首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, tissue segment binding method with a hydrophilic radioligand [(3)H]-CGP12177 was developed to detect plasma membrane beta-adrenoceptors in rat heart (Horinouchi et al., 2006). In the present study, propranolol (40 mg kg(-1) day(-1)), atenolol (40 mg kg(-1) day(-1)) and bevantolol (200 mg kg(-1) day(-1)) were administered to rats for 6 weeks, and the changes of plasma membrane beta-adrenoceptors and their mRNA expression in rat ventricle were examined. Chronic administration of propranolol increased the beta(1)-adrenoceptors but decreased the beta(2)-adrenoceptors without changing total amount of plasma membrane beta-adrenoceptors. Atenolol increased both plasma membrane beta(1)- and beta(2)-adrenoceptors, whereas bevantolol had no effect on the beta-adrenoceptor density and their subtype proportions. In contrast, the density of beta-adrenoceptors detected in conventional homogenate binding study was extremely low (approximately 60% of plasma membrane beta-adrenoceptors detected with the tissue segment binding method) and the effects of chronic administration of beta-adrenoceptor antagonists were not necessarily in accord with those at the plasma membrane beta-adrenoceptors. The mRNA levels of beta(1)- and beta(2)-adrenoceptors were not altered by propranolol treatment, while beta(1)-adrenoceptor mRNA significantly decreased after administration of atenolol or bevantolol without changing the level of beta(2)-adrenoceptor mRNA. The present binding study with intact tissue segments clearly shows that the plasma membrane beta(1)- and beta(2)-adrenoceptors of rat heart, in contrast to the homogenate binding sites and the mRNA levels, are differently affected by chronic treatment with three beta-adrenoceptor antagonists; up- and down-regulations of beta(1)- and beta(2)-adrenoceptors, respectively, by propranolol, and up-regulation of both the subtypes by atenolol, but no significant change in both the subtypes by bevantolol.  相似文献   

2.
3.
Cerebral cortical slices from rat brain were incubated at 37 degrees C for 2 h in the presence of isoproterenol, noradrenaline, or adrenaline, and binding affinities and densities of adrenoceptor subtypes were subsequently examined in homogenized tissue. The density of alpha 2- and total beta-adrenoceptors was estimated using the radioligands [3H]rauwolscine and [3H]dihydroalprenolol (DHA), respectively. The percentages of beta 1- and beta 2-adrenoceptors were defined by inhibiting the binding of [3H]DHA with the beta 1-selective antagonist metoprolol. Exposure of slices to noradrenaline and adrenaline significantly decreased the maximal number of binding sites (Bmax) of alpha 2-adrenoceptors (48 and 37% respectively) without significantly affecting affinity; isoproterenol had no effect. Exposure to isoproterenol, noradrenaline, and adrenaline significantly decreased the Bmax of beta-adrenoceptors (by 60, 34, and 24%, respectively) but did not affect the affinity. Isoproterenol and adrenaline significantly decreased the density of beta 1-adrenoceptors by 75 and 24% and beta 2-adrenoceptors by 23 and 28%, respectively. Noradrenaline significantly decreased the density of beta 1-adrenoceptors by 42% without affecting the number of beta 2-adrenoceptors. These findings indicate that subtypes of adrenoceptors in rat cerebral cortex are differentially regulated by adrenergic agonists.  相似文献   

4.
Repeated administration of electroconvulsive shock (ECS) increases [3H]prazosin binding to alpha 1-adrenoceptors in rat cerebral cortex. In contrast, [3H]WB4101 binding in cortex has been reported to be unchanged after ECS. [3H]Prazosin labels two alpha 1-adrenoceptor subtypes, termed alpha 1a and alpha 1b, whereas [3H]WB4101 labels the alpha 1a subtype preferentially. The purpose of this study was to determine whether ECS increases one or both alpha 1-adrenoceptor subtypes in rat cerebral cortex. We found that treatment of rats with ECS once daily for 10-12 days increased [3H]prazosin binding in cortex by about 25% but did not significantly alter [3H]WB4101 binding to alpha 1-adrenoceptors. Measurement of alpha 1a and alpha 1b receptors by competition analysis of the selective alpha 1a antagonist 5-methylurapidil against [3H]prazosin and measurement of [3H]prazosin binding in homogenates preincubated with chlorethylclonidine, which alkylates alpha 1b binding sites, also indicated that the ECS-induced increase in alpha 1-adrenoceptors is confined to the alpha 1b subtype. In contrast to its effect on [3H]prazosin binding, ECS did not increase phosphoinositide hydrolysis as measured by [3H]inositol 1-phosphate accumulation in slices of rat cerebral cortex stimulated by either norepinephrine or phenylephrine. The failure of ECS to increase [3H]inositol 1-phosphate accumulation stimulated by phenylephrine, which is a partial agonist for this response, suggests that spare receptors do not account for the apparent absence of effect of ECS on alpha 1-adrenoceptor-mediated phosphoinositide hydrolysis.  相似文献   

