首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heat of reaction of CO gas with the alpha2Mmetbeta2 and alpha2Mbeta2 species of the alpha-chain mutant hemoglobin M Iwate has been studied in buffers with different heats of ionization of 25degrees and in the absence of organic phosphates. For the alpha2Mmetbeta2deoxy species we find a small Bohr effect (0.12 mol of H+/mol of CO) which is in correspondence with that found in equilibrium studies. The heat of reaction, when corrected for proton reaction with buffer, is -18.4 +/- 0.3 kcal/mol of CO at pH 7.4 At pH 9 the same value is observed within experimental error. This value compares closely with heats of reaction of CO with myoglobin and with van't Hoff determinations of the heat of oxygen binding to isolated hemoglobin alpha and beta chains after correction for the heat of replacement of O2 by CO. Furthermore, an analysis of the differential heat of ligand binding as a function of the extent of reaction indicated that, within experimental error, the heat of reaction with the first beta-chain heme in alpha2Mmetbeta2deoxy is the same as the second. Since the quaternary Tleads to R transition is blocked in this mutant hemoglobin, we compared it with Hb A to estimate the enthalpic component of the allosteric T leads to R transition in Hb A. The heats of reaction with CO(g) and Hb A are -15.7 +/- 0.5 and -20.9 +/- 0.5 kcal/mol at pH 7.4 and 9.0, respectively. In going from the T to the R state we find an enthalpy of transition of 9 +/- 2.5 kcal at pH 7.4 and -12 +/- 2.5 kcal at pH 9.0. From published free energies of transsition we conclude the T leads to R transition is enthalpically controlled at p/ 7.4 but entropically controlled at pH 9.0 A near normal Bohr effect is estimated from heats of reaction of CO with alpha2Mdeoxybeta2deoxy in various buffers. A large than normal heat of reaction (-21.6 +/- 0.5 kcal/mol of CO) is attributed to the abnormal alpha chains in Hb M Iwate.  相似文献   

2.
The bimolecular and geminate CO recombination kinetics have been measured for hemoglobin (Hb) with over 90% of the ligand binding sites occupied by NO. Since Hb(NO)4 with inositol hexaphosphate (IHP) at pH below 7 is thought to take on the low affinity (deoxy) conformation, the goal of the experiments was to determine whether the species IHPHb-(NO)3(CO) also exists in this quaternary structure, which would allow ligand binding studies to tetramers in the deoxy conformation. For samples at pH 6.6 in the presence of IHP, the bimolecular kinetics show only a slow phase with rate 7 x 10(4) M-1 s-1, characteristic of CO binding to deoxy Hb, indicating that the triply NO tetramers are in the deoxy conformation. Unlike Hb(CO)4, the fraction recombination occurring during the geminate phase is low (< 1%) in aqueous solutions, suggesting that the IHPHb(NO)3(CO) hybrid is also essentially in the deoxy conformation. By mixing stock solutions of HbCO and HbNO, the initial exchange of dimers produces asymmetric (alpha NO beta NO/alpha CO beta CO) hybrids. At low pH in the presence of IHP, this hybrid also displays a high bimolecular quantum yield and a large fraction of slow (deoxy-like) CO recombination; the slow bimolecular kinetics show components of equal amplitude with rates 7 and 20 x 10(4) M-1 s-1, probably reflecting the differences in the alpha and beta chains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Summary DNA restriction, molecular cloning, and sequencing methods have been used to characterize the mutation leading to the methemoglobinemia HbM Iwate. It could be demonstrated that the HbM Iwate defect is caused by a point mutation involving a transition from C to T in the first position of codon 87 of the 1-globin gene. Furthermore, the HbM Iwate mutation can directly be identified upon RsaI digestion. This direct detection of the mutation on the gene level is of significant advantage for differential diagnostic purposes.  相似文献   

