首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The immunobiological effect of electromagnetic microwaves applied to parietotemporal area was studied. It was shown that the exposure of parietotemporal area to microwaves produced an immunodepressive effect manifested in the decreased number of natural (background) antibody-forming cells. The exposure of parietotemporal area to microwaves was accompanied by glucocorticoid function stimulation in the adrenal cortex and thyroid function depression.  相似文献   

2.
The role of cell membranes in stimulating and inhibiting the effects of microwaves was investigated in experiments carried out with a suspension of murine bone marrow cells irradiated with microwaves in vitro [f = 2.45 GHz, CW, specific absorption rate (SAR) = 12 W/kg]. Results obtained by means of a structural probe, 2.4-TNS, indicate that no structural changes occur in the region of the protein-lipid interphase under conditions of short-term irradiation with microwaves that induced temperatures in the range 36–45°C (exposure time 315 and 525 s, respectively). Investigation of one functional parameter—the ability to produce hematopoietic colonies in the spleen after transplantation of the bone marrow irradiated in vitro by microwaves—indicated the possibility of affecting stimulatory and inhibitory effects of microwaves by using a blocker of cell receptors, Trimepranol. The role of microwaves as a physical factor interfering in the process of cell proliferation at the level of receptor regulation is discussed. © 1993 Wiley-Liss, Inc.  相似文献   

3.
The formation of zygotes between two haploid strains of yeast (Saccharomyces cerevisiae) was determined under treatment with microwaves of 9.4 and 17 GHz at power levels up to 50 and 60 mW/cm2 and a specific absorption rate below 24 mW/g, or with conventional heating. Microwave treatments at 9.4 GHz or 17 GHz at a power density of 10 mW/cm2 produced an increase in zygote formation equivalent to that produced by conventional heating in an incubator, i.e. equivalent to a rise in temperature of 0.5 or 1 degrees C. At higher power densities zygote formation was slightly increased by microwaves at 17 GHz as compared to microwaves at 9.4 GHz probably due to the higher absorption of microwaves at 17 GHz by intracellular water molecules. Under these conditions, microwaves had no effect on cell survival or the induction of cytoplasmic 'petite' mutations.  相似文献   

4.
In an earlier study we reported that G(o) phase peripheral blood mononulclear cells (PBMC) exposed to low-level (SAR = 0.18 W/kg) pulse-modulated 1300 MHz microwaves and subsequently cultured, demonstrate changed immune activity (Dabrowski et al., 2003). We investigated whether cultured immune cells induced into the active phases of cell cycle (G(1), S) and then exposed to microwaves will also be sensitive to electromagnetic field. An anechoic chamber of our design containing a microplate with cultured cells and an antenna emitting microwaves (900 MHz simulated GSM signal, 27 V/m, SAR 0.024 W/kg) was placed inside the ASSAB incubator. The microcultures of PBMC exposed to microwaves demonstrated significantly higher response to mitogens and higher immunogenic activity of monocytes (LM index) than control cultures. LM index, described in detail elsewhere (Dabrowski et al., 2001), represents the monokine influence on lymphocyte mitogenic response. The results suggest that immune activity of responding lymphocytes and monocytes can be additionally intensified by 900 MHz microwaves.  相似文献   

5.
Effect of centimeter microwaves on the antibody production in mice   总被引:3,自引:0,他引:3  
The effect of low-intensity microwaves (8.15-18 GHz, 0.3 or 1 microW/cm2, 1.5 h daily for 30 days) on antibody production in healthy male NMRI mice after immunization with affinity-purified carboanhydrase isolated from bovine erythrocytes with and without Freund's adjuvant was studied. It was found that exposure to microwaves leads to an increase in the concentration of antibodies in blood plasma, the stimulating effect being more pronounced in the primary immune response. It is assumed that the effect of enhancement of the immune response by the action of centimeter microwaves can be used in the adjuvant therapy.  相似文献   

6.
Review is devoted to the analysis of biological effects of microwaves. The results of last years' researches indicated the potential risks of long-term low-level microwaves exposure for human health. The analysis of metabolic changes in living cells under the exposure of microwaves from mobile communication systems indicates that this factor is stressful for cells. Among the reproducible effects of low-level microwave radiation are overexpression of heat shock proteins, an increase of reactive oxygen species level, an increase of intracellular Ca2+, damage of DNA, inhibition of DNA reparation, and induction of apoptosis. Extracellular-signal-regulated kinases ERK and stress-related kinases p38MAPK are involved in metabolic changes. Analysis of current data suggests that the concept of exceptionally thermal mechanism of biological effects of microwaves is not correct. In turn, this raises the question of the need to revaluation of modern electromagnetic standards based on thermal effects of non-ionizing radiation on biological systems.  相似文献   

