, including those outside North America, that suggest floodplain inundation may be important for riverine fishes. Given these apparent advantages of floodplain inundation, restoration efforts should balance benefits of floodplain inundation while safeguarding priority needs of humans.  相似文献   

12.
Riparian plants can use nitrogen (N) from soil and river water, but the use of river water N might be limited in higher floodplain environments of the Chikuma River. The purpose of this study is to reveal the relationship between N uptake by riparian plants and the floodplain topography (relative height and distance from a river channel). We examined the hypothesis that surface sediment removal from the higher floodplain increases river water N uptake by riparian plants by using a stable isotope analysis. The δ15N value of river water samples (ca. 8‰) were significantly higher than those of the soil extracts (ca. 3‰) in the study area. The δ15N value of riparian plants increased from +3.0‰ (standard deviation, SD ±2.1‰) before sediment removal to +9.6‰ (±2.1‰) after sediment removal, although there was no significant change in the δ15N value in N sources of soil and river water. The sediment removal enhanced frequency of flood disturbance, relative ground water level, and river water N uptake by riparian plants on the floodplain.  相似文献   

13.
Flood disturbance and water resource availability vary sharply over time and space along arid‐region rivers and can interact in complex fashion to shape diversity patterns. Plant diversity showed spatial patterning along a topogradient from the floodplain of the San Pedro River (Arizona, USA) to the arid upland, but the patterns shifted temporally as the suite of limiting factors changed. During two of three sampling times, spatial diversity patterns were shaped primarily by gradients of water availability, the regional limiting factor. In the summer dry season, microscale diversity (species richness per 1 m2) and mesoscale diversity (cumulative species and functional types in 20, 1‐m2 plots) of herbaceous plants decreased along the topogradient from floodplain to upland, reflecting the greater water availability on the low surfaces. During a summer wet season with moderate rains and flooding, diversity increased in all hydrogeomorphic zones (floodplain, terrace, upland), but the spatial pattern along the topogradient persisted. Following a very wet winter, patterns along the topogradient reversed: scour from large floods limited diversity on the floodplain and competitive exclusion limited the diversity on undisturbed river terrace, while abundant rains allowed for high microscale diversity in the upland. Disturbance and resource availability thus interacted to influence plant species diversity in a fashion consistent with the dynamic‐equilibrium model of species diversity. In contrast to the microscale patterns, mesoscale diversity of species and functional types remained high in the floodplain during all sampling times, with 58% more plant species and 90% more functional types sampled in low floodplain than arid upland for the year as a whole. Species with a wide range of moisture and temperature affinities were present in the floodplain, and seasonal turnover of species was high in this zone. The floodplain zone of a perennial to intermittent‐flow river thus had greater plant diversity than arid Sonoran Desert upland, as measured at temporal scales that capture seasonal variance in resource and disturbance pulses and at spatial scales that capture the environmental heterogeneity of floodplains. Although periodically limited by intense flood disturbance, diversity remains high in the floodplain because of the combination of moderate resource levels (groundwater, seasonal flood water) and persistent effects of flood disturbance (high spatial heterogeneity, absence of competitive exclusion), in concert with the same climatic factors that produce seasonally high diversity in the region (temporally variable pulses of rainfall).  相似文献   

14.
Water voles have suffered large population declines in the United Kingdom due to habitat degradation and predation by invasive American mink. Habitat restoration of floodplain wetlands could help to reverse this decline, but the detailed habitat preferences of water voles in these environments have not been well studied, and the impacts of restoration practices on water vole populations are not known. This study investigated the habitat preferences of water voles in a reconnected lowland river floodplain. The results show that water voles preferred wider water bodies, and taller and more diverse vegetation. The impact of flooding on water voles was also investigated by comparing their occurrence between two survey periods which were separated by large flood events, and by comparing distribution patterns before and after restoration. Contrary to previous reports, there was no observed negative impact of flood events on water vole distribution, which has slightly expanded since the floodplain was reconnected to the river in 2009. Overall this study demonstrates that restored wetlands can provide suitable habitat for water voles, and provides guidance on some of the factors which should be considered when designing floodplains for water vole conservation.  相似文献   