5.
Ligand binding and isolated tissue data have provided evidence for the existence of two, tissue-specific, alpha 2-adrenoceptor subtypes in various rodent and non-rodent species. Thus it has been proposed that the complex binding of alpha 2-antagonists to rat cortical membranes is due to the presence of both subtypes in this tissue. We have previously shown that the alpha 2-antagonist 3H-rauwolscine binds to two sites on rat cortical membranes: a high affinity component characterised pharmacologically as an alpha 2-binding site, and a low affinity, spiperone-sensitive, serotonergic-like component. By the use of computerised non-linear curve-fitting, and the inclusion of (in the incubation buffer of displacement experiments) a concentration of spiperone previously shown to selectively occlude the low affinity component of the 3H-rauwolscine saturation isotherm, we have determined the rank order of affinity at each of the two sites. Whereas the rank order of affinity at the high affinity site retains the pharmacological profile of a single, monophasic alpha 2-binding site, that at the low affinity component is markedly different and is similar to that at the putative 5HT1A subtype. These data, together with the additional, functional serotonergic interactions of rauwolscine and yohimbine, indicate that there is no evidence to support the existence of heterogeneous alpha 2-binding sites, as measured by 3H-rauwolscine binding, on rat cortical membranes. Furthermore, we present evidence that the specific, low affinity serotonergic interaction of 3H-rauwolscine could be avoided by a more judicial estimation of specific binding.  相似文献   

6.
The profile of [3H]RX821002 (2-methoxy idazoxan) binding to alpha2-adrenoceptor subtypes in rat kidney membranes was evaluated in controls and after chronic treatment with desipramine (10 mg/kg, i.p., every 12 h, 7 days) or clorgyline (2 mg/kg, i.p., every 24 h, 21 days). [3H]RX821002 recognized with high affinity (Kd=1.5+/-0.2 nM in controls) a single and saturable population of binding sites (Bmax=57+/-5 fmol/mg protein in controls). The competitions by (-)-adrenaline, the alpha2B-adrenoceptor selective drug ARC239 (2-[2-[4-(o-methoxyphenyl)-piperazin-1-yl]-ethyl]-4,4-dimethyl-1,3 (2H,4H)-isoquinolindione) and the alpha2A-adrenoceptor selective drug BRL44408 (2-[2H-(1-methyl-1,3-dihydroisoindole)methyl]-4,5-dihydroimidaz ole) suggested the existence of both alpha2A- and alpha2B-adrenoceptors together with a non-adrenoceptor binding site. After chronic desipramine but not after chronic clorgyline treatments, the density (Bmax) of alpha2-adrenoceptors was increased (46%). In the presence of ARC239 (50 nM), the density of alpha2A-adrenoceptors increased (44%) in the desipramine-treated group without changes in the clorgyline-treated group. Conversely, in the presence of BRL44408 (100 nM), the density of alpha2B-adrenoceptors was not affected by the treatments. The selective upregulation of the alpha2A-adrenoceptor subtype following chronic desipramine administration is compatible with a differential location and function of the alpha2-adrenoceptor subtypes in the rat kidney.  相似文献   

7.
8.
Nicotinic acetylcholine receptors (nAChRs) that contain an alpha7 subunit are widely distributed in neuronal and nonneuronal tissue. These receptors are implicated in the release of neurotransmitters such as glutamate and in functions ranging from thought processing to inflammation. Currently available ligands for alpha7 nAChRs have substantial affinity for one or more other nAChR subtypes, including those with an alpha1, alpha3, alpha6, and/or alpha9 subunit. An alpha-conotoxin gene was cloned from Conus arenatus. Predicted peptides were synthesized and found to potently block alpha3-, alpha6-, and alpha7-containing nAChRs. Structure-activity information regarding conotoxins from distantly related Conus species was employed to modify the C. arenatus derived toxin into a novel, highly selective alpha7 nAChR antagonist. This ligand, alpha-CtxArIB[V11L,V16D], has low nanomolar affinity for rat alpha7 homomers expressed in Xenopus laevis oocytes, and antagonism is slowly reversible. Kinetic analysis provided insight into the mechanism of antagonism. alpha-CtxArIB interacts with five ligand binding sites per alpha7 receptor, and occupation of a single site is sufficient to block function. The peptide was also shown to be highly selective in competition binding assays in rat brain membranes. alpha-CtxArIB[V11L,V16D] is the most selective ligand yet reported for alpha7 nAChRs.  相似文献   