4.
Hemoglobin A, cross-linked between Lys 99 alpha 1 and Lys 99 alpha 2, was used to obtain a partially oxidized tetramer in which only one of the four hemes remains reduced. Because of the absence of dimerization, asymmetric, partially oxidized derivatives are stable. This is evidenced by the fact that eight of the ten possible oxidation states could be resolved by analytical isoelectric focusing. A triply oxidized hemoglobin population HbXL+3 was isolated whose predominant component was (alpha + alpha +, beta + beta 0). This triferric preparation was examined as a possible model for the triliganded state of ferrous HbA. The aquomet and cyanomet derivatives were characterized by their CD spectra and their kinetic reactions with carbon monoxide. CD spectra in the region of 287 nm showed no apparent change in quaternary structure upon binding ligand to the fourth, ferrous heme. The spectra of the oxy and deoxy forms of the cyanomet and aquomet derivatives of HbXL+3 differed insignificantly and were characteristic of the normal liganded state. Upon addition of inositol hexaphosphate (IHP), both the oxy and deoxy derivatives of the high-spin triaquomet species converted to the native deoxy conformation. In contrast, IHP had no such effect on the conformation of the low-spin cyanomet derivatives of HbXL+3. The kinetics of CO combination as measured by stopped-flow and flash photolysis techniques present a more complex picture. In the presence of IHP the triaquomet derivative does bind CO with rate constants indicative of the T state whether these are measured by the stopped-flow technique or by flash photolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Symmetrical FeZn hybrids of human HbA have been used to measure K(1)(alpha) and K(1)(beta), the dissociation constants for the binding of a single molecule of oxygen to unliganded HbA at an alpha subunit and at a beta subunit, respectively. The kinetic constants, l(1)'(alpha) and l(1)'(beta), for the combination of the first CO molecule to unliganded HbA at an alpha or a beta subunit, respectively, were also measured. Measurements were carried out between pH 6 and pH 8 in the presence and absence of inositol hexaphosphate (IHP). Both equilibrium constants exhibit a significant Bohr effect in the absence of IHP. The addition of IHP to a concentration of 0.1 mM increases both dissociation constants in a pH-dependent manner with the result that both Bohr effects are greatly reduced. These results require a negative thermodynamic linkage between the binding of a single oxygen at either an alpha or a beta subunit and the binding of IHP to the T quaternary structure of HbA. Although the beta hemes are relatively near the IHP binding site, a linkage between that site and the alpha hemes, such that the binding of a single oxygen molecule to the heme of one alpha subunit reduces the affinity of the T state for IHP, requires communication across the molecule. l(1)'(alpha) exhibits a very slight pH dependence, with a maximum variation of 20%, while l(1)'(beta) varies with pH three times as much. IHP has no effect on the pH dependence of either rate constant but reduces l(1)'(alpha) marginally, 20%, and l(1)'(beta) by 2-fold at all pH values.  相似文献   

