首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The YrdC protein--a putative ribosome maturation factor   总被引:2,自引:0,他引:2  
Release factor one (RF1) terminates protein synthesis in response to stop codons UAG and UAA. A mutant allele of RF1 causes temperature sensitive growth at 42 degrees C. We have earlier described the isolation of a suppressor of the temperature sensitive phenotype. The suppressor mutation is a small deletion in the open reading frame yrdC, and we have shown that the DeltayrdC mutation leads to immature 30S subunits and, as a consequence, to fewer translating ribosomes. YrdC is a small conserved protein with a dsRNA-binding surface. Here, we have characterized the YrdC protein. We show that the deletion leads to no production of functional protein, and we have indications that the YrdC protein might be essential in a wild type background. The protein is needed for the maturation of 16S rRNA, even though it does not interact tightly with either of the ribosomal subunits, or the 70S particles. The less effective maturation of rRNA affects the ribosomal feedback control, leading to an increase in expression from P1rrnB. We suggest that the function of the YrdC protein is to keep an rRNA structure needed for proper processing of 16S rRNA, especially at lower temperatures. This activity may require other factor(s). We suggest the gene be renamed rimN, and the mutant allele rimN141.  相似文献   

2.
The in vivo assembly of ribosomal subunits requires assistance by auxiliary proteins that are not part of mature ribosomes. More such assembly proteins have been identified for the assembly of the 50S than for the 30S ribosomal subunit. Here, we show that the RimP protein (formerly YhbC or P15a) is important for the maturation of the 30S subunit. A rimP deletion (ΔrimP135) mutant in Escherichia coli showed a temperature-sensitive growth phenotype as demonstrated by a 1.2-, 1.5-, and 2.5-fold lower growth rate at 30, 37, and 44 °C, respectively, compared to a wild-type strain. The mutant had a reduced amount of 70S ribosomes engaged in translation and showed a corresponding increase in the amount of free ribosomal subunits. In addition, the mutant showed a lower ratio of free 30S to 50S subunits as well as an accumulation of immature 16S rRNA compared to a wild-type strain, indicating a deficiency in the maturation of the 30S subunit. All of these effects were more pronounced at higher temperatures. RimP was found to be associated with free 30S subunits but not with free 50S subunits or with 70S ribosomes. The slow growth of the rimP deletion mutant was not suppressed by increased expression of any other known 30S maturation factor.  相似文献   

3.
Eukaryotic ribosomal proteins are required for production of stable ribosome assembly intermediates and mature ribosomes, but more specific roles for these proteins in biogenesis of ribosomes are not known. Here we demonstrate a particular function for yeast ribosomal protein rpS14 in late steps of 40S ribosomal subunit maturation and pre-rRNA processing. Extraordinary amounts of 43S preribosomes containing 20S pre-rRNA accumulate in the cytoplasm of certain rps14 mutants. These mutations not only reveal a more precise function for rpS14 in ribosome biogenesis but also uncover a role in ribosome assembly for the extended tails found in many ribosomal proteins. These studies are one of the first to relate the structure of eukaryotic ribosomes to their assembly pathway-the carboxy-terminal extension of rpS14 is located in the 40S subunit near the 3' end of 18S rRNA, consistent with a role for rpS14 in 3' end processing of 20S pre-rRNA.  相似文献   

4.
The evolutionary divergence of mitochondrial ribosomes from their bacterial and cytoplasmic ancestors has resulted in reduced RNA content and the acquisition of mitochondria-specific proteins. The mitochondrial ribosomal protein of the small subunit 34 (MRPS34) is a mitochondria-specific ribosomal protein found only in chordates, whose function we investigated in mice carrying a homozygous mutation in the nuclear gene encoding this protein. The Mrps34 mutation causes a significant decrease of this protein, which we show is required for the stability of the 12S rRNA, the small ribosomal subunit and actively translating ribosomes. The synthesis of all 13 mitochondrially-encoded polypeptides is compromised in the mutant mice, resulting in reduced levels of mitochondrial proteins and complexes, which leads to decreased oxygen consumption and respiratory complex activity. The Mrps34 mutation causes tissue-specific molecular changes that result in heterogeneous pathology involving alterations in fractional shortening of the heart and pronounced liver dysfunction that is exacerbated with age. The defects in mitochondrial protein synthesis in the mutant mice are caused by destabilization of the small ribosomal subunit that affects the stability of the mitochondrial ribosome with age.  相似文献   

