共查询到20条相似文献,搜索用时 19 毫秒
1.
We present an analysis of trajectories from Brownian dynamics simulations of diffusional protein-protein encounter for the well-studied system of barnase and barstar. This analysis reveals details about the optimal association pathways, the regions of the encounter complex, possible differences of the pathways for dissociation and association, the coupling of translational and rotation motion, and the effect of mutations on the trajectories. We found that a small free-energy barrier divides the energetically most favorable region into a region of the encounter complex above the barnase binding interface and a region around a second energy minimum near the RNA binding loop. When entering the region of the encounter complex from the region near the RNA binding loop, barstar has to change its orientation to increase the electrostatic attraction between the proteins. By concentrating the analysis on the successful binding trajectories, we found that the region of the second minimum is not essential for the binding of barstar to barnase. Nevertheless, this region may be helpful to steer barstar into the region of the encounter complex. When applying the same analysis to several barnase mutants, we found that single mutations may drastically change the free-energy landscape and may significantly alter the population of the two minima. Therefore, certain protein-protein pairs may require careful adaptation of the positions of encounter and transition states when interpreting mutation effects on kinetic rates of association and/or dissociation. 相似文献
2.
The rate of protein association places an upper limit on the response time due to protein interactions, which, under certain circumstances, can be diffusion-controlled. Simulations of model proteins show that diffusion-limited association rates are approximately 10(6)-10(7) M-1 s-1 in the absence of long-range forces (Northrup, S. H., and H. P. Erickson. 1992. Kinetics of protein-protein association explained by Brownian dynamics computer simulations. Proc. Natl. Acad. Sci. U.S.A. 89:3338-3342). The measured association rates of barnase and barstar are 10(8)-10(9) M-1 s-1 at 50 mM ionic strength, and depend on ionic strength (Schreiber, G., and A. R. Fersht. 1996. Rapid, electrostatically assisted association of proteins. Nat. Struct. Biol. 3:427-431), implying that their association is electrostatically facilitated. We report Brownian dynamics simulations of the diffusional association of barnase and barstar to compute association rates and their dependence on ionic strength and protein mutation. Crucial to the ability to reproduce experimental rates is the definition of encounter complex formation at the endpoint of diffusional motion. Simple definitions, such as a required root mean square (RMS) distance to the fully bound position, fail to explain the large influence of some mutations on association rates. Good agreement with experiments could be obtained if satisfaction of two intermolecular residue contacts was required for encounter complex formation. In the encounter complexes, barstar tends to be shifted from its position in the bound complex toward the guanine-binding loop on barnase. 相似文献
3.
Electrostatic interactions are believed to play an important role in stabilizing the native structure of proteins. We have quantified the contribution to stability of an interaction between two oppositely charged side-chains on the surface of barnase. Using site-directed mutagenesis, glutamate 28 and lysine 32 were introduced onto the solvent-accessible side of the second alpha-helix in barnase. These two residues are separated by one turn of the helix, and so are ideally situated for their opposite charges to interact. Double mutant cycle analysis reveals that the interaction between Glu28 and Lys32 contributes only approximately 0.2 kcal/mol to stability of the protein. All other interactions between exposed charged side-chains in barnase examined so far also contribute little to stability. We explain this low value by their location on the surface, rather than in the interior, of the protein. 相似文献
4.
Zhuravleva A Korzhnev DM Nolde SB Kay LE Arseniev AS Billeter M Orekhov VY 《Journal of molecular biology》2007,367(4):1079-1092
NMR spectroscopy and computer simulations were used to examine changes in chemical shifts and in dynamics of the ribonuclease barnase that result upon binding to its natural inhibitor barstar. Although the spatial structures of free and bound barnase are very similar, binding results in changes of the dynamics of both fast side-chains, as revealed by (2)H relaxation measurements, and NMR chemical shifts in an extended beta-sheet that is located far from the binding interface. Both side-chain dynamics and chemical shifts are sensitive to variations in the ensemble populations of the inter-converting molecular states, which can escape direct structural observation. Molecular dynamics simulations of free barnase and barnase in complex with barstar, as well as a normal mode analysis of barnase using a Gaussian network model, reveal relatively rigid domains that are separated by the extended beta-sheet mentioned above. The observed changes in NMR parameters upon ligation can thus be rationalized in terms of changes in inter-domain dynamics and in populations of exchanging states, without measurable structural changes. This provides an alternative model for the propagation of a molecular response to ligand binding across a protein that is based exclusively on changes in dynamics. 相似文献
5.
