首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
L Kiss  S J Korn 《Biophysical journal》1998,74(4):1840-1849
With prolonged or repetitive activation, voltage-gated K+ channels undergo a slow (C-type) inactivation mechanism, which decreases current flow through the channel. Previous observations suggest that C-type inactivation results from a localized constriction in the outer mouth of the channel pore and that the rate of inactivation is controlled by the-rate at which K+ leaves an unidentified binding site in the pore. We have functionally identified two K+ binding sites in the conduction pathway of a chimeric K+ channel that conducts Na+ in the absence of K+. One site has a high affinity for K+ and contributes to the selectivity filter mechanism for K+ over Na+. Another site, external to the high-affinity site, has a lower affinity for K+ and is not involved in channel selectivity. Binding of K+ to the high-affinity binding site slowed inactivation. Binding of cations to the external low-affinity site did not slow inactivation directly but could slow it indirectly, apparently by trapping K+ at the high-affinity site. These data support a model whereby C-type inactivation involves a constriction at the selectivity filter, and the constriction cannot proceed when the selectivity filter is occupied by K+.  相似文献   

2.
Understanding of the molecular architecture necessary for selective K(+) permeation through the pore of ion channels is based primarily on analysis of the crystal structure of the bacterial K(+) channel KcsA, and structure:function studies of cloned animal K(+) channels. Little is known about the conduction properties of a large family of plant proteins with structural similarities to cloned animal cyclic nucleotide-gated channels (CNGCs). Animal CNGCs are nonselective cation channels that do not discriminate between Na(+) and K(+) permeation. These channels all have the same triplet of amino acids in the channel pore ion selectivity filter, and this sequence is different from that of the selectivity filter found in K(+)-selective channels. Plant CNGCs have unique pore selectivity filters; unlike those found in any other family of channels. At present, the significance of the unique pore selectivity filters of plant CNGCs, with regard to discrimination between Na(+) and K(+) permeation is unresolved. Here, we present an electrophysiological analysis of several members of this protein family; identifying the first cloned plant channel (AtCNGC1) that conducts Na(+). Another member of this ion channel family (AtCNGC2) is shown to have a selectivity filter that provides a heretofore unknown molecular basis for discrimination between K(+) and Na(+) permeation. Specific amino acids within the AtCNGC2 pore selectivity filter (Asn-416, Asp-417) are demonstrated to facilitate K(+) over Na(+) conductance. The selectivity filter of AtCNGC2 represents an alternative mechanism to the well-known GYG amino acid triplet of K(+) channels that has been identified as the critical basis for K(+) over Na(+) permeation through the pore of ion channels.  相似文献   

3.
The glycine-tyrosine-glycine (GYG) sequence in the p-loop of K+ channel subunits lines a narrow pore through which K+ ions pass in single file intercalated by water molecules. Mutation of the motif can give rise to non-selective channels, but it is clear that other structural features are also required for selectivity because, for instance, a recently identified class of cyclic nucleotide-gated pacemaker channels has the GYG motif but are poorly K+ selective. We show that mutation of charged glutamate and arginine residues behind the selectivity filter in the Kir3.1/Kir3.4 K+ channel reduces or abolishes K+ selectivity, comparable with previously reported effects in the Kir2.1 K+ channel. It has been suggested that a salt bridge exists between the glutamate-arginine residue pair. Molecular modeling indicates that the salt bridge does exist, and that it acts as a "bowstring" to maintain the rigid bow-like structure of the selectivity filter and restrict selectivity to K+. The modeling shows that relaxation of the bowstring by mutation of the residue pair leads to enhanced flexibility of the p-loop, allowing permeation of other cations, including polyamines. In experiments, mutation of the residue pair can also abolish polyamine-induced inward rectification. The latter effect occurs because polyamines now permeate rather than block the channel, to the remarkable extent that large polyamine currents can be measured.  相似文献   