5.
In contrast to prokaryotes, the precise mechanism of incorporation of ribosomal proteins into ribosomes in eukaryotes is not well understood. For the majority of eukaryotic ribosomal proteins, residues critical for rRNA binding, a key step in the hierarchical assembly of ribosomes, have not been well defined. In this study, we used the mammalian ribosomal protein L13a as a model to investigate the mechanism(s) underlying eukaryotic ribosomal protein incorporation into ribosomes. This work identified the arginine residue at position 68 of L13a as being essential for L13a binding to rRNA and incorporation into ribosomes. We also demonstrated that incorporation of L13a takes place during maturation of the 90S preribosome in the nucleolus, but that translocation of L13a into the nucleolus is not sufficient for its incorporation into ribosomes. Incorporation of L13a into the 90S preribosome was required for rRNA methylation within the 90S complex. However, mutations abolishing ribosomal incorporation of L13a did not affect its ability to be phosphorylated or its extraribosomal function in GAIT element-mediated translational silencing. These results provide new insights into the mechanism of ribosomal incorporation of L13a and will be useful in guiding future studies aimed at fully deciphering mammalian ribosome biogenesis.  相似文献   

6.
7.
To examine the function of the central pseudoknot in 16S rRNA, we have studied Escherichia coli 30S subunits with the A18 mutation in this structure element. Previously, this mutation, which changes the central base pair of helix 2, C18--G917, to an A18xG917 mismatch, was shown to inhibit translation in vivo and a defect in initiation was suggested. Here, we find that the mutant 30S particles are impaired in forming 70S tight couples and predominantly accumulate as free 30S subunits. Formation of a 30S initiation complex, as measured by toeprinting, was almost as efficient for mutant 30S subunits, derived from the tight couple fraction, as for the wild-type control. However, the A18 mutation has a profound effect on the overall stability of the subunit. The mutant ribosomes were inactivated by affinity chromatography and high salt treatment, due to easy loss of ribosomal proteins. Accordingly, the particles could be reactivated by partial in vitro reconstitution with 30S ribosomal proteins. Mutant 30S subunits from the free subunit fraction were already inactive upon isolation, but could also be reactivated by reconstitution. Apparently, the inactivity in initiation of these mutant 30S subunits is, at least in part, also due to the lack of essential ribosomal proteins. We conclude that disruption of helix 2 of the central pseudoknot by itself does not affect the formation of a 30S initiation complex. We suggest that the in vivo translational defect of the mutant ribosomes is caused by their inability to form 70S initiation complexes.  相似文献   

8.
In Saccharomyces cerevisiae, the Mrt4 protein is a component of the ribosome assembly machinery that shares notable sequence homology to the P0 ribosomal stalk protein. Here, we show that these proteins can not bind simultaneously to ribosomes and moreover, a chimera containing the first 137 amino acids of Mrt4 and the last 190 amino acids from P0 can partially complement the absence of the ribosomal protein in a conditional P0 null mutant. This chimera is associated with ribosomes isolated from this strain when grown under restrictive conditions, although its binding is weaker than that of P0. These ribosomes contain less P1 and P2 proteins, the other ribosomal stalk components. Similarly, the interaction of the L12 protein, a stalk base component, is affected by the presence of the chimera. These results indicate that Mrt4 and P0 bind to the same site in the 25S rRNA. Indeed, molecular dynamics simulations using modelled Mrt4 and P0 complexes provide further evidence that both proteins bind similarly to rRNA, although their interaction with L12 displays notable differences. Together, these data support the participation of the Mrt4 protein in the assembly of the P0 protein into the ribosome and probably, that also of the L12 protein.  相似文献   

