首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An infiltration of CD8+ lymphocytes in the dermis and epidermis underlies the skin rash that commonly occurs as a primary manifestation of an AIDS virus infection. These cutaneous lymphocytes were characterized in simian immunodeficiency virus of macaques (SIVmac)-infected rhesus monkeys. Skin rash-associated lymphocytes exhibited greater lysis of SIVmac-expressing target cells and a higher cloning efficiency for SIVmac-specific effector T cells than PBL. Moreover, both SIVmac envelope- and gag-specific CTL could be readily cloned from these skin rash-associated lymphocytes. In fact, the skin rash-associated CTL exhibited the same MHC restriction and epitope specificity as those CTL derived from PBL. These studies, therefore, demonstrate that the cutaneous infiltrating CD8+ lymphocytes in SIVmac-infected rhesus monkeys include SIVmac-specific CTL. Thus, whereas virus-specific CTL are likely to represent an important mechanism for controlling AIDS virus infections, they also may play a role in the pathogenesis of the skin lesions that occur after this infection.  相似文献   

2.
To assess the possible role of cytotoxic T lymphocytes (CTLs) in containing the spread of human immunodeficiency virus in acutely infected individuals, the temporal evolution of the virus-specific CD8+ lymphocyte response was defined in simian immunodeficiency virus of macaques (SIVmac)-infected rhesus monkeys. A brief period of SIVmac plasma antigenemia was seen 9 to 16 days following intravenous infection with SIVmac, ending as the absolute number of CD8+ peripheral blood lymphocytes (PBLs) increased. In a prospective assessment of the ability of CD8+ lymphocytes of these monkeys to suppress SIVmac replication in autologous PBLs, inhibitory activity was detected as early as 4 days, with a more pronounced effect 12 to 16 days following infection. SIVmac Gag- and Nef-specific CD8+ effector cell activities were demonstrable in PBLs of animals by 2 weeks following virus inoculation. In fact, SIVmac-specific CTL precursors were documented in the PBLs of rhesus monkeys 4 to 6 days after SIVmac infection. These studies indicate that AIDS virus-specific CD8+ CTLs are present in PBLs within days of infection and may play an important role in containing the early spread of virus.  相似文献   

3.
CD8+ CTL inhibit the replication of HIV and simian immunodeficiency virus of macaques (SIVmac) in PBL and, therefore, are likely to play an important role in containing the spread of the AIDS virus in infected individuals. We have generated a series of gag-specific lytic T lymphocyte clones from PBL: of an SIVmac-infected rhesus monkey. These T cell clones are CD3+CD8+ and are MHC class I-restricted in their target specificity. They are, therefore, CTL. Interestingly, all gag-specific CTL clones, as well as the gag-specific lytic activity of PBL of this monkey, demonstrated specificity for a single 25 amino acid fragment of the SIVmac gag protein. Moreover, they were restricted in their lytic function by a single MHC class I allele. These findings illustrate a powerful method for cloning AIDS virus-specific T lymphocytes and demonstrate a remarkably restricted epitope specificity of this AIDS virus-specific CTL response.  相似文献   

4.
The simian immunodeficiency virus of macaques (SIVmac) is a lentivirus which induces an AIDS-like disease in rhesus monkeys. We have explored the virus-specific cellular immune response in SIVmac-infected rhesus monkeys. Con A-activated, IL-2 expanded PBL of some SIVmac-infected rhesus monkeys lyse autologous B lymphoblastoid cell lines infected with a recombinant vaccinia virus that carries the SIVmac gag gene. This lysis is mediated by CD8+ lymphocytes and is MHC class I restricted. Moreover, these effector lymphocytes do not express the NK cell-associated molecules NKH1 or CD16. These cells are, therefore, CTL. In a limited prospective study of SIVmac-infected rhesus monkeys, the presence of the SIVmac gag-specific CTL activity in PBL correlated with both a reduced efficiency in isolating SIVmac from PBL of these monkeys and their extended survival. This method for assessing SIVmac gag-specific cellular immunity in rhesus monkeys will be important not only in investigating the immunopathogenesis of SIVmac-induced disease, but also in evaluating the capacity of candidate AIDS vaccines to elicit a cell-mediated immune response in this animal model.  相似文献   