4.
IsCT is a non-cell-selective antimicrobial peptide isolated from the scorpion Opisthacanthus madagascariensis that has potent cytolytic activity against both mammalian and bacterial cells. To investigate the structure-activity relationships of IsCT and to design novel peptide antibiotics with bacterial cell selectivity, we synthesized several analogs of IsCT and determined their three-dimensional structures in solution by 2D-NMR spectroscopy. IsCT has a linear alpha-helical structure from Gly3 to Phe13, and [K7]-IsCT has a linear alpha-helical structure from Leu2 to Phe13. [K7, P8, K11]-IsCT, which has a bend in its middle region, exhibited the highest antibacterial activity without hemolytic activity, suggesting that its proline-induced bend is an important determinant of this selectivity. Tryptophan fluorescence showed that the high selectivity of [K7, P8, K11]-IsCT toward bacterial cells is closely correlated with its highly selective interaction with negatively charged phospholipids. Its potent activity against antibiotic-resistant bacteria suggests that [K7, P8, K11]-IsCT may serve as a promising lead candidate in the development of new peptide antibiotics.  相似文献   

5.
In the Kv2.1 potassium channel, binding of K(+) to a high-affinity site associated with the selectivity filter modulates channel sensitivity to external TEA. In channels carrying Na(+) current, K(+) interacts with the TEA modulation site at concentrations 相似文献   

6.
The selectivity of lipid-protein interaction for various spin-labelled cardiolipin analogues in Na+/K+-ATPase membranes from Squalus acanthias has been investigated by ESR spectroscopy. Cardiolipin derivatives with different numbers of acyl chains, or in which the headgroup charge has been removed by methylation of the phosphate groups, all show a pronounced selectivity relative to phosphatidylcholine. Maximally three times more of the cardiolipin analogue is associated with the protein, than is phosphatidylcholine. The selectivity pattern in the absence of salt is in the order: cardiolipin approximately monolysocardiolipin greater than or equal to acylcardiolipin greater than dimethylcardiolipin much greater than phosphatidylcholine, where acylcardiolipin has the spin label chain attached to the centre-OH group of the headgroup. The degree of association of the negatively charged cardiolipins with the protein is reduced by salt, corresponding to the lower selectivity for dimethylcardiolipin. It is concluded that the selectivity of the Na+/K+-ATPase for cardiolipin is not solely of electrostatic origin, nor is it likely to originate in the larger number of fatty acid chains relative to diacyl phospholipids.  相似文献   

7.
2,3,4,5-Tetrahydro-1H-2-benzazepine (THBA; 1) is nearly 100-fold more selective an inhibitor of phenylethanolamine N-methyltransferase (PNMT, EC 2.1.1.28) versus the alpha2-adrenoceptor than is 1,2,3,4-tetrahydroisoquinoline (THIQ; 2) (1: PNMT K(i)= 3.3 microM, alpha2-adrenoceptor K(i) = 11 microM, selectivity [alpha2 K(i)/PNMT K(i)] = 3.3; 2: PNMT K(i) = 9.7 microM, alpha2 K(i) = 0.35 microM, selectivity=0.036;). Since the PNMT inhibitory activity and selectivity of THIQ were enhanced by the introduction of a hydrophilic electron-withdrawing 7-substituent and a 3-alkyl-substituent, a similar study was conducted on THBA. 8-Nitro-THBA (3) was found to be as potent an inhibitor of PNMT as its THIQ analogue (21) and to be more selective due to its reduced alpha2-adrenoceptor affinity (3: PNMT K(i) = 0.39 microM, alpha2 K(i) = 66 microM, selectivity = 170; 21: PNMT K(i) = 0.41 microM, alpha2 K(i) = 4.3 microM, selectivity = 10). Introduction of a 3-alkyl substituent on the THBA nucleus decreased both the alpha2-adrenoceptor affinity and the PNMT inhibitory activity, suggesting an area of steric bulk intolerance at both sites. 4-Hydroxy-THBA (15), which can be considered a conformationally-restricted analogue of 3-hydroxymethyl-THIQ (30), exhibited poorer PNMT inhibitory activity and less selectivity than 30 (15: PNMT K(i) = 58 microM, alpha2 K(i) = 100 microM, selectivity = 1.7; 30: PNMT K(i) = 1.1 microM, alpha2 K(i) = 6.6 microM, selectivity = 6.0). While the addition of an 8-nitro group to 15 increased the selectivity of 16 as compared to its THIQ analogue (31), it was not as potent at PNMT nor as selective as 8-nitro-THBA (3) (16, PNMT K(i) = 5.3 microM, alpha2 K(i) = 680 microM, selectivity = 130; 31: PNMT K(i) = 0.29 microM, alpha2 K(i) = 19 microM, selectivity = 66). Compound 3 is the most selective (PNMT/alpha2) and one of the more potent at PNMT compounds yet reported in the benzazepine series, and should have sufficient lipophilicity to penetrate the blood-brain barrier (CLogP = 1.8).  相似文献   