15.
Transport of larval fish in the Amazon   总被引:2,自引:0,他引:2  
In the Amazon near Manaus, larvae of Characiformes, Clupeiformes, Tetraodontiformes, Pleuronectiformes, Gymnotiformes, Belonidae and Sciaenidae were sampled in the river during most of the year, except in June and July, when the water level was at its maximum. Characiformes, Tetraodontiformes and Siluriformes were found in the ichthyoplankton mostly during the rising waters, but Clupeiformes and Sciaenidae drifted in the river almost all year around. Egg abundance was extremely low, suggesting that they do not drift or have a very short residence time. Two types of larval drift seemed to occur: a rising water drift and a lowering water drift. Characiformes, Tetraodontiformes and some Clupeiformes drifted mostly during the rising waters and were more abundant near the banks. Their strategy seemed to be a passive dispersion towards the floodplain with the flood pulse. The high densities near the banks optimized their chances of reaching a floodplain inlet. The groups that drifted during the lowering waters showed an alternative strategy. They were flushed from the floodplain lakes and may have stayed in the main river channel for a few months before returning to the floodplain. Predation in the lakes during the period when water level decline was probably the force behind this drift.  相似文献   

16.
The hydrologic regime of the Illinois River has been substantially altered by locks and dams, floodplain levees, water diversion, and development of the watershed over the past 100 years. The natural flood pulse, a fundamental rhythm to which the plants and animals of both the river and its floodplain had adapted, has been disrupted. State, federal, and non‐governmental organizations are currently trying to naturalize the Illinois floodplain‐river system. Little, however, is known about how to recover those elements of the flood pulse essential to the native biota. In this study we propose moist‐soil plants, whose life history is dependent upon flood pulsing, as ecohydrologic indicators of the flood pulse. We explain how moist‐soil plants are supported by the natural flood pulse and present a conceptual framework that links the flooding regimes of the river and the reproductive success of the plants. Successful germination and full growth of moist‐soil plants can be a useful indicator for optimum naturalization of flood regimes. The framework also shows how the interdisciplinary linkages between hydrology, ecology, and spatial analysis assist in predicting, measuring, and comparing consequences of alternative naturalization scenarios. A new ecohydrologic parameter, lowest elevation for successful moist‐soil plant production, is presented.  相似文献   

17.
The impact of hydrology (floods, seepage) on the chemistry of water and sediment in floodplain lakes was studied by a multivariate analysis (PCA) of physico-chemical parameters in 100 lakes within the floodplains in the lower reaches of the rivers Rhine and Meuse. In addition, seasonal fluctuations in water chemistry and chlorophyll-a development in the main channel of the Lower Rhine and five floodplain lakes along a flooding gradient were monitored. The species composition of the summer phytoplankton in these lakes was studied as well.At present very high levels of chloride, sodium, sulphate, phosphate and nitrate are found in the main channels of the rivers Rhine and Meuse, resulting from industrial, agricultural and domestic sewage. Together with the actual concentrations of major ions and nutrients in the main channel, the annual flood duration determines the physico-chemistry of the floodplain lakes. The river water influences the water chemistry of these lakes not only via inundations, but also via seepage. A comparison of recent and historical chemical data shows an increase over the years in the levels of chloride both in the main channel of the Lower Rhine and in seepage lakes along this river. Levels of alkalinity in floodplain lakes showed an inverse relationship with annual flood duration, because sulphur retention and alkalinization occurred in seepage waters and rarely-flooded lakes. The input of large quantities of nutrients (N, P) from the main channel has resulted, especially in frequently flooded lakes, in an increase in algal biomass and a shift in phytoplankton composition from a diatom dominated community towards a community dominated by chlorophytes and cyanobacteria.  相似文献   