5.
Infection of macaque monkeys with the simian immunodeficiency virus of macaques (SIVmac) results in disease similar to human AIDS. Therefore, the macaque monkey is proving to be an important model for testing the effectiveness of various AIDS vaccine approaches. A detailed analysis of the cellular immune responses is necessary for the evaluation of candidate vaccines. However, this has not been possible in macaques, due, in part, to the unknown nature of the MHC molecules that restrict their T lymphocytes. In our report we demonstrate that a particular MHC class I molecule involved in the rhesus monkey's effector T lymphocyte response to SIVmac is expressed at a high frequency in a colony of rhesus monkeys. SIVmac-infected monkeys that express this MHC class I molecule all develop CTL that are restricted by that molecule and recognize an identical nine amino acid epitope of the SIVmac gag protein. This MHC class I molecule has been defined as an HLA-A homolog by cDNA cloning and sequencing. It has also been expressed in an MHC class I-deficient cell line to demonstrate directly the cloned molecule's capacity to bind and present peptide Ag to CTL. These studies illustrate that AIDS virus-specific CTL can be characterized in detail in the rhesus monkey and lay the foundation for exploring novel approaches to AIDS virus vaccination in this species.  相似文献   

6.
The AIDS-like disease in rhesus monkeys induced by the simian immunodeficiency virus (SIV) has been used as a model to explore the nature of the T lymphocyte response after infection with viruses of the human immunodeficiency virus family. Activated CD8+ lymphocytes are present in increased numbers in the paracortex of lymph nodes of SIV-infected rhesus monkeys with a lymphadenopathy syndrome. We demonstrate that SIV is more readily isolated from CD8+ lymphocyte-depleted PBL of SIV-infected animals than from their unfractionated PBL. Rather than reflecting the fact that the CD8+ lymphocyte-depleted cell populations are simply enriched for CD4+ lymphocytes, this indicates that CD8+ cells themselves are critical in this regulatory interaction. In fact, CD8+ lymphocytes from SIV-infected but not uninfected rhesus monkeys can block SIV replication in vitro in PBL populations. A T lymphocyte population that blocks replication of viruses of the HIV family may contribute to containing the progression of AIDS.  相似文献   

7.
Studies to date assessing HIV escape from CTL in vivo have yielded conflicting results. Previous studies have demonstrated that simian immunodeficiency virus of macaques (SIVmac)-infected rhesus monkeys expressing the MHC class I allele Mamu-A*01 reproducibly develop a gag-specific CTL response limited to a 9-amino acid epitope of the SIVmac gag protein (residues 182-190 within peptide 11C). To determine whether CTL have a role in selecting for AIDS virus mutants, we examined mutations in SIVmac proviral DNA encoding this gag CTL epitope in PBL of infected rhesus monkeys. Three Mamu-A*01+ rhesus monkeys were infected with SIVmac and assessed for gag- and peptide 11C-specific CTL responses. This specific CTL response was maintained in two monkeys, but lost in the third animal 2 yr after infection. The generation of proviral gag mutations was then determined by sequencing 500-bp proviral fragments amplified from fresh PBL obtained from the monkeys more than 2.5 yr after infection. Although numerous point mutations were characterized in 131 polymerase chain reaction-generated clones of SIVmac gag, only four mutations within the gag CTL epitope-coding region of the genome were identified. Comparison of synonymous and nonsynonymous nucleotide substitutions in the regions encoding peptide 11C (p11C) and the flanking gag protein indicated a lack of selective pressure for viral mutations in the CTL epitope coding region. Interestingly, a predominant gag mutant encoding a single amino acid change in p11C was found in a monkey which lost its CTL activity. However, even in this setting there was no evidence for selection of mutations in the CTL epitope coding region when compared with the flanking region. Furthermore, synthetic peptides corresponding to all naturally occurring variants in the gag epitope-coding region were recognized by cloned and bulk cultured effector cells of the infected monkeys with persistent CTL. These results indicate that SIVmac gag- and p11C-specific CTL do not select for mutations in the immunodominant epitope-coding region and that the naturally occurring mutants do not appear to escape CTL recognition.  相似文献   

8.
In the present research,two Chinese rhesus monkeys were inoculated intravenously with 5000 TCID50 of SIVmac239. The changes in the numbers of CD4 T lymphocyte in peripheral blood,plasma viral loads,proviral DNA and humoral antibodies against virus were periodically monitored during 121 days. At the early stage of infection,proviral DNA had been detected in PBMCs,and infectious SIVmac239 virus had been isolated from PBMCs. At the same period,the numbers of CD4 T lymphocytes were significantly decreased,and maintained at low level during the 121-day period of infection. Plasma viral loads reached the peak at week 2 post-inoculation and kept at a steady state subsequently. Moreover,antibodies against viral proteins were detected from plasma. All the results showed that the two Chinese rhesus monkeys had been infected with SIVmac239 successfully. This animal model can be applied for further AIDS researches.  相似文献   