6.
Nagatomo S  Nagai M  Shibayama N  Kitagawa T 《Biochemistry》2002,41(31):10010-10020
The alpha1-beta2 subunit contacts in the half-ligated hemoglobin A (Hb A) have been explored with ultraviolet resonance Raman (UVRR) spectroscopy using the Ni-Fe hybrid Hb under various solution conditions. Our previous studies demonstrated that Trpbeta37, Tyralpha42, and Tyralpha140 are mainly responsible for UVRR spectral differences between the complete T (deoxyHb A) and R (COHb A) structures [Nagai, M., Wajcman, H., Lahary, A., Nakatsukasa, T., Nagatomo, S., and Kitagawa, T. (1999) Biochemistry, 38, 1243-1251]. On the basis of it, the UVRR spectra observed for the half-ligated alpha(Ni)beta(CO) and alpha(CO)beta(Ni) at pH 6.7 in the presence of IHP indicated the adoption of the complete T structure similar to alpha(Ni)beta(deoxy) and alpha(deoxy)beta(Ni). The extent of the quaternary structural changes upon ligand binding depends on pH and IHP, but their characters are qualitatively the same. For alpha(Ni)beta(Fe), it is not until pH 8.7 in the absence of IHP that the Tyr bands are changed by ligand binding. The change of Tyr residues is induced by binding of CO, but not of NO, to the alpha heme, while it was similarly induced by binding of CO and NO to the beta heme. The Trp bands are changed toward R-like similarly for alpha(Ni)beta(CO) and alpha(CO)beta(Ni), indicating that the structural changes of Trp residues are scarcely different between CO binding to either the alpha or beta heme. The ligand induced quaternary structural changes of Tyr and Trp residues did not take place in a concerted way and were different between alpha(Ni)beta(CO) and alpha(CO)beta(Ni). These observations directly indicate that the phenomenon occurring at the alpha1-beta2 interface is different between the ligand binding to the alpha and beta hemes and is greatly influenced by IHP. A plausible mechanism of the intersubunit communication upon binding of a ligand to the alpha or beta subunit to the other subunit and its difference between NO and CO as a ligand are discussed.  相似文献   

7.
The mutant haemoglobin Hb M Iwate alpha 2Mmet87His leads to Tyr beta 2, is characterized by a stable T structure and a low ligand affinity. Sigmoidal CO-binding isotherms of symmetrical shape with Hill coefficients of n = 1.4 at pH 6 to n = 1.9 at pH 10 and the differences in the mean affinity (PCO(1/2)) and the affinity of the first ligand-binding beta subunit (1/L1 greater than Pco(1/2)) are the evidence for the cooperativity. The comparison of the Bohr effects of the two valency hybrid states (alpha 2Mmet beta met beta deoxy alpha 2Mmet beta 2deoxy) in the absence of and in the presence of polyphosphates leads to an indirect proof of pH-dependent subunit-subunit interaction. Inositol hexaphosphate-binding suppresses cooperativity in the pH range 5.5-8 (n = 1). Above pH 8 hte cooperativity increases to a final value of n = 1.9 at pH greater than 10, which is identical to that of stripped Hb M Iwate. The CO binding to the first binding site exhibits a Bohr effect. Polyphosphate anions have no influence on the CO binding of the first binding site. The heterotropic effects are discussed as intrachain effects (Bohr effect of the first binding site) and interchain effects (Bohr effect of Pco(1/2); influence of polyphosphates).  相似文献   

8.
The energetics of signal propagation between different functional domains (i.e. the binding sites for O2, inositol hexakisphospate (IHP), and bezafibrate (BZF)) of human HbA0 was analyzed at different heme ligation states and through the use of a stable, partially heme ligated intermediate. Present data allow three main conclusions to be drawn, and namely: (i) IHP and BZF enhance each others binding as the oxygenation proceeds, the coupling free energy going from close to zero in the deoxy state to -3.4 kJ/mol in the oxygenated form; (ii) the simultaneous presence of IHP and BZF stabilizes the hemoglobin T quaternary structure at very low O2 pressures, but as oxygenation proceeds it does not impair the transition toward the R structure, which indeed occurs also under these conditions; (iii) under room air pressure (i.e. pO2 = 150 torr), IHP and BZF together induce the formation of an asymmetric dioxygenated hemoglobin tetramer, whose features appear reminiscent of those suggested for transition state species (i.e. T- and R-like tertiary conformation(s) within a quaternary R-like structure).  相似文献   