9.
Immunohistochemistry was conducted to analyze the cellular localization of alpha(1A)-adrenoceptors along rat and human epididymis. ADR-A, a polyclonal antibody that recognizes the specific C-terminal region of alpha(1A)-adrenoceptors, immunostained this adrenoceptor subtype in smooth muscle cells surrounding the epididymal tubules and interstitial blood vessels and in subpopulations of epithelial cells from adult rat and human caput and cauda epididymidis. The same cell types from rat epididymidis were immunostained by ADR-1, a polyclonal antibody that recognizes a common region of the three alpha(1)-adrenoceptor subtypes, alpha(1A), alpha(1B), and alpha(1D). Immunostaining with both antibodies was also conducted in adult rat and human vas deferens and seminal vesicle used as positive controls because of the abundance of alpha(1A)-adrenoceptors in these tissues. ADR-A- and ADR-1-positive immunostaining was differentially distributed depending on the antibody, method of tissue fixation (Bouin-fixed and fresh frozen tissues), species (rat and human), tissue (caput and cauda epididymidis), and age (immature and adult rats) analyzed. This is the first report immunolocalizing alpha(1A)-adrenoceptor along rat and human epididymis. The presence of this adrenoceptor subtype in epididymal smooth muscle and epithelial cells indicates their contribution to smooth muscle contractile responses and a possible role in the absorptive and/or secretory activities of the epithelium lining the epididymal duct. Taken together, our results should contribute to a better understanding of the physiological role of alpha(1)-adrenoceptors in the epididymidis and the importance of the sympathetic nervous system for male (in)fertility.  相似文献   

10.
Hypokalemia modulatesα- andβ-adrenoceptor bindings in rat skeletal muscle   总被引:1,自引:0,他引:1  
Changes in the population of adrenergic alpha- and beta-receptors were examined in rat soleus muscles during hypokalemia by their direct determination using radiolabeled ligands. Only beta-adrenoceptors were detected in the normal rat muscles. Hypokalemia led to a pronounced decrease in beta-adrenoceptors, the number of [3H]DHA binding sites, by 50%, as compared with that in the normal rats. There was a genesis of alpha 1-adrenoceptors in hypokalemic rat muscles, since the competitive potency of adrenergic drugs against [3H]prazosin binding was in the order prazosin much greater than phentolamine greater than (+/-)-noradrenaline greater than yohimbine much greater than (+/-)-isoproterenol. The reduction of [3H]DHA binding sites was accompanied by an increase of an approximately equal amount in high-affinity [3H]prazosin binding sites. The Kd determined by kinetic analysis of [3H]prazosin binding was calculated from the ratio K-1/K1 that gave a value of 3.05 nM, which generally agreed with the 1.83 nM determined by saturation experiments (Scatchard plot). This phenomenon of a reduction in the beta-adrenoceptors and the occurrence of alpha 1-adrenoceptors in muscles during hypokalemia is discussed. alpha- and beta-adrenoceptors on soleus muscle membrane may play important but opposite roles in modulating potassium release from the muscle cells.  相似文献   