9.
To explore the roles played by specific human immunodeficiency virus type 1 (HIV-1) genes in determining the in vivo replicative capacity of AIDS viruses, we have examined the replication kinetics and virus-specific immune responses in rhesus monkeys following infection with two chimeric simian/human immunodeficiency viruses (SHIVs). These viruses were composed of simian immunodeficiency virus SIVmac239 expressing HIV-1 env and the associated auxiliary HIV-1 genes tat, vpu, and rep. Virus replication was assessed during primary infection of rhesus monkeys by measuring plasma SIVmac p27 levels and by quantifying virus replication in lymph nodes using in situ hybridization. SHIV-HXBc2, which expresses the HIV-1 env of a T-cell-tropic, laboratory-adapted strain of HIV-1 (HXBc2), replicated well in rhesus monkey peripheral blood leukocytes (PBL) in vitro but replicated only to low levels when inoculated in rhesus monkeys. In contrast, SHIV-89.6 was constructed with the HIV-1 env gene of a T-cell- and macrophage-tropic clone of a patient isolate of HIV-1 (89.6). This virus replicated to a lower level in monkey PBL in vitro but replicated to a higher degree in monkeys during primary infection. Moreover, monkeys infected with SHIV-89.6 developed an inversion in the PBL CD4/CD8 ratio coincident with the clearance of primary viremia. The differences in the in vivo consequences of infection by these two SHIVs could not be explained by differences in the immune responses elicited by these viruses, since infected animals had comparable type-specific neutralizing antibody titers, proliferative responses to recombinant HIV-1 gp120, and virus-specific cytolytic effector T-cell responses. With the demonstration that a chimeric SHIV can replicate to high levels during primary infection in rhesus monkeys, this model can now be used to define genetic determinants of HIV-1 pathogenicity.  相似文献   

10.
Most studies of human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T lymphocytes (CTL) have been confined to the evaluation of these effector cells in the peripheral blood. What has not been clear is the extent to which CTL activity in the blood actually reflects this effector cell function in the lymph nodes, the major sites of HIV-1 replication. To determine the concordance between CTL activity in lymph nodes and peripheral blood lymphocytes (PBL), CTL specific for simian immunodeficiency virus of macaques (SIVmac) have been characterized in lymph nodes of infected, genetically selected rhesus monkeys by using both Gag peptide-specific functional CTL assays and tetrameric peptide-major histocompatibility complex (MHC) class I molecule complex staining techniques. In studies of six chronically SIVmac-infected rhesus monkeys, Gag epitope-specific functional lytic activity and specific tetrameric peptide-MHC class I staining were readily demonstrated in lymph node T lymphocytes. Although the numbers of tetramer-binding cells in some animals differed from those documented in their PBL, the numbers of tetramer-binding cells from these two different compartments were not statistically different. Phenotypic characterization of the tetramer-binding CD8+ lymph node T lymphocytes of the infected monkeys demonstrated a high level of expression of the activation-associated adhesion molecules CD11a and CD49d, the Fas molecule CD95, and MHC class II-DR. These studies documented a low expression of the naive T-cell marker CD45RA and the adhesion molecule CD62L. This phenotypic profile of the tetramer-binding lymph node CD8+ T cells was similar to that of tetramer-binding CD8+ T cells from PBL. These observations suggest that characterization of AIDS virus-specific CTL activity by sampling of cells in the peripheral blood should provide a reasonable estimation of CTL in an individual’s secondary lymphoid tissue.CD8+ cytotoxic T lymphocytes (CTL) are important in containing the spread of human immunodeficiency virus type 1 (HIV-1) in infected individuals. Studies have shown that virus-specific CD8+ CTL can inhibit AIDS virus replication in autologous CD4+ T lymphocytes in vitro, probably by release of chemokines and cytokines, as well as by lysis of infected cells (35, 36). In vivo the containment of HIV-1 replication that occurs during the period of primary infection coincides temporally with the generation of virus-specific CTL (8, 17, 29). Finally, a potent CTL response is correlated with low virus load and a stable clinical status in individuals chronically infected with HIV-1 (25, 27).HIV-1 replication occurs predominantly in the lymph nodes of the infected individual (30). However, most studies of HIV-1-specific CTL have been confined to the evaluation of these effector cells in the peripheral blood. It is not clear to what extent CTL activity in the blood actually reflects this effector cell function at the major sites of HIV-1 replication. An extensive evaluation of CTL in lymph nodes of HIV-1-infected humans has not been undertaken, at least in part because of the numerous surgical procedures that would be required for such a study. The use of such procedures in clinically stable individuals might be difficult to rationalize.The simian immunodeficiency virus (SIV)-infected macaque provides an ideal animal model in which to examine AIDS virus-specific CTL in lymph nodes. SIVmac-infected rhesus monkeys develop a disease with remarkable similarities to HIV-1-induced disease in humans (19, 20). SIVmac-specific CTL are readily detected in infected monkeys by functional killing assays (21, 38). We have made use of a dominant CTL response to the SIVmac Gag epitope p11C, C-M in rhesus monkeys expressing the major histocompatibility complex (MHC) class I molecule Mamu-A*01 to explore the role of CTL in the immunopathogenesis of AIDS (1, 22). In the present study, CTL specific for SIVmac have been characterized in lymph nodes of infected, Mamu-A*01+ rhesus monkeys using both Gag peptide-specific functional CTL assays and tetrameric peptide-MHC class I molecule complex staining techniques (2, 6, 12, 18, 24, 27).  相似文献   