18.
High levels of hydrological connectivity during seasonal flooding provide significant opportunities for movements of fish between rivers and their floodplains, estuaries and the sea, possibly mediating food web subsidies among habitats. To determine the degree of utilisation of food sources from different habitats in a tropical river with a short floodplain inundation duration (~2 months), stable isotope ratios in fishes and their available food were measured from three habitats (inundated floodplain, dry season freshwater, coastal marine) in the lower reaches of the Mitchell River, Queensland (Australia). Floodplain food sources constituted the majority of the diet of large-bodied fishes (barramundi Lates calcarifer, catfish Neoarius graeffei) captured on the floodplain in the wet season and for gonadal tissues of a common herbivorous fish (gizzard shad Nematalosa come), the latter suggesting that critical reproductive phases are fuelled by floodplain production. Floodplain food sources also subsidised barramundi from the recreational fishery in adjacent coastal and estuarine areas, and the broader fish community from a freshwater lagoon. These findings highlight the importance of the floodplain in supporting the production of large fishes in spite of the episodic nature and relatively short duration of inundation compared to large river floodplains of humid tropical regions. They also illustrate the high degree of food web connectivity mediated by mobile fish in this system in the absence of human modification, and point to the potential consequences of water resource development that may reduce or eliminate hydrological connectivity between the river and its floodplain.  相似文献   

19.
The spatial and temporal variability of water levels was investigated across a section of floodplain in the Pantanal that represents typical geomorphic and ecological complexity of these environments. A series of 11 staff gauges were installed along a 12-km transect running perpendicularly from the Cuiabá River into the floodplain. The staff gauges were monitored fortnightly during the flood seasons from 2004 to 2007. Contrary to what is often assumed, the water surface profile was never level, and it was particularly variable when there was less water on the floodplain. Water surface slope varied from 1.4 × 10−4 (unitless) to 1.3 × 10−3 indicating substantial water movement that was verified by flow observations. The spatial patterns of water level variation were repeated across years, even though there was considerable interannual variation in magnitude and duration of floodplain inundation. In 2004 and 2005, the duration of inundation was 121 and 120 days, respectively, but in 2006 and 2007, inundation lasted 166 and 157 days, respectively. These observations reveal considerable small-scale spatial variability in the water surface profile, but with persistent patterns over space and time that are related to the river hydrograph and the channels that convey flood waters across the area. This study contributes to our understanding of inundation hydrology and its linkages to ecosystem processes, and additionally provides a valuable data set for calibration and validation of remote sensing approaches to measurement of inundation area and water movement across floodplains.  相似文献   

20.
The pulsing of river discharge affects biodiversity and productivity of whole river–floodplain ecosystems, triggering the transport, storage and processing of carbon. In this study we investigate the short-term changes in water chemistry and net pelagic metabolism (NEP) in two floodplain lakes in response to a flood pulse. The two oxbow lakes investigated in the floodplain of the Mediterranean Ebro River (NE Spain) showed a clear temporal shift in their metabolic balance, controlled by the river discharge and associated changes in water physical and chemical characteristics. Water chemistry (turbidity, water organic matter, chlorophyll a and nutrients concentration) returned to pre-flood values after 4 days, highlighting the resilience of the ecosystem to flood pulses. Lake NEP was depressed before and during floods to a minimum of −34 mg O2 m−3 h−1, and increased after the flood pulse to a maximum of +463 mg O2 m−3 h−1. The phytoplankton assemblage showed before and after floods a replacement of autotrophic species (e.g. Chlorophyceans) by mixotrophic organisms (e.g. Cryptophyceans, Euglenoids). A linear mixed effects model identified abiotic factors, particularly temperature and river discharge, as significant predictors of the net aquatic metabolism and community respiration during flood conditions. Our results suggest that the role of the Ebro floodplain lakes as sources or sinks of C is complex and relative to the time scale investigated, depending strongly on the river discharge dynamics and the transport of limiting nutrients (phosphorus).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号