7.
In order to demonstrate possible specific effects of microwaves at the cellular level V-79 Chinese hamster cells were exposed to 2.45-GHz radiation at power levels of 20–200 mW/cm2 and at specific absorption rates of 10–100 mW/g. Intracellular cytoplasmic changes were observed by fluorescence polarization using a method based on the intracellular enzymatic hydrolysis of nonfluorescent fluorescein diacetate (FDA). At levels of absorbed energy below 90 J/g, modifications of microviscosity and mitochondrial state were absent, but a slight stimulation of enzymatic hydrolysis of FDA was observed which may be explained by microwave-induced alterations of cellular membranes possibly due to differences in heating pattern of microwaves compared to water-bath heating. At levels of absorbed energy above 90 J/g, the decrease of enzymatic hydrolysis of FDA, increase in degree of polarization, and increase of permeation of the fluorescent marker correlated well with the decrease in cell viability as measured by the exclusion of trypan blue. At equal absorbed energy, microwaves were found to exert effects comparable to classical heating except that permeation was slightly more affected by microwave than by classical heating. This suggests that membrane alteration produced by microwaves might differ from those induced by classical heating or that microwaves may have heated the membrane to higher temperatures than did classical heating.  相似文献   

8.
A study was made of morphological composition of blood leukocytes, phagocytic activity, glycogen and alkaline phosphatase content of neutrophils of animals exposed to microwaves of low intensity (1-500 mu W/cm2) generated continuously (2375 MHz) and by impulses (9400 MHz). The direction of the change in these indices and rate of the postirradiation recovery was shown to depend upon intensity and duration (30-120 days) of exposure. The response of albino rats and guinea pigs to the effect of microwaves was different. The effect of microwaves of the intensities under study on the mammalian organism was assessed.  相似文献   

9.
The effects of pulsed microwaves (2.45 GHz, 10 μs, 100 pps, SAR: 81.5 kW/kg peak, 81.5 W/kg average) on membrane input resistance and action potential (AP) interval statistics were studied in spontaneously active ganglion neurons of land snails (Helix aspersa), at strictly constant temperature (20.8±.07°C worst case). Statistical comparison with sham-irradiated neurons revealed a significant increase in the mean input resistance of neurons exposed to pulsed microwaves (P ? .05 ). Pulsed microwaves had no visible effect on mean AP firing rate; this observation was confirmed by analysis of interspike intervals (ISIs). Using an integrator model for spontaneously active neurons, we found the net input current to be more variable in neurons exposed to pulsed microwaves. The mean input current was not affected. The standard deviation of ISIs and the autocorrelation of the input current were marginally affected, but these changes were not consistent across neurons. Although the observed effects were less obvious than those reported in other studies, they represent evidence of a direct interaction between neurons and pulsed microwaves, in the absence of macroscopic temperature changes. The data do not suggest a single, specific mechanism for such interaction. © 1993 Wiley-Liss, Inc.  相似文献   

10.
C3H/10T1/2 cells were exposed to 2.45-GHz microwaves for 24 h and/or 1.5 Gy of 238-kVp X rays at 3.75 Gy/min. Transformation frequency and cell survival were measured with or without postirradiation addition of the tumor promoter tetradecanoyl-phorbol-13-acetate (TPA) at 0.1 microgram/ml. We previously reported (Carcinogenesis 6,859-864, 1985) an enhancement of transformation frequency when 10T1/2 cells exposed to a special sequence of microwaves and X rays were subsequently cultured in TPA. The same sequence of microwaves and X rays without promotion resulted in a transformation response similar to that induced by X rays alone. We now report statistically significant (at P greater than 0.999) enhancement of transformation response by TPA in cells exposed to 2.45-GHz microwaves (SAR = 4.4 W/kg). Microwaves alone had no effect on transformation. Plating efficiency and cell survival were not affected by TPA or microwave treatments.  相似文献   

11.
In preliminary measurements, Candida albicans cultures exposed to 1 kHz square-wave-modulated microwaves at 72 GHz exhibited a significantly reduced number of colony-forming units in comparison with nonirradiated controls. To study whether the same effect could also be caused by continuous-wave (CW) irradiation, sedimented cells were exposed to either 1 kHz square-wave-modulated or CW microwaves at 72 GHz, with the same peak power. CW-exposed cells showed a higher growth rate (about 25%), whereas a reduction of about 15% was seen in cells exposed to square-wave-modulated microwaves in comparison with sham-exposed controls.  相似文献   

12.
S Ray  J Behari 《Radiation research》1990,123(2):199-202
The effects of exposure to sublethal levels of microwaves were studied. Young albino rats of both sexes were exposed for 60 days to 7.5-GHz microwaves (1.0-KHz square wave modulation, average power 0.6 mW/cm2) for 3 h daily. During and after microwave exposure several physiological parameters were measured in both control and exposed animals. It was found that the animals exposed to microwaves tended to eat and drink less and thus showed a smaller gain in body weight. Some of the hematological parameters and organ weights were also significantly different. It is proposed that a nonspecific stress response due to microwave exposure and mediated through the central nervous system is responsible for the observed physiological changes.  相似文献   