8.
Ion permeation and selectivity, key features in ion channel function, are believed to arise from a complex ensemble of energetic and kinetic variables. Here we evaluate the contribution of pore cation binding to ion permeation and selectivity features of KcsA, a model potassium channel. For this, we used E71A and M96V KcsA mutants in which the equilibrium between conductive and nonconductive conformations of the channel is differently shifted. E71A KcsA is a noninactivating channel mutant. Binding of K(+) to this mutant reveals a single set of low-affinity K(+) binding sites, similar to that seen in the binding of K(+) to wild-type KcsA that produces a conductive, low-affinity complex. This seems consistent with the observed K(+) permeation in E71A. Nonetheless, the E71A mutant retains K(+) selectivity, which cannot be explained on the basis of just its low affinity for this ion. At variance, M96V KcsA is a rapidly inactivating mutant that has lost selectivity for K(+) and also conducts Na(+). Here, low-affinity binding and high-affinity binding of both cations are detected, seemingly in agreement with both being permeating species in this mutant channel. In conclusion, binding of the ion to the channel protein seemingly explains certain gating, ion selectivity, and permeation properties. Ion binding stabilizes greatly the channel and, depending upon ion type and concentration, leads to different conformations and ion binding affinities. High-affinity states guarantee binding of specific ions and mediate ion selectivity but are nonconductive. Conversely, low-affinity states would not discriminate well among different ions but allow permeation to occur.  相似文献   

9.
Double-barreled ion-exchanger based K+-selective microelectrodes (K+ ISMs) of a variety of tip diameters were used to study the dependency of ion selectivity upon tip size. The selectivity of K+ ISMs depended on tip size and barrel configuration. Within the range of tip diameters tested (approximately 0.5-6 micron) all K+ ISMs constructed of two barrels glued side by side ("figure-eight glass") exhibited sensitivity to K+ and NH4+. Figure-eight K+ ISMs with tip diameters less than 1.5 micron were not sensitive to tetramethylammonium, tetraethylammonium, or choline, whereas K+ ISMs with tip diameters greater than or equal to 1.5 micron sensed all of the quaternary amines. Tip size dependent selectivity was not present in K+ ISMs made from thick septum theta glass. The explanation for tip size dependent changes in ion selectivity is unknown but a discussion of theoretical possibilities is given.  相似文献   

10.
K(+) channels control transmembrane action potentials by gating open or closed in response to external stimuli. Inactivation gating, involving a conformational change at the K(+) selectivity filter, has recently been recognized as a major K(+) channel regulatory mechanism. In the K(+) channel hERG, inactivation controls the length of the human cardiac action potential. Mutations impairing hERG inactivation cause life-threatening cardiac arrhythmia, which also occur as undesired side effects of drugs. In this paper, we report atomistic molecular dynamics simulations, complemented by mutational and electrophysiological studies, which suggest that the selectivity filter adopts a collapsed conformation in the inactivated state of hERG. The selectivity filter is gated by an intricate hydrogen bond network around residues S620 and N629. Mutations of this hydrogen bond network are shown to cause inactivation deficiency in electrophysiological measurements. In addition, drug-related conformational changes around the central cavity and pore helix provide a functional mechanism for newly discovered hERG activators.  相似文献   

11.
K+ activates many inward rectifier and voltage-gated K+ channels. In each case, an increase in K+ current through the channel can occur despite a reduced driving force. We have investigated the molecular mechanism of K+ activation of the inward rectifier K+ channel, Kir3.1/Kir3.4, and the voltage-gated K+ channel, Kv1.4. In the Kir3.1/Kir3.4 channel, mutation of an extracellular arginine residue, R155, in the Kir3.4 subunit markedly reduced K+ activation of the channel. The same mutation also abolished Mg2+ block of the channel. Mutation of the equivalent residue in Kv1.4 (K532) abolished K+ activation as well as C-type inactivation of the Kv1.4 channel. Thus, whereas C-type inactivation is a collapse of the selectivity filter, K+ activation could be an opening of the selectivity filter. K+ activation of the Kv1.4 channel was enhanced by acidic pH. Mutation of an extracellular histidine residue, H508, that mediates the inhibitory effect of protons on Kv1.4 current, abolished both K+ activation and the enhancement of K+ activation at acidic pH. These results suggest that the extracellular positive charges in both the Kir3.1/Kir3.4 and the Kv1.4 channels act as "guards" and regulate access of K+ to the selectivity filter and, thus, the open probability of the selectivity filter. Furthermore, these data suggest that, at acidic pH, protonation of H508 inhibits current through the Kv1.4 channel by decreasing K+ access to the selectivity filter, thus favoring the collapse of the selectivity filter.  相似文献   