11.
The ability to monitor vaccine-elicited CD8(+) cytotoxic T-lymphocyte (CTL) responses in simian immunodeficiency virus (SIV)- and simian-human immunodeficiency virus (SHIV)-infected rhesus monkeys has been limited by our knowledge of viral epitopes predictably presented to those lymphocytes by common rhesus monkey MHC class I alleles. We now define an SIV and SHIV Nef CTL epitope (YTSGPGIRY) that is presented to CD8(+) T lymphocytes by the common rhesus monkey MHC class I molecule Mamu-A*02. All seven infected Mamu-A*02(+) monkeys evaluated demonstrated this response, and peptide-stimulated interferon gamma Elispot assays indicated that the response represents a large proportion of the entire CD8(+) T-lymphocyte SIV- or SHIV-specific immune response of these animals. Knowledge of this epitope and MHC class I allele substantially increases the number of available rhesus monkeys that can be used for testing prototype HIV vaccines in this important animal model.  相似文献   

12.
The CTL response was characterized during primary SIV/macaque (SIVmac) infection of rhesus monkeys to assess its role in containing early viral replication using both an epitope-specific functional and an MHC class I/peptide tetramer-binding assay. The rapid expansion of a single dominant viral epitope-specific CTL population to 1.3-8.3% of circulating CD8+ peripheral blood and 0. 3-1.3% of lymph node CD8+ T cells was observed, peaking at day 13 following infection. A subsequent decrease in number of these cells was then demonstrated. Interestingly, the percent of tetramer-binding CD8+ T cells detected in the lymph nodes of all evaluated animals was smaller than the percent detected in PBL. These epitope-specific CD8+ T cells expressed cell surface molecules associated with memory and activation. Early clearance of SIVmac occurred coincident with the emergence of the CTL response, suggesting that CTL may be important in containing virus replication. A higher percent of annexin V-binding cells was detected in the tetramer+ CD8+ T cells (range, from 33% to 75%) than in the remaining CD8+ T cells (range, from 3.3% to 15%) at the time of maximum CTL expansion in all evaluated animals. This finding indicates that the decrease of CTL occurred as a result of the death of these cells rather than their anatomic redistribution. These studies provide strong evidence for the importance of CTL in containing AIDS virus replication.  相似文献   