Design of multivalent complexes using the barnase*barstar module 总被引:2,自引:0,他引:2
The ribonuclease barnase (12 kDa) and its inhibitor barstar (10 kDa) form a very tight complex in which all N and C termini are accessible for fusion. Here we exploit this system to create modular targeting molecules based on antibody scFv fragment fusions to barnase, to two barnase molecules in series and to barstar. We describe the construction, production and purification of defined dimeric and trimeric complexes. Immobilized barnase fusions are used to capture barstar fusions from crude extracts to yield homogeneous, heterodimeric fusion proteins. These proteins are stable, soluble and resistant to proteolysis. Using fusions with anti-p185(HER2-ECD) 4D5 scFv, we show that the anticipated gain in avidity from monomer to dimer to trimer is obtained and that favorable tumor targeting properties are achieved. Many permutations of engineered multispecific fusion proteins become accessible with this technology of quasi-covalent heterodimers. 相似文献
6.
Mitkevich VA Schulga AA Ermolyuk YS Lobachov VM Chekhov VO Yakovlev GI Hartley RW Nick Pace C Kirpichnikov MP Makarov AA 《Biophysical chemistry》2003,105(2-3):383-390
Differential scanning calorimetry was used to study the thermodynamics of denaturation of protein complexes for which the free energy stabilizing the complexes varied between -8 and -16 kcal/mol. The proteins studied were the ribonucleases barnase and binase, their inhibitor barstar and mutants thereof, and complexes between the two. The results are in good agreement with the model developed by Brandts and Lin for studying the thermodynamics of denaturation for tight complexes between two proteins which undergo two-state thermal unfolding transitions. 相似文献
7.
8.
Association of a protein complex follows a two step reaction mechanism, with the first step being the formation of an encounter complex which evolves into the final complex. Here we present new experimental data for the association of the bacterial ribonuclease barnase and its polypeptide inhibitor barstar which shed light on the thermodynamics and structure of the transition state and preceding encounter complex of association at diminishing electrostatic attraction. We show that the activation entropy at the transition state is close to zero, with the activation enthalpy being equal to the free energy of binding. This observation was independent of the magnitude of the mutual electrostatic attraction, which were altered by mutagenesis or by addition of salt. The low activation entropy implies that the transition state is mostly solvated at all ionic strengths. The structure of the transition state was probed by measuring pairwise interaction energies using double-mutant-cycles. While at low ionic strength all proximal charge-pairs form contacts, at high salt only a subset of these interactions are maintained. More specifically, charge-charge interactions between partially buried residues are lost, while exposed charged residues maintain their ability to form specific interactions even at the highest salt concentration. Uncharged residues do not interact at any ionic strength. The results presented here suggest that the barnase-barstar binding sites are correctly aligned during the transition state even at diminishing electrostatic attraction, although specific short range interactions of uncharged residues are not yet formed. Furthermore, most of the interface desolvation (which contributes to the entropy of the system) has not yet occurred. This picture seems to be valid at low and high salt. However, at high salt, interactions of the activated complex are limited to a more restricted set of residues which are easier approached during diffusion, prior to final docking. This suggest that the steering region at high salt is more limited, albeit maintaining its specificity. 相似文献
9.
Modeling of denatured state for calculation of the electrostatic contribution to protein stability 总被引:1,自引:0,他引:1 下载免费PDF全文
Kundrotas PJ Karshikoff A 《Protein science : a publication of the Protein Society》2002,11(7):1681-1686
Existing models of the denatured state of proteins consider only one possible spatial distribution of protein charges and therefore are applicable to a limited number of cases. In this article, a more general framework for the modeling of the denatured state is proposed. It is based on the assumption that the titratable groups of an unfolded protein can adopt a quasi-random distribution restricted by the protein sequence. The model was applied for the calculations of electrostatic interactions in two proteins, barnase and N-terminal domain of the ribosomal protein L9. The calculated free energy of denaturation, DeltaG(pH), reproduces the experimental data better than the commonly used null approximation (NA). It was shown that the seemingly good agreement with experimental data obtained by NA originates from the compensatory effect between the pairwise electrostatic interactions and the desolvation energy of the individual sites. It was also found that the ionization properties of denatured proteins are influenced by the protein sequence. 相似文献
10.