9.
HbPresbyterian (beta 108Asn --> Lys, HbP) contains an additional positive charge (per alpha beta dimer) in the middle of the central cavity and exhibits a lower oxygen affinity than wild-type HbA in the presence of chloride. However, very little is known about the molecular origins of its altered functional properties. In this study, we have focused on the beta beta cleft of the Hb tetramer. Recently, we developed an approach for quantifying the ligand binding affinity to the beta-end of the Hb central cavity using fluorescent analogues of the natural allosteric effector 2, 3-diphosphoglycerate (DPG) [Gottfried, D. S., et al. (1997) J. Biol. Chem. 272, 1571-1578]. Time-correlated single-photon counting fluorescence lifetime studies were used to assess the binding of pyrenetetrasulfonate to both HbA and HbP in the deoxy and CO ligation states under acidic and neutral pH conditions. Both the native and mutant proteins bind the probe at a weak binding site and a strong binding site; in all cases, the binding to HbP was stronger than to HbA. The most striking finding was that for HbA the binding affinity varies as follows: deoxy (pH 6.35) > deoxy (pH 7.20) > CO (pH 6.35); however, the binding to HbP is independent of ligation or pH. The mutant oxy protein also hydrolyzes p-nitrophenyl acetate, through a reversible acyl-imidazole pathway linked to the His residues of the beta beta cleft, at a considerably higher rate than does HbA. This implies a perturbation of the microenvironment of these residues at the DPG binding pocket. Structural consequences due to the presence of the new positive charge in the middle of the central cavity have been transmitted to the beta beta cleft of the protein, even in its liganded conformation. This is consistent with a newly described quaternary state (B) for liganded HbPresbyterian and an associated change in the allosteric control mechanism.  相似文献   

10.
Binding of 1,8-anilinonaphthalene sulfonate (1,8-ANS) to main (HbA(1)) and glycosylated (HbA(1C)) forms of human oxyhemoglobin in the presence/absence of inositolhexaphosphate (IHP) in 50 mM potassium phosphate buffer, pH 7.4, was studied by time-correlated single photon counter with subnanosecond time resolution. The redistribution of contributions of the most long-lived and the most short-lived fluorescent decay components in the presence of IHP provides an evidence of the probe binding within oxyhemoglobin central cavity, namely DPG-binding site. Finally, it was shown that the fluorescent probe is extremely sensitive for hemoglobin central cavity modification, provided by the carbohydrate moiety in case of 1,8-ANS interactions with HbA(1C).  相似文献   

11.
12.
Human alpha-nitrosyl beta-deoxy hemoglobin A, alpha(NO)beta(deoxy), is considered to have a T (tense) structure with the low O(2) affinity extreme and the Fe-histidine (His87) (Fe-His) bond of alpha heme cleaved. The Fe-His bonding of alpha heme and the intersubunit interactions at the alpha 1-beta 2 contact of alpha(NO)-Hbs have been examined under various conditions with EPR and UV resonance Raman (UVRR) spectra excited at 235 nm, respectively. NOHb at pH 6.7 gave the UVRR spectrum of the R structure, but in the presence of inositol-hexakis-phosphate (IHP) for which the Fe-His bond of the alpha heme is broken, UVRR bands of Trp residues behaved half-T-like while Tyr bands remained R-like. The half-ligated nitrosylHb, alpha(NO)beta(deoxy), in the presence of IHP at pH 5.6, gave T-like UVRR spectra for both Tyr and Trp, but binding of CO to its beta heme (alpha(NO)beta(CO)) changed the UVRR spectrum to half-T-like. Binding of NO to its beta heme (NOHb) changed the UVRR spectrum to 70% T-type for Trp but almost R-type for Tyr. When the pH was raised to 8.2 in the presence of IHP, the UVRR spectrum of NOHb was the same as that of COHb. EPR spectra of these Hbs indicated that the Fe-His bond of alpha(NO) heme is partially cleaved. On the other hand, the UVRR spectra of alpha(NO)beta(deoxy) in the absence of IHP at pH 8.8 showed the T-like UVRR spectrum, but the EPR spectrum indicated that 40-50% of the Fe-His bond of alpha hemes was intact. Therefore, it became evident that there is a qualitative correlation between the cleavage of the Fe-His bond of alpha heme and T-like contact of Trp-beta 37. We note that the behaviors of Tyr and Trp residues at the alpha 1-beta 2 interface are not synchronous. It is likely that the behaviors of Tyr residues are controlled by the ligation of beta heme through His-beta 92(F8)-->Val-beta 98(FG5)-->Asp-beta 99(G1 )-->Tyr-alpha 42(C7) or Tyr-beta 145(HC2).  相似文献   