9.
NSR1 is a yeast nuclear localization sequence-binding protein showing striking similarity in its domain structure to nucleolin. Cells lacking NSR1 are viable but have a severe growth defect. We show here that NSR1, like nucleolin, is involved in ribosome biogenesis. The nsr1 mutant is deficient in pre-rRNA processing such that the initial 35S pre-rRNA processing is blocked and 20S pre-rRNA is nearly absent. The reduced amount of 20S pre-rRNA leads to a shortage of 18S rRNA and is reflected in a change in the distribution of 60S and 40S ribosomal subunits; there is no free pool of 40S subunits, and the free pool of 60S subunits is greatly increased in size. The lack of free 40S subunits or the improper assembly of these subunits causes the nsr1 mutant to show sensitivity to the antibiotic paromomycin, which affects protein translation, at concentrations that do not affect the growth of the wild-type strain. Our data support the idea that NSR1 is involved in the proper assembly of pre-rRNA particles, possibly by bringing rRNA and ribosomal proteins together by virtue of its nuclear localization sequence-binding domain and multiple RNA recognition motifs. Alternatively, NSR1 may also act to regulate the nuclear entry of ribosomal proteins required for proper assembly of pre-rRNA particles.  相似文献   

10.
Era is a small GTP-binding protein and essential for cell growth in Escherichia coli. It consists of two domains: N-terminal GTP-binding and C-terminal RNA-binding KH domains. It has been shown to bind to 16S rRNAs and 30S ribosomal subunits in vitro. Here, we report that a precursor of 16S rRNA accumulates in Era-depleted cells. The accumulation of the precursors is also seen in a cold-sensitive mutant, E200K, in which the mutation site is located in the C-terminal domain. The major precursor molecule accumulated seems to be 17S rRNA, containing extra sequences at both 5' and 3' ends of 16S rRNA. Moreover, the amounts of both 30S and 50S ribosomal subunits relative to the amount of 70S monosomes increase in Era-depleted and E200K mutant cells. The C-terminal KH domain has a high structural similarity to the RbfA protein, a cold shock protein that also specifically associates with 30S ribosomal subunits. RbfA is essential for cell growth at low temperature, and a precursor of 16S rRNA accumulates in an rbfA deletion strain. The 16S rRNA precursor seems to be identical in size to that accumulated in Era mutant cells. Surprisingly, the cold-sensitive cell growth of the rbfA deletion cells was partially suppressed by overproduction of the wild-type Era. The C-terminal domain alone was not able to suppress the cold-sensitive phenotype, whereas Era-dE, which has a 10-residue deletion in a putative effector region of the N-terminal domain, functioned as a more efficient suppressor than the wild-type Era. It was found that Era-dE suppressed defective 16S rRNA maturation, resuming a normal polysome profile to reduce highly accumulated free 30S and 50S subunits in the rbfA deletion cells. These results indicate that Era is involved in 16S rRNA maturation and ribosome assembly.  相似文献   

11.
Summary Expression of resistance to erythromycin in Escherichia coli, caused by an altered L4 protein in the 50S ribosomal subunit, can be masked when two additional ribosomal mutations affecting the 30S proteins S5 and S12 are introduced into the strain (Saltzman, Brown, and Apirion, 1974). Ribosomes from such strains bind erythromycin to the same extent as ribosomes from erythromycin sensitive parental strains (Apirion and Saltzman, 1974).Among mutants isolated for the reappearance of erythromycin resistance, kasugamycin resistant mutants were found. One such mutant was analysed and found to be due to undermethylation of the rRNA. The ribosomes of this strain do not bind erythromycin, thus there is a complete correlation between phenotype of cells with respect to erythromycin resistance and binding of erythromycin to ribosomes.Furthermore, by separating the ribosomal subunits we showed that 50S ribosomes bind or do not bind erythromycin according to their L4 protein; 50S with normal L4 bind and 50S with altered L4 do not bind erythromycin. However, the 30s ribosomes with altered S5 and S12 can restore binding in resistant 50S ribosomes while the 30S ribosomes in which the rRNA also became undermethylated did not allow erythromycin binding to occur.Thus, evidence for an intimate functional relationship between 30S and 50S ribosomal elements in the function of the ribosome could be demonstrated. These functional interrelationships concerns four ribosomal components, two proteins from the 30S ribosomal subunit, S5, and S12, one protein from the 50S subunit L4, and 16S rRNA.  相似文献   