12.
Potassium channels are membrane proteins that selectively conduct K(+) across cellular membranes. The narrowest part of their pore, the selectivity filter, is responsible for distinguishing K(+) from Na(+), and can also act as a gate through a mechanism known as C-type inactivation. It has been proposed that a conformation of the KcsA channel obtained by crystallization in presence of low concentration of K(+) (PDB 1K4D) could correspond to the C-type inactivated state. Here, we show using molecular mechanics simulations that such conformation has little ion-binding affinity and that ions do not contribute to its stability. The simulations suggest that, in this conformation, the selectivity filter is mostly occupied by water molecules. Whether such ion-free state of the KcsA channel is physiologically accessible and representative of the inactivated state of eukaryotic channels remains unclear.  相似文献   

13.
Sequence comparison suggests that the ryanodine receptors (RyRs) have pore architecture similar to that of the bacterial K+ channel KcsA. The lumenal loop linking the two most C-terminal transmembrane spanning segments in the RyRs has a predicted pore helix and an amino acid motif (GGGIG) similar to the selectivity filter (TVGYG) of KcsA identified by x-ray analysis. The RyRs have many negatively charged amino acid residues in the two regions linking the GGGIG motif and predicted pore helix with the two most C-terminal transmembrane spanning segments. We tested the role of these residues by generating single-site mutants, focusing on amino acid residues conserved among the mammalian RyRs. Replacement of two acidic residues immediately after the GGGIG motif in skeletal muscle ryanodine receptor (RyR1-D4899 and -E4900) with asparagine and glutamine profoundly affected ion permeation and selectivity. By comparison, mutagenesis of aspartate and glutamate residues in the putative linker regions showed a K+ conductance and selectivity for Ca2+ compared to K+ (P(Ca)/P(K)) close to wild-type. The results show that the negatively charged carboxyl oxygens of D4899 and E4900 side chains are major determinants of RyR ion conductance and selectivity.  相似文献   

14.
Based on previous modeling predictions, a series of (3-substituted-5-chloro-2-pyridinyl)guanidines have been designed with good potency and selectivity for urokinase-type plasminogen activator (uPA). Compound 36 has a K(i) of 0.17 microM and greater than 300-fold selectivity with respect to tPA and plasmin.  相似文献   

15.
Potassium (K (+)) channels can regulate ionic conduction through their pore by a mechanism, involving the selectivity filter, known as C-type inactivation. This process is rapid in the hERG K (+) channel and is fundamental to its physiological role. Although mutations within hERG are known to remove this process, a structural basis for the inactivation mechanism has yet to be characterized. Using MD simulations based on homology modeling, we observe that the carbonyl of the filter aromatic, Phe627, forming the S 0 K (+) binding site, swiftly rotates away from the conduction axis in the wild-type channel. In contrast, in well-characterized non-inactivating mutant channels, this conformational change occurs less frequently. In the non-inactivating channels, interactions with a water molecule located behind the selectivity filter are critical to the enhanced stability of the conducting state. We observe comparable conformational changes in the acid sensitive TASK-1 channel and propose a common mechanism in these channels for regulating efflux of K (+) ions through the selectivity filter.  相似文献   