11.
pH dependence of the stability of barstar to chemical and thermal denaturation. 总被引:1,自引:2,他引:1 下载免费PDF全文
R. Khurana A. T. Hate U. Nath J. B. Udgaonkar 《Protein science : a publication of the Protein Society》1995,4(6):1133-1144
Equilibrium unfolding of barstar with guanidine hydrochloride (GdnHCl) and urea as denaturants as well as thermal unfolding have been carried out as a function of pH using fluorescence, far-UV and near-UV CD, and absorbance as probes. Both GdnHCl-induced and urea-induced denaturation studies at pH 7 show that barstar unfolds through a two-state F<->U mechanism and yields identical values for delta GU, the free energy difference between the fully folded (F) and unfolded (U) forms, of 5.0 +/- 0.5 kcal.mol-1 at 25 degrees C. Thermal denaturation of barstar also follows a two-state F<->U unfolding transition at pH 7, and the value of delta GU at 25 degrees C is similar to that obtained from chemical denaturation. The pH dependence of denaturation by GdnHCl is complex. The Cm value (midpoint of the unfolding transition) has been used as an index for stability in the pH range 2-10, because barstar does not unfold through a two-state transition on denaturation by GdnHCl at all pH values studied. Stability is maximum at pH 2-3, where barstar exists in a molten globule-like form that forms a large soluble oligomer. The stability decreases with an increase in pH to 5, the isoelectric pH of the protein. Above pH 5, the stability increases as the pH is raised to 7. Above pH 8, it again decreases as the pH is raised to 10. The decrease in stability from pH 7 to 5 in wild-type (wt) barstar, which is shown to be characterized by an apparent pKa of 6.2 +/- 0.2, is not observed in H17Q, a His 17-->Gln 17 mutant form of barstar. This decrease in stability has therefore been correlated with the protonation of His 17 in barstar. The decrease in stability beyond pH 8 in wt barstar, which is characterized by an apparent pKa of 9.2 +/- 0.2, is not detected in BSCCAA, the Cys 40 Cys 82-->Ala 40 Ala 82 double mutant form of barstar. Thus, this decrease in stability has been correlated with the deprotonation of at least one of the two cysteines present in wt barstar. The increase in stability from pH 5 to 3 is characterized by an apparent pKa of 4.6 +/- 0.2 for wt barstar and BSCCAA, which is similar to the apparent pKa that characterizes the structural transition leading to the formation of the A form. The use of Cm as an index of stability has been supported by thermal denaturation studies.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
12.
Ionic interactions and anion binding in the gramicidin channel. An electrostatic calculation 总被引:1,自引:0,他引:1
H Monoi 《Journal of theoretical biology》1983,102(1):69-99
An electrostatic calculation is performed in order to examine basic features of interactions between ions (including anions) within the gramicidin channel. The calculation focuses on the effect of image forces. The substitute charge method is used for the calculation of image-force energies. Good arrangements of fictitious charges and contour points are described. Errors of calculated image-force energies are estimated not to greatly exceed 0.1%. The cases assumed are (i) the effective radius r of the channel is between 2.5 and 3.5 A, (ii) the binding site with the highest affinity is between 1 and 3.5 A from the channel end (outer site), and (iii) the dimple at the channel mouth is 0-5 A in depth. The induced energy of an ion placed at the outer site increases (and hence the affinity of the outer site decreases) with the increase in the depth of dimples, whereas the barrier height for translocation between the outer sites decreases in the presence of deeper dimples. The interactional energy between two monovalent cations placed at the outer sites is relatively small in the absence of dimples. It is large, however, in the presence of deeper dimples if the outer sites are 2.5 or 3.5 A from the ends; but, it is still relatively small even in the presence of dimples if the sites are 1 A from the ends. The interactional energy is very unfavorable for simultaneous occupancy by three cations. It is suggested that an ion pair may be formed at the channel mouth. Deeper positions of the outer site, smaller values of r, and deeper dimples favor the formation of the ion pair. In the presence of 5 A dimples, the binding constant of an anion (Cl-) for a cation (Na+) which has already been bound at an outer site (with no second cation at the opposite mouth) is estimated to be 0.4-8 molal-1 if local interactions between the bound anion and the channel wall is negligibly small. The anion binding constant increases in the presence of a cation (or an ion pair) at the opposite mouth. It decreases markedly in the absence of dimples. The interactional energy is considerably unfavorable for the binding of a third cation even if the presence of an ion pair is postulated. It is still large in the presence of an ion pair at each of the mouths. 相似文献
13.