11.
A series of beta-chloroethylamines 5--18, structurally related to the irreversible alpha(1)-adrenoceptor antagonist phenoxybenzamine [PB, N-benzyl-N-(2-chloroethyl)-N-(1-methyl-2-phenoxyethyl)amine hydrochloride, 1] and the competitive antagonist WB4101 [N-(2,3-dihydro-1,4-benzodioxin-2-ylmethyl)-N-[2-(2,6-dimethoxyphenoxy)ethyl]amine hydrochloride, 2], were synthesized and evaluated for their activity at alpha-adrenoceptors of the epididymal and the prostatic portion of young CD rat vas deferens. All compounds displayed irreversible antagonist activity. Most of them showed similar antagonism at both alpha(1)- and alpha(2)-adrenoceptors, whereas compounds 13 and 18, lacking substituents on both the phenoxy group and the oxyamino carbon chain, displayed a moderate alpha(1)-adrenoceptor selectivity (10--35 times), which was comparable to that of PB. Compounds 14 and 15, belonging to the benzyl series and bearing, respectively, a 2-ethoxyphenoxy and a 2-i-propoxyphenoxy moiety, were the most potent alpha(1)-adrenoceptor antagonists with an affinity value similar to that of PB (pIC(50) values of 7.17 and 7.06 versus 7.27). Interestingly, several compounds were able to distinguish two alpha(1)-adrenoceptor subtypes in the epididymal tissue, as revealed by the discontinuity of their inhibition curves. A mean ratio of 24:76 for these alpha(1)-adrenoceptors was determined from compounds 8--10, 12, and 15--17. Furthermore, compounds 9, 10, 12, 16a, and 16b showed higher affinity towards the minor population of receptors, whereas compounds 8, 15, and 17 preferentially inhibited the major population of alpha(1)-adrenoceptors. In addition, selected pharmacological experiments demonstrated the complementary antagonism of the two series of compounds and their different, preferential affinity for one of the two alpha(1)-adrenoceptor subtypes. In conclusion, we found beta-chloroethylamines that demonstrate a multiplicity of alpha(1)-adrenoceptors in the epididymal portion of young CD rat vas deferens and, as a consequence, they are possible useful tools for alpha(1)-adrenoceptor characterization.  相似文献   

12.
The role of adrenoceptor subtypes was studied in rat brown adipose tissue (BAT). The type II 5'-deiodinase (5'DII) was activated in response to simultaneous stimulation by beta3- and alpha1-adrenergic agonists, BRL 37344 or CGP 12177, and cirazoline, in brown adipocytes. Inhibition of the alpha1- and beta-adrenergic phenylephrine-stimulated 5'DII activity was obtained by the alpha1-adrenergic antagonists in the order of prazosin >/= wb 4101 > 5-methylurapidil. In comparison, the binding of [3H]prazosin to rat BAT plasma membranes was inhibited by alpha1-adrenergic antagonists in the order of prazosin > WB 4101 = benoxathian > 5-methylurapidil. Although the order of the alpha1-adrenergic competition seemed to be rather typical for the alpha1B-adrenergic receptors, a molecular analysis on adrenoceptor mRNAs should be made to confirm the exact alpha1-adrenergic subtypes at the level of brown adipocytes, since the possibility of a mixture of different receptor subtypes in brown fat cells and/or tissue may interact with the pharmacological characterization. Thus, specific alpha1- and beta-adrenoceptor subtypes participate in the regulation of 5'DII activity in the rat brown adipocytes, and therefore, an impaired alpha1- and beta-adrenergic co-work may be involved in a defective BAT function, e.g., in obese Zucker rats, too. An interesting possibility is that the decreased number of alpha1-adrenoceptors in the BAT of obese Zucker rats is due to the decrease in the alpha1B-adrenoceptor subtype which would further be involved especially in the regulation of BAT 5'DII activity.  相似文献   

13.
A high affinity, chemically reactive cyanopindolol derivative. N8-bromoacetyl-N1-3'-(2-cyano-4-indolyloxy)-2'-hydroxypropyl-[Z]-1 ,8-diamino-p-menthane (Br-CYP) was synthesized and its interaction with beta-adrenoceptors characterized. Studies with rat heart, lung, brain, and red blood cell membranes indicated that the compound displaced 3H-dihydroalprenolol (3H-DHA) from beta-adrenoceptors with IC50 values in the nanomolar range. The concentration of functional beta-adrenoceptors in membranes was markedly reduced when membranes were preincubated with Br-CYP and then extensively washed prior to assay. (+/-)Alprenolol and (-)isoproterenol, but not (+)isoproterenol, when included in the preincubation prevented this reduction in binding sites by Br-CYP. Br-CYP was active in vivo when injected intraperitoneally into rats. A dose of 10 micrograms/kg reduced the concentration of binding sites in membranes from heart by 30%, lung by 36%, and RBC by 70%, but did not affect sites on brain membranes 16 hours after injection. Higher doses blocked virtually all the 3H-DHA binding sites in the peripheral organs studied. Br-CYP reduced the concentration of beta-adrenoceptors in membranes from these same tissues (but not brain tissue) as long as two weeks after injection with recovery of binding occurring more rapidly in heart tissue than lung and red blood cells. These results suggest that Br-CYP may be a useful compound for in vivo studies of the biochemistry and pharmacology of beta-adrenergic systems.  相似文献   