12.
The assembly of ribosomes involves the coordinated processing and modification of rRNAs with the temporal association of ribosomal proteins. This process is regulated by assembly factors such as helicases, modifying enzymes, and GTPases. In contrast to the assembly of cytoplasmic ribosomes, there is a paucity of information concerning the role of assembly proteins in the biogenesis of mitochondrial ribosomes. In this study, we demonstrate that the Saccharomyces cerevisiae GTPase Mtg2p (Yhr168wp) is essential for mitochondrial ribosome function. Cells lacking MTG2 lose their mitochondrial DNA, giving rise to petite cells. In addition, cells expressing a temperature-sensitive mgt2-1 allele are defective in mitochondrial protein synthesis and contain lowered levels of mitochondrial ribosomal subunits. Significantly, elevated levels of Mtg2p partially suppress the thermosensitive loss of mitochondrial DNA in a 21S rRNA methyltransferase mutant, mrm2. We propose that Mtg2p is involved in mitochondrial ribosome biogenesis. Consistent with this role, we show that Mtg2p is peripherally localized to the mitochondrial inner membrane and associates with the 54S large ribosomal subunit in a salt-dependent manner.  相似文献   

13.
A single base substitution mutation from guanine to cytosine was constructed at position 2661 of Escherichia coli 23S rRNA and cloned into the rrnB operon of the multi-copy plasmid pKK3535. The mutant plasmid was transformed into E.coli to determine the effect of the mutation on cell growth as well as the structural and functional properties of the mutant ribosomes in vivo and in vitro. The results show that the mutant ribosomes have a slower elongation rate and an altered affinity for EF-Tu-tRNA-GTP ternary complex. This supports previous findings which indicated that position 2661 is part of a region of 23S rRNA that forms a recognition site for binding of the ternary complex in the ribosomal A site. Combinations of the 2661 mutation with various mutations in ribosomal protein S12 also demonstrate that elements of both ribosomal subunits work in concert to form this binding site.  相似文献   

14.
A specific complex of 5 S rRNA and several ribosomal proteins is an integral part of ribosomes in all living organisms. Here we studied the importance of Escherichia coli genes rplE, rplR and rplY, encoding 5 S rRNA-binding ribosomal proteins L5, L18 and L25, respectively, for cell growth, viability and translation. Using recombineering to create gene replacements in the E. coli chromosome, it was shown that rplE and rplR are essential for cell viability, whereas cells deleted for rplY are viable, but grow noticeably slower than the parental strain. The slow growth of these L25-defective cells can be stimulated by a plasmid expressing the rplY gene and also by a plasmid bearing the gene for homologous to L25 general stress protein CTC from Bacillus subtilis. The rplY mutant ribosomes are physically normal and contain all ribosomal proteins except L25. The ribosomes from L25-defective and parental cells translate in vitro at the same rate either poly(U) or natural mRNA. The difference observed was that the mutant ribosomes synthesized less natural polypeptide, compared to wild-type ribosomes both in vivo and in vitro. We speculate that the defect is at the ribosome recycling step.  相似文献   

15.
Ribosome assembly factors guide the complex process by which ribosomal proteins and the ribosomal RNAs form a functional ribosome. However, the assembly of plant plastid ribosomes is poorly understood. In the present study, we discovered a maize (Zea mays) plastid ribosome assembly factor based on our characterization of the embryo defective 15 (emb15) mutant. Loss of function of Emb15 retards embryo development at an early stage, but does not substantially affect the endosperm, and causes an albino phenotype in other genetic backgrounds. EMB15 localizes to plastids and possesses a ribosome maturation factor M (RimM) domain in the N-terminus and a predicted UDP-GlcNAc pyrophosphorylase domain in the C-terminus. The EMB15 RimM domain originated in bacteria and the UDP-GlcNAc pyrophosphorylase domain originated in fungi; these two domains came together in the ancestor of land plants during evolution. The N-terminus of EMB15 complemented the growth defect of an Escherichia coli strain with a RimM deletion and rescued the albino phenotype of emb15 homozygous mutants. The RimM domain mediates the interaction between EMB15 and the plastid ribosomal protein PRPS19. Plastid 16S rRNA maturation is also significantly impaired in emb15. These observations suggest that EMB15 functions in maize seed development as a plastid ribosome assembly factor, and the C-terminal domain is not important under normal conditions.  相似文献   