Backbone dynamics of uniformly 15N-labeled free barnase and its complex with unlabelled barstar have been studied at 40°C, pH 6.6, using 15N relaxation data obtained from proton-detected 2D {1H}-15N NMR spectroscopy. 15N spin-lattice relaxation rate constants (R1), spin-spin relaxation rate constants (R2), and steady-state heteronuclear {1H}-15N NOEs have been measured at a magnetic field strength of 14.1 Tesla for 91 residues of free barnase and for 90 residues out of a total of 106 in the complex (excluding three prolines and the N-terminal residue) backbone amide 15N sites of barnase. The primary relaxation data for both the cases have been analyzed in the framework of the model-free formalism using both isotropic and axially symmetric models of the rotational diffusion tensor. As per the latter, the overall rotational correlation times (m) are 5.0 and 9.5 ns for the free and complexed barnase, respectively. The average order parameter is found to be 0.80 for free barnase and 0.86 for the complex. However, the changes are not uniform along the backbone and for about 5 residues near the binding interface there is actually a significant decrease in the order parameters on complex formation. These residues are not involved in the actual binding. For the residues where the order parameter increases, the magnitudes vary significantly. It is observed that the complex has much less internal mobility, compared to free barnase. From the changes in the order parameters, the entropic contribution of NH bond vector motion to the free energy of complex formation has been calculated. It is apparent that these motions cause significant unfavorable contributions and therefore must be compensated by many other favorable contributions to effect tight complex formation. The observed variations in the motion and their different locations with regard to the binding interface may have important implications for remote effects and regulation of the enzyme action. 相似文献
14.
15.
Steered molecular dynamics simulations have previously been used to investigate the mechanical properties of the extracellular matrix protein fibronectin. The simulations suggest that the mechanical stability of the tenth type III domain from fibronectin (FNfn10) is largely determined by a number of critical hydrogen bonds in the peripheral strands. Interestingly, the simulations predict that lowering the pH from 7 to approximately 4.7 will increase the mechanical stability of FNfn10 significantly (by approximately 33 %) due to the protonation of a few key acidic residues in the A and B strands. To test this simulation prediction, we used single-molecule atomic force microscopy (AFM) to investigate the mechanical stability of FNfn10 at neutral pH and at lower pH where these key residues have been shown to be protonated. Our AFM experimental results show no difference in the mechanical stability of FNfn10 at these different pH values. These results suggest that some simulations may overestimate the role played by electrostatic interactions in determining the mechanical stability of proteins. 相似文献
16.
A. Schppe H. J. Hinz V. R. Agashe S. Ramachandran J. B. Udgaonkar 《Protein science : a publication of the Protein Society》1997,6(10):2196-2202
The temperature induced unfolding of barstar wild-type of bacillus amyloliquefaciens (90 residues) has been characterized by differential scanning microcalorimetry. The process has been found to be reversible in the pH range from 6.4 to 8.3 in the absence of oxygen. It has been clearly shown by a ratio of delta HvH/delta Hcal near 1 that denaturation follows a two-state mechanism. For comparison, the C82A mutant was also studied. This mutant exhibits similar reversibility, but has a slightly lower transition temperature. The transition enthalpy of barstar wt (303 kJ mol-1) exceeds that of the C82A mutant (276 kJ mol-1) by approximately 10%. The heat capacity changes show a similar difference, delta Cp being 5.3 +/- 1 kJ mol-1 K-1 for the wild-type and 3.6 +/- 1 kJ mol-1 K-1 for the C82A mutant. The extrapolated stability parameters at 25 degrees C are delta G0 = 23.5 +/- 2 kJ mol-1 for barstar wt and delta G0 = 25.5 +/- 2 kJ mol-1 for the C82A mutant. 相似文献
17.