13.
14.
Oxygen binding curves of sol-gel-encapsulated deoxy human adult hemoglobin (HbA) have previously revealed two distinct noncooperative populations with oxygen binding affinities approximately 1000 and 100 times lower than that of the high-affinity R state. The two populations which have been termed the low-affinity (LA) and high-affinity (HA) T states can be selectively stabilized using two different encapsulation protocols for deoxy-HbA. The present study seeks to understand the factors giving rise to these different affinity states. Visible and UV resonance Raman spectroscopies are used to characterize the conformational properties of both the deoxy and deoxy-turned-carbonmonoxy (CO) derivatives of HbA derived from the two encapsulation protocols. The geminate and bimolecular recombination of CO to the photodissociated CO derivatives is used to characterize the functional properties of the slowly evolving encapsulated populations. The results show that the initial deoxy-HbA populations are conformationally indistinguishable with respect to encapsulation protocol. The addition of CO to sol-gel-encapsulated deoxy-HbA triggers a detectable progression of conformational and functional changes. Visible resonance Raman spectra of the CO photoproduct reveal a progression of changes of the iron-proximal histidine stretching frequencies: 215, 222, 227, and 230 cm(-1). The low and high values correspond to the initial deoxy T state and liganded R (R(2)) state species, respectively. The 222 and 227 cm(-1) species are generated using encapsulation protocols that give rise to what are termed the LA and HA T states, respectively. The UV resonance Raman spectra of these and related species indicate that the progression from deoxy T to LA to HA is associated with a progressive loosening of T state constraints within the hinge and switch regions of the alpha(1)beta(2) interface. The time scale for the progression is determined by a balance between the ligation-initiated evolution toward high-affinity conformations and factors such as allosteric effectors, gel matrix, and added glycerol that slow ligand-binding-induced relaxation. Thus, it appears that the encapsulation protocol-dependent rate of ligand-binding-induced relaxation determines the functional properties of the initially encapsulated deoxy-HbA population.  相似文献   

15.
The reactive sulfhydryl group on Cys beta93 in human adult hemoglobin (HbA) has been the focus of many studies because of its importance both as a site for synthetic manipulation and as a possible binding site for nitric oxide (NO) in vivo. Despite the interest in this site and the known functional alterations associated with manipulation of this site, there is still considerable uncertainty as to the conformational basis for these effects. UV resonance Raman (UVRR) spectroscopy is used in this study to evaluate the conformational consequences of chemically modifying the Cys beta93 sulfhydryl group of both the deoxy and CO-saturated derivatives of HbA using different maleimide and mixed disulfide reagents. Included among the maleimide reagents are NEM (n-ethylmaleimide) and several poly(ethylene glycol) (PEG)-linked maleimides. The PEG-based reagents include both different sizes of PEG chains (PEG2000, -5000, and -20000) and different linkers between the PEG and the maleimide. Thus, the effect on the conformation of both linker chemistry and PEG size is evaluated. The spectroscopic results reveal minimal perturbation of the global structure of deoxyHbA for the mixed disulfide modification. In contrast, maleimide-based modifications of HbA perturb the deoxy T state of HbA by "loosening" the contacts associated with the switch region of the T state alpha(1)beta(2) interface but do not modify the hinge region of this interface. When the NEM-modified HbA is also subjected to enzymatic treatment to remove the C-terminal Arg alpha141 (yielding NESdes-ArgHb), the resulting deoxy derivative exhibits the spectroscopic features associated with a deoxy R state species. All of the CO-saturated derivatives exhibit spectra that are characteristic of the fully liganded R structure. The deoxy and CO derivatives of HbA that have been decorated on the surface with large PEG chains linked to the maleimide-modified sulfhydryl through a short linker group all show a general intensity enhancement of the tyrosine and tryptophan bands in the UVRR spectrum. It is proposed that this effect arises from the osmotic impact of a large, close PEG molecule enveloping the surface of the protein.  相似文献   