13.
Before the development of virus-specific immune responses, peripheral blood mononuclear cells (PBMC) from uninfected rhesus monkeys and human beings have the capacity to lyse target cells expressing simian immunodeficiency virus (SIV) or human immunodeficiency virus-1 (HIV) envelope (gp130 and gp120) antigens. Lysis by naive effector cells does not require major histocompatibility complex (MHC)-restricted antigen presentation, is equally effective for allogeneic and xenogeneic targets, and is designated MHC-unrestricted (UR) lysis. UR lysis is not sensitive to EGTA and does not require de novo RNA or protein synthesis. Several kinds of envelope-expressing targets, including cells that poorly express MHC class I antigens, can be lysed. CD4(+) effectors are responsible for most of the lytic activity. High lysis is correlated with high expression of HIV or SIV envelope, specifically, the central one-third of the gp130 molecule, and lysis is completely inhibited by a monoclonal antibody against envelope. Our work extends observations of human lymphocytes expressing HIV gp120 to the SIV/rhesus monkey model for AIDS. Additionally, we address the relevance of UR lysis in vivo. A survey of PBMC from 56 uninfected rhesus monkeys indicates that 59% of the individuals had peak UR lytic activity above 15% specific lysis. Eleven of these monkeys were subsequently infected with SIV. Animals with UR lytic activity above 15% specific lysis were predisposed to more rapid disease progression than animals with low UR lytic activity, suggesting a strong correlation between this form of innate immunity and disease progression to AIDS.  相似文献   

14.
A tetrameric recombinant major histocompatibility complex (MHC) class II-peptide complex was used to quantitate human immunodeficiency virus type 1 (HIV-1) envelope (Env)-specific CD4(+) T cells in vaccinated and in simian/human immunodeficiency virus (SHIV)-infected rhesus monkeys. A rhesus monkey MHC class II DR molecule, Mamu-DR*W201, and an HIV-1 Env peptide (p46) were employed to construct this tetrameric complex. A p46-specific proliferative response was seen in sorted, tetramer-binding, but not nonbinding, CD4(+) T cells, directly demonstrating that this response was mediated by the epitope-specific lymphocytes. Although staining of whole blood from 10 SHIV-infected Mamu-DR*W201(+) rhesus monkeys failed to demonstrate tetramer-binding CD4(+) T cells (<0.02%), p46-stimulated peripheral blood mononuclear cells (PBMCs) from 9 of these 10 monkeys had detectable p46 tetramer-binding cells, comprising 0.5 to 15.2% of the CD4(+) T cells. p46-stimulated PBMCs from 7 of 10 Mamu-DR*W201(+) monkeys vaccinated with a recombinant canarypox virus-HIV-1 env construct also demonstrated p46 tetramer-binding cells, comprising 0.9 to 7.2% of the CD4(+) T cells. Thus, Env p46-specific CD4(+) T cells can be detected by tetrameric Mamu-DR*W201-p46 complex staining of PBMCs in both SHIV-infected and vaccinated rhesus monkeys. These epitope-specific cell populations appear to be present in peripheral blood at a very low frequency.  相似文献   

15.
16.
In the present research, two Chinese rhesus monkeys were inoculated intravenously with 5000 TCID50 of SIVmac239. The changes in the numbers of CD4+ T lymphocyte in peripheral blood, plasma viral loads, proviral DNA and humoral antibodies against virus were periodically monitored during 121 days. At the early stage of infection, proviral DNA had been detected in PBMCs, and infectious SIVmac239 virus had been isolated from PBMCs. At the same period, the numbers of CD4+ T lymphocytes were significantly decreased, and maintained at low level during the 121-day period of infection. Plasma viral loads reached the peak at week 2 post-inoculation and kept at a steady state subsequently. Moreover, antibodies against viral proteins were detected from plasma. All the results showed that the two Chinese rhesus monkeys had been infected with SIVmac239 successfully. This animal model can be applied for further AIDS researches. These authors contributed equally to this work.  相似文献   

17.
Viruses like HIV and SIV escape from containment by CD8(+) T lymphocytes through generating mutations that interfere with epitope peptide:MHC class I binding. However, mutations in some viral epitopes are selected for that have no impact on this binding. We explored the mechanism underlying the evolution of such epitopes by studying CD8(+) T lymphocyte recognition of a dominant Nef epitope of SIVmac251 in infected Mamu-A*02(+) rhesus monkeys. Clonal analysis of the p199RY-specific CD8(+) T lymphocyte repertoire in these monkeys indicated that identical T cell clones were capable of recognizing wild-type (WT) and mutant epitope sequences. However, we found that the functional avidity of these CD8(+) T lymphocytes for the mutant peptide:Mamu-A*02 complex was diminished. Using surface plasmon resonance to measure the binding affinity of the p199RY-specific TCR repertoire for WT and mutant p199RY peptide:Mamu-A*02 monomeric complexes, we found that the mutant p199RY peptide:Mamu-A*02 complexes had a lower affinity for TCRs purified from CD8(+) T lymphocytes than did the WT p199RY peptide:Mamu-A*02 complexes. These studies demonstrated that differences in TCR affinity for peptide:MHC class I ligands can alter functional p199RY-specific CD8(+) T lymphocyte responses to mutated epitopes, decreasing the capacity of these cells to contain SIVmac251 replication.  相似文献   

