首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) is widespread among bacteria where it mediates carbohydrate uptake and often serves in carbon control. Here we present cloning and analysis of the monocistronic ptsI gene of Corynebacterium glutamicum R, which encodes PTS Enzyme I (EI). EI catalyzes the first reaction of PTS and the reported ptsI was shown to complement the corresponding defect in Escherichia coli. The deduced 59.2-kDa EI of 564 amino acids shares more than 50% homology with EIs from Bacillus stearothermophilus, Bacillus subtilis, and Lactobacillus sake. Chromosomal inactivation of ptsI demonstrated that EI plays an indispensable role in PTS of C. glutamicum R and this system represents a dominant sugar uptake system. Cellobiose was only transported and utilized in adaptive mutants of C. glutamicum R. Cellobiose transport was also found to be PTS-dependent and repressed by PTS sugar glucose.  相似文献   

2.
Corynebacterium glutamicum uses the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) to take up and phosphorylate glucose, fructose, and sucrose, the major sugars from agricultural crops that are used as the primary feedstocks for industrial amino acid fermentation. This means that worldwide amino acid production using this organism has depended exclusively on the PTS. Recently, a better understanding not only of PTS-mediated sugar uptake but also of global regulation associated with the PTS has permitted the correction of certain negative aspects of this sugar transport system for amino acid production. In addition, the recent identification of different glucose uptake systems in this organism has led to a strategy for the generation of C. glutamicum strains that express non-PTS routes instead of the original PTS. The potential practical advantages of the development of such strains are discussed.  相似文献   

3.
Many bacteria take up carbohydrates by membrane‐integral sugar specific phosphoenolpyruvate‐dependent carbohydrate:phosphotransferase systems (PTS). Although the PTS is centrally involved in regulation of carbon metabolism in different bacteria, little is known about localization and putative oligomerization of the permease subunits (EII). Here, we analyzed localization of the fructose specific PtsF and the glucose specific PtsG transporters, as well as the general components EI and HPr from Corynebacterium glutamicum using widefield and single molecule localization microscopy. PtsF and PtsG form membrane embedded clusters that localize in a punctate pattern. Size, number and fluorescence of the membrane clusters change upon presence or absence of the transported substrate, and a direct influence of EI and HPr was not observed. In presence of the transport substrate, EII clusters significantly increased in size. Photo‐activated localization microscopy data revealed that, in presence of different carbon sources, the number of EII proteins per cluster remains the same, however, the density of these clusters reduces. Our work reveals a simple mechanism for efficient membrane occupancy regulation. Clusters of PTS EII transporters are densely packed in absence of a suitable substrate. In presence of a transported substrate, the EII proteins in individual clusters occupy larger membrane areas.  相似文献   

4.
Corynebacterium glutamicum has played a principal role in the progress of the amino acid fermentation industry. The complete genome sequence of the representative wild-type strain of C. glutamicum, ATCC 13032, has been determined and analyzed to improve our understanding of the molecular biology and physiology of this organism, and to advance the development of more efficient production strains. Genome annotation has helped in elucidation of the gene repertoire defining a desired pathway, which is accelerating pathway engineering. Post genome technologies such as DNA arrays and proteomics are currently undergoing rapid development in C. glutamicum. Such progress has already exposed new regulatory networks and functions that had so far been unidentified in this microbe. The next goal of these studies is to integrate the fruits of genomics into strain development technology. A novel methodology that merges genomics with classical strain improvement has been developed and applied for the reconstruction of classically derived production strains. How can traditional fermentation benefit from the C. glutamicum genomic data? The path from genomics to biotechnological processes is presented.  相似文献   

5.
G.M. MALIN AND G.I. BOURD. 1991. The transport system for glucose and its non-metabolizable analogue methyl-α-D-glucoside (MG) has been described in Corynebacterium glutamicum. The initial product of the transport reaction was shown to be a phosphate ester of MG (MGP). Free MG appeared inside the cells as a result of MGP dephosphorylation. The bacteria transported MG with an apparent Km of 0.08 ± 0.017 mmol/l and Vmax of 21 ± 2.3 nmol/(min × mg dry wt). Toluenized cells and crude cell extracts catalysed phosphoenolpyruvate (PEP)-dependent phosphorylation of MG and glucose. Both the membrane and the cytoplasmic fractions of bacterial extracts were required for phosphotransferase reaction. Most of the spontaneous mutants resistant to 2-deoxyglucose (DG), xylitol and 5-thioglucose were defective both in transport and in PEP-dependent phosphorylation of MG. Some strains were defective only in glucose utilization and some were also unable to grow on a number of other sugars. The phosphotransferase activity in extracts from mutant cells was restored by the addition of either membrane or cytoplasmic fraction from wild type bacteria. It was concluded that Corynebacterium glutamicum accumulated glucose and MG by means of a PEP-dependent phosphotransferase system (PTS).  相似文献   