Teikichi Ikura Nobuhiro G
Daisuke Kohda Fuyuhiko Inagaki Hiroshi Yanagawa Masuyo Kawabata Shun-ichiro Kawabata Sadaaki Iwanaga Tosiyuki Noguti Mitiko G
《Proteins》1993,16(4):341-356
Proteins consist of structural units such as globular domains, secondary structures, and modules. Modules were originally defined by partitioning a globular domain into compact regions, each of which is a contiguous polypeptide segment having a compact conformation. Since modules show close correlations with the intron positions of genes, they are regarded as primordial polypeptide pieces encoded by exons and shuffled, leading to yield new combination of them in early biological evolution. Do modules maintain their native conformations in solution when they are excised at their boundaries? In order to find answers to this question, we have synthesized modules of barnase, one of the bacterial RNases, and studied the solution structures of modules M2 (amino acid residues 24–52) and M3 (52–73) by 2D NMR studies. Some local secondary structures, α-helix, and β-turns in M2 and β-turns in M3, were observed in the modules at the similar positions to those in the intact barnase but the overall state seems to be in a mixture of random and native conformations. The present result shows that the excised modules have propensity to form similar secondary structures to those of the intact barnase. © 1993 Wiley-Liss, Inc. 相似文献
18.
We have employed biased molecular dynamics simulations in explicit solvent to characterize the one‐dimensional potential of mean force for the dissociation process of the barnase–barstar protein–protein complex. Unbinding of barstar from wild‐type barnase was compared with dissociation from four charge‐deletion mutants of barnase. Interestingly, we find in all cases that unbinding of barnase and barstar is an uphill process on a smooth, tilted energy landscape. The total free energy difference between the dissociated and bound state was similar for wild‐type barnase–barstar and for the R87A mutant of barnase. The values for the three other mutant barnase mutants K27A, R59A, and R83Q were only about half as much. Besides, we have analyzed the conformational dynamics of important residues at the barnase–barstar interface. In the bound state, their conformational fluctuations are reduced relatively to the free state because of the formation of intermolecular contacts. Interestingly, we find that some residues also show decreased mobility at intermediate stages of the unbinding process suggesting that these residues may be involved in the first contacts being formed on binding. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 977–985, 2010. 相似文献
19.
Ermakova EA 《Biofizika》2006,51(2):242-249
A comparative study of the association of two ribonucleases, barnase and binase, with the polypeptide inhibitor barstar has been performed by the Brownian dynamics simulation method. It was shown that the method adequately reproduced the dependence of the association rate on pH and ionic strength of solution and the influence of mutations of some ribonuclease amino acids. Two types of energetically favorable complexes of binase-barstar encounter were determined. In the type I complex, the amino acids of binase active center take part in the complex formation. In the second complex, the active center is free. It was supposed that the temporary binding of barstar into complex of type II is competitive relative to the inhibition reaction. This can partially explain the decrease in the rate of binase inhibition as compared with the corresponding reaction of barnase. 相似文献
20.
BACKGROUND: The molecular mechanism of urea-induced protein unfolding has not been established. It is generally thought that denaturation results from the stabilizing interactions of urea with portions of the protein that are buried in the native state and become exposed upon unfolding of the protein. RESULTS: We have performed molecular dynamics simulations of barnase (a 110 amino acid RNase from Bacillus amyloliquefaciens) with explicit water and urea molecules at 300 K and 360 K. The native conformation was unaffected in the 300 K simulations at neutral and low pH. Two of the three runs at 360 K and low pH showed some denaturation, with partial unfolding of the hydrophobic core 2. The first solvation shell has a much higher density of urea molecules (water/urea ratio ranging from 2.07 to 2.73) than the bulk (water/urea ratio of 4.56). About one half of the first-shell urea molecules are involved in hydrogen bonds with polar or charged groups on the barnase surface, and between 15% and 18% of the first-shell urea molecules participate in multiple hydrogen bonds with barnase. The more stably bound urea molecules tend to be in crevices or pockets on the barnase surface. CONCLUSIONS: The simulation results indicate that an aqueous urea solution solvates the surface of a polypeptide chain more favorably than pure water. Urea molecules interact more favorably with nonpolar groups of the protein than water does, and the presence of urea improves the interactions of water molecules with the hydrophilic groups of the protein. The results suggest that urea denaturation involves effects on both nonpolar and polar groups of proteins. 相似文献