16.
The properties of three HbA variants with different mutations at the beta102 position, betaN102Q, betaN102T, and betaN102A, have been examined. All three are inhibited in their ligand-linked transition from the low affinity T quaternary state to the high affinity Re quaternary state. In the presence of inositol hexaphosphate, IHP, none of them exhibits cooperativity in the binding of oxygen. This is consistent with the destabilization of the Re state as a result of the disruption of the hydrogen bond that normally forms between the beta102 asparagine residue and the alpha94 aspartate residue in the Re state. However, these three substitutions also alter the properties of the T state of the hemoglobin tetramer. In the presence of IHP, the first two substitutions result in large increases in the ligand affinities of the beta-subunits within the T state structure. The betaN102A variant, however, greatly reduces the pH dependencies of the affinities of the alpha and beta subunits, K1(alpha) and K1(beta), respectively, for the binding of the first oxygen molecule in the absence of IHP. In the presence of IHP, the T state of this variant is strikingly similar to that of HbA under the same conditions. For both hemoglobins, K1(alpha) and K1(beta) exhibit only small Bohr effects. In the absence of IHP, the affinities of the alpha and beta subunits of HbA for the first oxygen are increased, and both exhibit greatly increased Bohr effects. However, in contrast to the behavior of HbA, the ligand-binding properties of the T state tetramer of the betaN102A variant are little affected by the addition or removal of IHP. It appears that along with its effect on the stability of the liganded Re state, this mutation has an effect on the T state that mimics the effect of adding IHP to HbA. It inhibits the set of conformational changes, which are coupled to the K1 Bohr effects and normally accompany the binding of the first ligand to the HbA tetramer in the absence of organic phosphates.  相似文献   

17.
Hemoglobin Barcelona was discovered by routine electrophoresis in a Spanish family showing a mild polycythemia. Red blood cells of the propositus which contained 37% of the abnormal hemoglobin had an increased oxygen affinity and a lowered alkaline Bohr effect. After purification, functional studies of Hb2 Barcelona (pI = 7.11) demonstrated a twofold increase in oxygen affinity and a moderate reduction in heme-heme interaction compared to normal HbA. Its reaction towards anionic cofactors (Cl?, DPG or IHP) was similar to that of HbA. Reactivity of the sulphydryl groups (cysteine-β93) was increased in Hb Barcelona both in the deoxy and fully liganded forms, and in the absence as well as in the presence of IHP. By three different methods (the pH-dependence of log P50, the direct proton titration technique and the measurement of the ΔpIdeox-ox) by isoelectric focusing) all in the absence of phosphate ions, Hb Barcelona was found to have a 20 to 30% reduction of the alkaline Bohr effect. This was most pronounced in the alkaline pH range. The reduction was less than expected for the loss of the important intrachain salt-bridge Asp-β94 → His-β146 considered to be responsible for 40 to 60% of the whole T → R Bohr effect (Perutz et al., 1980). This suggested that in Hb Barcelona, His-β146 could be in weak electrostatic interaction with the neighboring Glu-β90 in the deoxy form. It is concluded that the presence of the oxygen-linked Asp-β94 → His-β146 salt-bridge in HbA is a prerequisite for the full expression of the alkaline Bohr effect and heme-heme interaction.  相似文献   