16.
The in vivo assembly of ribosomal subunits requires assistance by maturation proteins that are not part of mature ribosomes. One such protein, RbfA, associates with the 30S ribosomal subunits. Loss of RbfA causes cold sensitivity and defects of the 30S subunit biogenesis and its overexpression partially suppresses the dominant cold sensitivity caused by a C23U mutation in the central pseudoknot of 16S rRNA, a structure essential for ribosome function. We have isolated suppressor mutations that restore partially the growth of an RbfA-lacking strain. Most of the strongest suppressor mutations alter one out of three distinct positions in the carboxy-terminal domain of ribosomal protein S5 (S5) in direct contact with helix 1 and helix 2 of the central pseudoknot. Their effect is to increase the translational capacity of the RbfA-lacking strain as evidenced by an increase in polysomes in the suppressed strains. Overexpression of RimP, a protein factor that along with RbfA regulates formation of the ribosome''s central pseudoknot, was lethal to the RbfA-lacking strain but not to a wild-type strain and this lethality was suppressed by the alterations in S5. The S5 mutants alter translational fidelity but these changes do not explain consistently their effect on the RbfA-lacking strain. Our genetic results support a role for the region of S5 modified in the suppressors in the formation of the central pseudoknot in 16S rRNA.  相似文献   

17.
The Escherichia coli RrmJ (FtsJ) heat shock protein functions as an rRNA methyltransferase that modifies position U2552 of 23S rRNA in intact 50S ribosomal subunits. An in-frame deletion of the rrmJ (ftsJ) gene leads to severe growth disadvantages under all temperatures tested and causes significant accumulation of ribosomal subunits at the expense of functional 70S ribosomes. To investigate whether overexpression of other E. coli genes can restore the severe growth defect observed in rrmJ null mutants, we constructed an overexpression library from the rrmJ deletion strain and cloned and identified the E. coli genes that were capable of rescuing the rrmJ mutant phenotype. Our intention was to identify other methylases whose specificities overlapped enough with that of RrmJ to allow complementation when overexpressed. To our great surprise, no methylases were found by this method; rather, two small GTPases, Obg (YhbZ) and EngA, when overexpressed in the rrmJ deletion strains, were found to restore the otherwise severely impaired ribosome assembly process and/or stability of 70S ribosomes. 50S ribosomal subunits prepared from these overexpressing strains were shown to still serve as in vitro substrates for purified RrmJ, indicating that the 23S rRNA likely was still lacking the highly conserved Um2552 modification. The apparent lack of this modification, however, no longer caused ribosome defects or a growth disadvantage. Massive overexpression of another related small GTPase, Era, failed to rescue the growth defects of an rrmJ strain. These findings suggest a hitherto unexpected connection between rRNA methylation and GTPase function, specifically that of the two small GTPases Obg and EngA.  相似文献   

18.
19.
Mitochondria perform a central function in the biogenesis of cellular iron-sulphur (Fe/S) proteins. It is unknown to date why this biosynthetic pathway is indispensable for life, the more so as no essential mitochondrial Fe/S proteins are known. Here, we show that the soluble ATP-binding cassette (ABC) protein Rli1p carries N-terminal Fe/S clusters that require the mitochondrial and cytosolic Fe/S protein biogenesis machineries for assembly. Mutations in critical cysteine residues of Rli1p abolish association with Fe/S clusters and lead to loss of cell viability. Hence, the essential character of Fe/S clusters in Rli1p explains the indispensable character of mitochondria in eukaryotes. We further report that Rli1p is associated with ribosomes and with Hcr1p, a protein involved in rRNA processing and translation initiation. Depletion of Rli1p causes a nuclear export defect of the small and large ribosomal subunits and subsequently a translational arrest. Thus, ribosome biogenesis and function are intimately linked to the crucial role of mitochondria in the maturation of the essential Fe/S protein Rli1p.  相似文献   

20.
RbgA is an essential GTPase that participates in the assembly of the large ribosomal subunit in Bacillus subtilis and its homologs are implicated in mitochondrial and eukaryotic large subunit assembly. How RbgA functions in this process is still poorly understood. To gain insight into the function of RbgA we isolated suppressor mutations that partially restored the growth of an RbgA mutation (RbgA-F6A) that caused a severe growth defect. Analysis of these suppressors identified mutations in rplF, encoding ribosomal protein L6. The suppressor strains all accumulated a novel ribosome intermediate that migrates at 44S in sucrose gradients. All of the mutations cluster in a region of L6 that is in close contact with helix 97 of the 23S rRNA. In vitro maturation assays indicate that the L6 substitutions allow the defective RbgA-F6A protein to function more effectively in ribosome maturation. Our results suggest that RbgA functions to properly position L6 on the ribosome, prior to the incorporation of L16 and other late assembly proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号