16.
Binding of K+ and Na+ to the potassium channel KcsA has been characterized from the stabilization observed in the heat-induced denaturation of the protein as the ion concentration is increased. KcsA thermal denaturation is known to include (i) dissociation of the homotetrameric channel into its constituent subunits and (ii) protein unfolding. The ion concentration-dependent changes in the thermal stability of the protein, evaluated as the Tm value for thermal-induced denaturation of the protein, may suggest the existence of both high- and low-affinity K+ binding sites of KcsA, which lend support to the tenet that channel gating may be governed by K+ concentration-dependent transitions between different affinity states of the channel selectivity filter. We also found that Na+ binds to KcsA with a KD similar to that estimated electrophysiologically from channel blockade. Therefore, our findings on ion binding to KcsA partly account for K+ over Na+ selectivity and Na+ blockade and argue against the strict “snug fit” hypothesis used initially to explain ion selectivity from the X-ray channel structure. Furthermore, the remarkable effects of increasing the ion concentration, K+ in particular, on the Tm of the denaturation process evidence that synergistic effects of the metal-mediated intersubunit interactions at the channel selectivity filter are a major contributor to the stability of the tetrameric protein. This observation substantiates the notion of a role for ions as structural “effectors” of ion channels.  相似文献   

17.
The Kir3.1/Kir3.4 channel is activated by Gbetagamma subunits released on binding of acetylcholine to the M2 muscarinic receptor. A mechanism of channel opening, similar to that for the KcsA and Shaker K+ channels, has been suggested that involves translocation of pore lining transmembrane helices and the opening of an intracellular gate at the "bundle crossing" region. However, in the present study, we show that an extracellular gate at the selectivity filter is critical for agonist activation of the Kir3.1/Kir3.4 channel. Increasing the flexibility of the selectivity filter, by disrupting a salt bridge that lies directly behind the filter, abolished both selectivity for K+ and agonist activation of the channel. Other mutations within the filter that altered selectivity also altered agonist activation. In contrast, mutations within the filter that did not affect selectivity had little if any effect on agonist activation. Interestingly, mutation of bulky side chain phenylalanine residues at the bundle crossing also altered both agonist activation and selectivity. These results demonstrate a significant correlation between agonist activation and selectivity, which is determined by the selectivity filter, and suggests, therefore, that the selectivity filter may act as the agonist-activated gate in the Kir3.1/Kir3.4 channel.  相似文献   

18.
A reduced model of a sodium channel is analyzed using Dynamic Monte Carlo simulations. These include the first simulations of ionic current under approximately physiological ionic conditions through a model sodium channel and an analysis of how mutations of the sodium channel's DEKA selectivity filter motif transform the channel from being Na(+) selective to being Ca(2+) selective. Even though the model of the pore, amino acids, and permeant ions is simplified, the model reproduces the fundamental properties of a sodium channel (e.g., 10 to 1 Na(+) over K(+) selectivity, Ca(2+) exclusion, and Ca(2+) selectivity after several point mutations). In this model pore, ions move through the pore one at a time by simple diffusion and Na(+) versus K(+) selectivity is due to both the larger K(+) not fitting well into the selectivity filter that contains amino acid terminal groups and K(+) moving more slowly (compared to Na(+)) when it is in the selectivity filter.  相似文献   

19.
HKT1 is a high affinity K(+) transporter protein that is a member of a large superfamily of transporters found in plants, bacteria, and fungi. These transporters are primarily involved in K(+) uptake and are energized by Na(+) or H(+). HKT1 is energized by Na(+) but also mediates low affinity Na(+) uptake and may therefore be a pathway for Na(+) uptake, which is toxic to plants. The aim of this study was to identify regions of HKT1 that are involved in K(+)/Na(+) selectivity and alter the amino acid composition in those regions to increase the ionic selectivity of the transporter. A highly charged loop was identified, and two deletions were created that resulted in the removal of charged and uncharged amino acids. The functional changes caused by the deletions were studied in yeast and Xenopus oocytes. The deletions improved the K(+)/Na(+) selectivity of the transporter and increased the salt tolerance of the yeast cells in which they were expressed. In light of recent structural models of members of this symporter superfamily, it was necessary to determine the orientation of this highly charged loop. Introduction of an epitope tag allowed us to demonstrate that this loop faces the outside of the membrane where it is likely to facilitate the interaction with cations such as K(+) and Na(+). This study has identified an important structural feature in HKT1 that in part determines its K(+)/Na(+) selectivity. Understanding the structural basis of the functional characteristics in transporters such as HKT1 may have important implications for increasing the salt tolerance of higher plants.  相似文献   

20.
For years, the mechanisms and structural underpinnings of ion selectivity by ion channel proteins have been inferred by indirect experiments. The recently determined structure of a K(+) channel has put flesh on these bones, revealing the coordination chemistry responsible for the unusual combination of high selectivity and high transport rates in ion channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号