18.
The thermodynamic and kinetic properties of the most abundant glycated hemoglobin in human blood, HbA1c, have been studied in detail. They display significant differences as compared to normal hemoglobin, HbA0, in that (1) the shape of the oxygen binding curve of HbA1c in the Hill plot is markedly asymmetrical, with a lower asymptote extending up to approximately 40% oxygen saturation, and the oxygen affinity of the T state being tenfold higher than in HbA0; (2) oxygen pulse experiments on HbA1c show a slower rate of ligand dissociation (k = 25 s-1) even at low levels of oxygen saturation, where the T state is largely predominant; (3) kinetics of CO combination to deoxy HbA1c followed by means of stopped-flow experiments reveal the presence of a quickly reacting component, whose fraction increases upon dilution of hemoglobin. These results show that in contrast to what has been stated by other authors, HbA1c displays functional properties markedly different from HbA0. Analysis indicates that glycation of human hemoglobin affects the T quaternary structure, bringing about a more "relaxed" T state and leading to preferential binding to one type of chain (which is unaffected by chloride ions).  相似文献   

19.
We undertook this project to clarify whether hemoglobin (Hb) dimers have a high affinity for oxygen and cooperativity. For this, we prepared stable Hb dimers by introducing the mutation Trp-->Glu at beta37 using our Escherichia coli expression system at the alpha1beta2 interface of Hb, and analyzed their molecular properties. The mutant hybrid Hbs with a single oxygen binding site were prepared by substituting Mg(II) protoporphyrin for ferrous heme in either the alpha or beta subunit, and the oxygen binding properties of the free dimers were investigated. Molecular weight determination of both the deoxy and CO forms showed all these molecules to be dimers in the absence of IHP at different protein concentrations. Oxygen equilibrium measurements showed high affinity and non-cooperative oxygen binding for all mutant Hb and hybrid Hb dimers. However, EPR results on the [alpha(N)(Fe-NO)beta(M)(Mg)] hybrid showed some alpha1beta1 interactions. These results provide some clues as to the properties of Hb dimers, which have not been studied extensively owing to practical difficulties in their preparation.  相似文献   

20.
Double mixing stopped-flow experiments have been performed to study the stability of asymmetric hemoglobin (Hb) hybrids, consisting of a deoxy and a liganded dimer. The doubly liganded [deoxy/cyano-met] hybrid (species 21) was reported to have an enhanced stability, with tetramer to dimer dissociation requiring over 100 seconds, based on a method that required an incubation of over two days. However, kinetic experiments revealed rapid ligand binding to species 21, as for triply liganded tetramers, which dissociate within a few seconds. For the present study, [deoxy dimer/azido-met dimer] hybrids are formed within 200 ms by stopped-flow mixing of dithionite with a solution containing oxyHb and azido-metHb. The dithionite scavenges oxygen, thus transforming oxyHb to deoxyHb, and the [oxy dimer/azido-met dimer] hybrid to the asymmetric [deoxy/azido-met] hybrid (species 21). After a variable aging time of the asymmetric hybrids, their allosteric state is probed by CO binding in a second mixing. As previously observed the freshly produced asymmetric hybrids bind CO rapidly as for R-state Hb. As the hybrids are aged from 0.1 to 10 seconds, the fraction of slow CO binding increases, consistent with a dissociation of the asymmetric hybrid to form the more stable deoxy Hb tetramer which reacts slowly with CO. Control experiments showed a predominantly slow phase for deoxy Hb, and fast rebinding for the symmetric hybrids.The kinetic data can be simulated with a tetramer to dimer dissociation rate for species 21 of 1.5/second at 100 mM NaCl (pH 7.2) and 1.9/second at 180 mM NaCl (pH 7.4). These values are similar to those reported for liganded Hb, as opposed to deoxy (T-state) tetramers which dissociate over four orders of magnitude more slowly. As expected from simulations of dimer exchange, the observed transition rate depends on the initial fractions of oxy- and metHb; this effect is not consistent with a slow R to T transition. These results, showing a lifetime of about one second for species 21, do not support the symmetry rule which is based on an enhanced stability of the asymmetric hybrid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号