14.
Peripheral mononuclear cells (PMC) express several neurotransmitter systems. Increasing evidence suggests that PMC neurotransmitter receptors are involved in modulating immune responses. It is also thought that expression of PMC neurotransmitter receptors may reflect the status of homologous brain receptors. A problem encountered with assay of PMC neurotransmitter receptors was in developing techniques suitable for their assessment in spite of low density. In this paper we summarized findings on the expression of alpha1-adrenoceptor and dopamine receptor subtypes in human peripheral blood lymphocytes characterized by radioligand binding assay techniques and immunocytochemistry. Human lymphocytes express alpha1A-, alpha1B- and alpha1D-adrenoceptor subtypes and dopamine D3, D4 and D5 receptors. Compared to radioligand binding assay, immunocytochemistry applied to cytospin-centrifuged peripheral lymphocytes allowed to assay receptor subtypes investigated in small amounts of blood. The development of sensitive and reproducible techniques for assaying PMC neurotransmitter receptor subtypes even in small amounts of blood such as those used for diagnostic purposes may allow to analyze their sensitivity to different conditions including radiation exposure.  相似文献   

15.
The alpha2-adrenoceptors are G-protein-coupled receptors that mediate many of the physiological effects of norepinephrine and epinephrine. Mammals have three subtypes of alpha2-adrenoceptors, alpha2A, alpha2B and alpha2C. Zebrafish, a teleost fish used widely as a model organism, has five distinct alpha2-adrenoceptor genes. The zebrafish has emerged as a powerful tool to study development and genetics, with many mutations causing diseases reminiscent of human diseases. Three of the zebrafish adra2 genes code for orthologues of the mammalian alpha2-adrenoceptors, while two genes code for alpha2Da- and alpha2Db- adrenoceptors, representing a duplicated, fourth alpha2-adrenoceptor subtype. The three different mammalian alpha2-adrenoceptor subtypes have distinct expression patterns in different organs and tissues, and mediate different physiological functions. The zebrafish alpha2-adrenergic system, with five different alpha2-adrenoceptors, appears more complicated. In order to deduce the physiological functions of the zebrafish alpha2-adrenoceptors, we localized the expression of the five different alpha2-adrenoceptor subtypes using RT-PCR, mRNA in situ hybridization, and receptor autoradiography using the radiolabelled alpha2-adrenoceptor antagonist [ethyl-3H]RS-79948-197. Localization of the alpha2A-, alpha2B- and alpha2C-adrenoceptors in zebrafish shows marked conservation when compared with mammals. The zebrafish alpha2A, alpha2Da, and alpha2Db each partially follow the distribution pattern of the mammalian alpha2A: a possible indication of subfunction partitioning between these subtypes. The alpha2-adrenergic system is functional in zebrafish also in vivo, as demonstrated by marked locomotor inhibition, similarly to mammals, and lightening of skin colour induced by the specific alpha2-adrenoceptor agonist, dexmedetomidine. Both effects were antagonized by the specific alpha2-adrenoceptor antagonist atipamezole.  相似文献   

16.
This study evaluates beta-adrenoceptors in rat atria and ventricle using the tissue segment binding method and compares the results with those obtained using conventional homogenate binding assays. In studies with tissue segment binding, the hydrophilic radioligand [(3)H]-CGP12177 selectively bound to plasma membrane beta-adrenoceptors, and the B(max) levels were significantly higher than those obtained with homogenate binding. However, both binding approaches revealed similar proportions of beta(1)- and beta(2)-adrenoceptors. The regional distribution of plasma membrane beta(1)- and beta(2)-adrenoceptors in rat hearts were also determined using tissue segment binding. Abundance of beta-adrenoceptors and proportion of beta(1)-adrenoceptors were higher in atria than in ventricle, but there was no significant difference between right and left atria or within ventricle (right and left ventricle free walls, apex, and interventricular septum). To establish the ability of the tissue segment binding method to study beta-adrenoceptor regulation such as the internalization of receptors, the effect of prolonged exposure of rat ventricle to (-)-isoprenaline was also investigated by using tissue segments and homogenate binding. Incubation with (-)-isoprenaline for 1 h in vitro caused a concentration-dependent decrease in the density of beta-adrenoceptors, predominantly beta(2)-adrenoceptors, when assessed with tissue segment binding method. In contrast, the subtype-specific change after treatment with (-)-isoprenaline was not detected using homogenate binding. In summary, the tissue segment binding method with [(3)H]-CGP12177 enables a more precise quantitation of plasma membrane beta(1)- and beta(2)-adrenoceptors in rat hearts and is suitable for studying their regulation.  相似文献   