18.
The utility of the simian immunodeficiency virus of macaques (SIVmac) model of AIDS has been limited by the genetic divergence of the envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and the SIVs. To develop a better AIDS animal model, we have been exploring the infection of rhesus monkeys with chimeric simian/human immunodeficiency viruses (SHIVs) composed of SIVmac239 expressing HIV-1 env and the associated auxiliary HIV-1 genes tat, vpu, and rev. SHIV-89.6, constructed with the HIV-1 env of a cytopathic, macrophage-tropic clone of a patient isolate of HIV-1 (89.6), was previously shown to replicate to a high degree in monkeys during primary infection. However, pathogenic consequences of chronic infection were not evident. We now show that after two serial in vivo passages by intravenous blood inoculation of naive rhesus monkeys, this SHIV (SHIV-89.6P) induced CD4 lymphopenia and an AIDS-like disease with wasting and opportunistic infections. Genetic and serologic evaluation indicated that the reisolated SHIV-89.6P expressed envelope glycoproteins that resembled those of HIV-1. When inoculated into naive rhesus monkeys, SHIV-89.6P caused persistent infection and CD4 lymphopenia. This chimeric virus expressing patient isolate HIV-1 envelope glycoproteins will be valuable as a challenge virus for evaluating HIV-1 envelope-based vaccines and for exploring the genetic determinants of HIV-1 pathogenicity.  相似文献   

19.
Understanding the characteristics of the virus-specific T-lymphocyte response that will confer optimal protection against the clinical progression of AIDS will inform the development of an effective cellular immunity-based human immunodeficiency virus vaccine. We have recently shown that survival in plasmid DNA-primed/recombinant adenovirus-boosted rhesus monkeys that are challenged with the simian immunodeficiency virus SIVmac251 is associated with the preservation postchallenge of central memory CD4(+) T lymphocytes and robust gamma interferon (IFN-gamma)-producing SIV-specific CD8(+) and CD4(+) T-lymphocyte responses. The present studies were initiated to extend these observations to determine which virus-specific T-lymphocyte subpopulations play a primary role in controlling disease progression and to characterize the functional repertoire of these cells. We show that the preservation of the SIV-specific central memory CD8(+) T-lymphocyte population and a linked SIV-specific CD4(+) T-lymphocyte response are associated with prolonged survival in vaccinated monkeys following challenge. Furthermore, we demonstrate that SIV-specific IFN-gamma-, tumor necrosis factor alpha-, and interleukin-2-producing T lymphocytes are all comparably associated with protection against disease progression. These findings underscore the contribution of virus-specific central memory T lymphocytes to controlling clinical progression in vaccinated individuals following a primate immunodeficiency virus infection.  相似文献   

20.
Progression to AIDS in the absence of a gene for vpr or vpx.   总被引:28,自引:22,他引:6       下载免费PDF全文
Rhesus monkeys (Macaca mulatta) were experimentally infected with strains of simian immunodeficiency virus (SIV) derived from SIVmac239 lacking vpr, vpx, or both vpr and vpx genes. These auxiliary genes are not required for virus replication in cultured cells but are consistently conserved within the SIVmac/human immunodeficiency virus type 2/SIVsm group of primate lentiviruses. All four rhesus monkeys infected with the vpr deletion mutant showed an early spike in plasma antigenemia, maintained high virus burdens, exhibited declines in CD4+ lymphocyte concentrations, and had significant changes in lymph node morphology, and two have died to date with AIDS. The behavior of the vpr deletion mutant was indistinguishable from that of the parental, wild-type virus. Rhesus monkeys infected with the vpx deletion mutant showed lower levels of plasma antigenemia, lower virus burdens, and delayed declines in CD4+ lymphocyte concentrations but nonetheless progressed with AIDS to a terminal stage. The vpr+vpx double mutant was severely attenuated, with much lower virus burdens and no evidence of disease progression. These and other results indicate that vpr provides only a slight facilitating advantage for wild-type SIVmac replication in vivo. Thus, progression to AIDS and death can occur in the absence of a gene for vpr or vpx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号