13.
A notable proportion of the population is exposed to an increasing number of devices emitting microwaves, a form of non-ionizing electromagnetic radiation in the range 300-30000 mHz. The activation energy of microwave radiations is too small to directly modify any chemical bonds in the irradiated matter. At microwave frequencies the macroscopic dielectric properties of tissues are strongly determined by their water content. Tissues like muscle, brain, skin, with a high water content, have higher permittivity and conductivity values than bone or fat with low water contents. Owing to the energy transfer, to living tissues, by a dipolar relaxation mechanism of water molecules, the penetration of microwaves is limited and one observes a fast and very efficient heat-loss production. A review of the available literature shows that most results on the mutagenicity of microwaves are negative or can often be explained by a temperature enhancement. If microwaves are apparently unable to damage DNA at sub-thermal exposure levels, some results indicate, however, that they might easily potentiate the damaging action of other DNA antagonist agents such as UV or chemicals.  相似文献   

14.
The mutagenic effect of microwaves (2,450 or 2,750 MHz, 500 microW/cm2, 30 days, 7 h a day) increases with both low and high thyroid hormone content in rats. This indicates that normal functioning of the thyroid gland is an important condition for the stabilization of chromosome integrity under the effect of nonionizing radiation of microwaves.  相似文献   

15.
The effects of microwaves on conformation of nucleoids in E. coli cells were studied by the method of anomalous viscosity time dependence (AVTD) at various frequencies in the range of 51-52 GHz and the power flux density of 100 microW/cm(2) . Linearly polarized microwaves resulted in significant effects within specific frequency windows of resonance type. The distances between frequency windows were in the range of 55-180 MHz. Only one of two possible circular polarizations, left-handed or right-handed, was shown to be effective at each frequency window. The sign of effective circular polarization alternated between frequency windows. We show that the effects of microwaves on E. coli cells as measured by the AVTD technique are not caused by adhesion of cells. The half-width of the 51.575 GHz resonance was measured to be 120+/-20 MHz. This value is very close to the half-width of the 51.755 GHz resonance as it has previously been determined at the same power flux density. The obtained data suggest similar targets for effects of microwaves at these two resonance frequencies and provide evidence for non-thermal nature of observed microwave effects.  相似文献   

16.
Acute 12-minute exposure of laboratory rats to microwaves with specific dose rate (SAR) of 30 W/kg that exceeded a basal metabolism caused a transient response of hyppophysis-thyroid system of compensatory-adaptive character. Prolonged exposure to microwaves of less intensity (SAR = 6 W/kg, which approximately corresponds to basic metabolic rate for these animals) caused insufficiency of the function of thyroid control in a form of primary hypothyroidis.  相似文献   

17.
The effect of microwave irradiation on the status of the thyroid gland   总被引:1,自引:0,他引:1  
Multiple irradiation of rats with microwaves of continuous generation (2450 MHz, 1 mW/cm2) increased and of pulsed generation (3000 MHz, 0.1 to 2.5 mW/cm2) decreased the functional activity of the thyroid gland with no changes in the triiodothyronine and thyroxin in blood serum. The role of the thyroid gland in inducing behaviour effects of microwaves was demonstrated by the method of extirpation.  相似文献   

18.
In three series of experiments on mice (CBA X C57BL)F1 and Wistar rats a study was made of the effect of microwaves (0.9 GGz, 0.4 mW/cm2, 10 min) on the EEG reaction of adopting the photostimulation rhythm by rats; the effect of microwaves (0.6 GGZ, 0.04 mW/cm2, 5 min) and gamma-quanta (60Co, 0.5 Gy) on the reaction of avoiding by mice of cooled surfaces, and the effect of microwaves (9.8 GGz, 0.04 mW/cm2, 5 min) on the reaction of avoiding the water pool. The results obtained are discussed with regard to the hypothesis that the biological effects of weak microwave radiation may be realized at the nervous system level via cutaneous ceptors.  相似文献   

19.
Eight cross spiders (Araneus diadematus) were exposed overnight (16 h) during web-building activity to pulsed 9.6-GHz microwaves at average power densities of 10, 1, and 0.1 mW/cm2 (estimated SARs 40, 4, and 0.4 mW/g). Under these conditions, 9.6-GHz pulsed microwaves did not affect the web-spinning ability of the cross spider.  相似文献   

20.
The behavior of cultured myotubes from chick embryos exposed to microwaves has been experimentally analyzed. Recordings of acetylcholine-induced currents have been obtained via patch-clamp techniques using both cell-attached (single-channel current recording) and whole-cell (total current recording) configurations. During the exposure to low-power microwaves the frequency of the ACh-activated single channel openings decreased, while the ACh-induced total current showed a faster falling phase. Channel open time and conductance were not affected by microwave irradiation. It is concluded that the exposure to microwaves increases the rate of desensitization and decreases the channel opening probability. The nonthermal origin and the molecular interaction mechanisms governing these electromagnetic-induced effects are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号