6.
7.
8.
9.
Hexadentate bacillibactin is the siderophore of Bacillus subtilis and is structurally similar to the better known enterobactin of Gram-negative bacteria such as Escherichia coli. Although both are triscatecholamide trilactones, the structural differences of these two siderophores result in opposite metal chiralities, different affinity for ferric ion, and dissimilar iron transport behaviors. Bacillibactin was first reported as isolated from Corynebacterium glutamicum and called corynebactin. However, failure of iron-starved C. glutamicum to transport 55Fe bacillibactin and lack of required bacillibactin biosynthetic genes suggest that bacillibactin is not the siderophore produced by this organism. Iron transport mediated by siderophores in B. subtilis occurs through a transport process that is specific for the iron chelating moiety, with parallel pathways for catecholates and hydroxamates. For bacillibactin, enterobactin, and their analogs, neither chirality nor presence of an amino acid spacer affects the uptake and transport process, but alteration of the net charge and size of the molecule impedes the recognition.Paper number 77 in the series Coordination Chemistry of Microbial Iron Transport Compounds. See Abergel et al. [1].  相似文献   

10.
11.
Glucose-negative mutants of Mycoplasma capricolum were selected for growth on fructose in the presence of the toxic glucose analog alpha-methyl-D-glucopyranoside. The mutants are defective in the phosphoenolpyruvate:sugar phosphotransferase system for glucose. One mutant, pts-4, was studied in detail. It lacks the glucose-specific, membrane-bound enzyme II, IIGlc, as well as the general, low-molecular-weight, phosphocarrier protein, HPr. In place of the latter, however, it has a fructose-specific protein, HPrFru. Consistent with these changes, the mutant lost the ability to grow on glucosamine and maltose but retained its ability to grow on sucrose. In the glucose-negative mutant, glucose did not regulate the intracellular concentration of cyclic AMP. The intracellular concentration of cyclic AMP in M. capricolum is regulated by the presence of metabolizable sugars. In the wild-type, both glucose and fructose reduced the intracellular concentration of cyclic AMP; however, in the glucose-negative mutant, glucose no longer regulated the intracellular level of cyclic AMP.  相似文献   

12.
This review will examine the connection between the bacterial phosphoenolpyruvate:sugar phosphotransferase system and biofilms. We will consider both the primary role of the phosphoenolpyruvate:sugar phosphotransferase system in sugar uptake by biofilm cells and its possible role in regulatory processes in cells growing as biofilms, and in establishment and maintenance of these biofilms.  相似文献   

13.
The uptake of branched-chain amino acids in threonine-dehydratase deficient mutants of Corynebacterium glutamicum is dependent on the presence of relatively high (>1 mM) intracellular concentrations of isoleucine, valine or leucine. This indicates that the respective uptake-system is induced by its substrate, i.e. branched-chain amino acids, at the internal side. This unusual regulation presumably is the reason for the failure to obtain mutants deficient in isoleucine uptake by use of a selection scheme which starts from isoleucine auxotroph mutants. The physiological meaning of this regulation is discussed with respect to isoleucine efflux and the cyclic retention hypothesis.Abbreviations amp ampicillin - dw dry weight - Km kanamycin - kb kilobase(s) - NMG N-methyl-N-nitro-N-nitrosoguanidine - ®, resistant resistance  相似文献   

14.
15.
16.
17.
To identify potential L-lysine export limitations by Corynebacterium glutamicum in the L-lysine production process, the excretion of L-lysine was studied in continuous and fed-batch operated stirred tank reactors. A structured biochemical model of the L-lysine excretion mechanism was used to determine the activity of the export carrier and to calculate a cell-specific concentration of the export carrier. For the biochemical characterization of this specific carrier concentration a standardized L-lysine efflux test was developed. Carrier activity, cell-specific carrier concentration, and the specific L-lysine export rate were identified as a function of pH value and L-lysine concentration in the reactors. Also, the correlation of these parameters to the metabolic state of C. glutamicum was determined. The pH value in the reactor governs the carrier activity (maximum at pH 6.5) and the specific carrier concentration (maximum at pH 8.0). The specific L-lysine export rate, as the product of carrier activity and specific carrier concentration, revealed a maximum at pH 7.0. Decreasing L-lysine productivities also correlated with decreasing specific carrier concentrations. The L-lysine concentration in the reactor had no effect on the specific carrier concentration but strongly inhibited the carrier activity. The specific export rate was reduced to 50% at 400 mM L-lysine compared to the specific export rate at 80 mM L-lysine. (c) 1996 John Wiley & Sons, Inc.  相似文献   

18.
19.
20.
Cloning vector system for Corynebacterium glutamicum.   总被引:26,自引:8,他引:18       下载免费PDF全文
A protoplast transformation system has been developed for Corynebacterium glutamicum by using a C. glutamicum-Bacillus subtilis chimeric vector. The chimera was constructed by joining a 3.0-kilobase cryptic C. glutamicum plasmid and the B. subtilis plasmid pBD10. The neomycin resistance gene on the chimera, pHY416, was expressed in C. glutamicum, although the chloramphenicol resistance gene was not. The various parameters in the transformation protocol were analyzed separately and optimized. The resulting transformation system is simple and routinely yields 10(4) transformants per microgram of plasmid DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号