17.
18.
In cardiac myocytes, stimulation of alpha(1)-adrenoceptor (AR) leads to a hypertrophic phenotype. The G(h) protein (transglutaminase II, TGII) is tissue type transglutaminase and transmits the alpha(1B)-adrenoceptor signal with GTPase activity. Recently, it has been shown that the calreticulin (CRT) down-regulates both GTP binding and transglutaminase activities of TGII. To elucidate whether G(h) mediates norepinephrine-stimulated intracellular signal transductions leading to activation of extracellular signal-regulated kinases (ERKs) and neonatal rat cardiomyocyte hypertrophy, we examined the effects of G(h) on the activation of ERKs and inhibitory effects of CRT on alpha(1)-adrenoceptor/G(h) signaling. In neonatal rat cardiomyocytes, norepinephrine-induced ERKs activation was inhibited by an alpha(1)-adrenoceptor blocker (prazosin), but not by an beta-adrenoceptor blocker (propranolol). Overexpression of the G(h) protein stimulated norepinephrine-induced ERKs activation, which was inhibited by alpha-adrenoceptor blocker (prazosin). Co-overexpression of G(h) and CRT abolished norepinephrine-induced ERKs activation. Taken together, norepinephrine induces hypertrophy in neonatal rat cardiomyocytes through alpha(1)-AR stimulation and G(h) is partly involved in norepinephrine-induced MEK1,2/ERKs activation. Activation of G(h)-mediated MEK1,2/ERKs was completely inhibited by CRT.  相似文献   

19.
Neuropeptide Y (NPY) (1 microM) significantly reduced the basal cAMP concentration in slices of rat frontal cortex. However, NPY (10(-9)-10(-6)M) did not alter the isoproterenol-stimulated (10(-9)-10(-5) M) accumulation of cAMP in the frontal cortical slices, showing that Y2 NPY receptors do not modulate the beta-adrenoceptor-stimulated adenylase cyclase activity. NPY (10(-8)-2.5 x 10(-5) M) was also demonstrated to stimulate inositol phosphate accumulation in rat frontal cortex slices in a dose-dependent manner. However, NPY (1 microM) did not potentiate the ability of phenylephrine (5 X 10(-8)-10(-4) M), an alpha 1-adrenoceptor agonist, to stimulate inositol phosphate hydrolysis. The combined effects of phenylephrine and NPY (1 microM) on inositol phosphate hydrolysis were additive, suggesting that the alpha 1-adrenoceptor and NPY Y1 receptor sites are located on different postsynaptic sites in rat frontal cortex. This study demonstrates the existence of both Y2 and Y1 NPY receptors in the rat frontal cortex based on second messenger systems, but there does not appear to be an interaction of NPY with either alpha 1- or beta-adrenoceptors.  相似文献   

20.
The selectivity of 3-nitrosoboldine and different halogenated derivatives of boldine (3-bromoboldine, 3,8-dibromoboldine and 3-chloroboldine) for alpha1-adrenoceptor subtypes was studied by examining [3H]-prazosin competition binding in rat cerebral cortex. In the competition experiments [3H]-prazosin binding was inhibited completely by all the compounds tested. The inhibition curves displayed shallow slopes which could be subdivided into high and low affinity components. The relative order of affinity and selectivity for alpha1A-adrenoceptors was 3-bromoboldine = 3,8-dibromoboldine = 3-chloroboldine > boldine > 3-nitrosoboldine. The competition curves for 3-bromoboldine remained shallow and biphasic following chloroethylclonidine treatment. Whereas the relative contribution of the high affinity sites increased, the 3-bromoboldine affinities at its high and low affinity sites remained similar to those obtained in untreated membranes. 3-Bromoboldine, 3,8-dibromoboldine, 3-chloroboldine and 3-nitrosoboldine did not significantly displace [3H]-(+)-cis-diltiazem binding to rat cerebral cortex membranes. This activity was lower than that shown by boldine. Compared to boldine, halogen (bromine or chlorine) substitution at position 3 increases the alpha1A-adrenoceptor subtype selectivity and decreases the affinity for the benzothiazepine binding site at the calcium channel. Further halogen substitution at position 8 did not significantly improve this activity with respect to 3-bromoboldine. In contrast, the NO substitution at position 3 of boldine (3-nitrosoboldine) gives a loss of affinity and selectivity for alpha1-adrenoceptor subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号