首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Essentially all knowledge about adult hippocampal neurogenesis in humans still comes from one seminal study by Eriksson et al. in 1998, although several others have provided suggestive findings. But only little information has been available in how far the situation in animal models would reflect the conditions in the adult and aging human brain. We therefore here mapped numerous features associated with adult neurogenesis in rodents in samples from human hippocampus across the entire lifespan. Such data would not offer proof of adult neurogenesis in humans, because it is based on the assumption that humans and rodents share marker expression patterns in adult neurogenesis. Nevertheless, together the data provide valuable information at least about the presence of markers, for which a link to adult neurogenesis might more reasonably be assumed than for others, in the adult human brain and their change with increasing age.

Methods and Findings

In rodents, doublecortin (DCX) is transiently expressed during adult neurogenesis and within the neurogenic niche of the dentate gyrus can serve as a valuable marker. We validated DCX as marker of granule cell development in fetal human tissue and used DCX expression as seed to examine the dentate gyrus for additional neurogenesis-associated features across the lifespan. We studied 54 individuals and detected DCX expression between birth and 100 years of age. Caveats for post-mortem analyses of human tissues apply but all samples were free of signs of ischemia and activated caspase-3. Fourteen markers related to adult hippocampal neurogenesis in rodents were assessed in DCX-positive cells. Total numbers of DCX expressing cells declined exponentially with increasing age, and co-expression of DCX with the other markers decreased. This argued against a non-specific re-appearance of immature markers in specimen from old brains. Early postnatally all 14 markers were co-expressed in DCX-positive cells. Until 30 to 40 years of age, for example, an overlap of DCX with Ki67, Mcm2, Sox2, Nestin, Prox1, PSA-NCAM, Calretinin, NeuN, and others was detected, and some key markers (Nestin, Sox2, Prox1) remained co-expressed into oldest age.

Conclusions

Our data suggest that in the adult human hippocampus neurogenesis-associated features that have been identified in rodents show patterns, as well as qualitative and quantitative age-related changes, that are similar to the course of adult hippocampal neurogenesis in rodents. Consequently, although further validation as well as the application of independent methodology (e.g. electron microscopy and cell culture work) is desirable, our data will help to devise the framework for specific research on cellular plasticity in the aging human hippocampus.  相似文献   

2.
Presenilin 1 (PS1) regulates environmental enrichment (EE)-mediated neural progenitor cell (NPC) proliferation and neurogenesis in the adult hippocampus. We now report that transgenic mice that ubiquitously express human PS1 variants linked to early-onset familial Alzheimer's disease (FAD) neither exhibit EE-induced proliferation, nor neuronal lineage commitment of NPCs. Remarkably, the proliferation and differentiation of cultured NPCs from standard-housed mice expressing wild-type PS1 or PS1 variants are indistinguishable. On the other hand, wild-type NPCs cocultured with primary microglia from mice expressing PS1 variants exhibit impaired proliferation and neuronal lineage commitment, phenotypes that are recapitulated with mutant microglia conditioned media in which we detect altered levels of selected soluble signaling factors. These findings lead us to conclude that factors secreted from microglia play a central role in modulating hippocampal neurogenesis, and argue for non-cell-autonomous mechanisms that govern FAD-linked PS1-mediated impairments in adult hippocampal neurogenesis.  相似文献   

3.
Adult neurogenesis is a highly regulated, multi-stage process in which new neurons are generated from an activated neural stem cell via increasingly committed intermediate progenitor subtypes. Each of these subtypes expresses a set of specific molecular markers that, together with specific morphological criteria, can be used for their identification. Typically, immunofluorescent techniques are applied involving subtype-specific antibodies in combination with exo- or endogenous proliferation markers. We herein describe immunolabeling methods for the detection and quantification of all stages of adult hippocampal neurogenesis. These comprise the application of thymidine analogs, transcardial perfusion, tissue processing, heat-induced epitope retrieval, ABC immunohistochemistry, multiple indirect immunofluorescence, confocal microscopy and cell quantification. Furthermore we present a sequential multiple immunofluorescence protocol which circumvents problems usually arising from the need of using primary antibodies raised in the same host species. It allows an accurate identification of all hippocampal progenitor subtypes together with a proliferation marker within a single section. These techniques are a powerful tool to study the regulation of different progenitor subtypes in parallel, their involvement in brain pathologies and their role in specific brain functions.  相似文献   

4.
Brain tumours are a diverse group of neoplasms that continue to present a formidable challenge in our attempt to achieve curable intervention. Our conceptual framework of human brain cancer has been redrawn in the current decade. There is a gathering acceptance that brain tumour formation is a phenotypic outcome of dysregulated neurogenesis, with tumours viewed as abnormally differentiated neural tissue. In relation, there is accumulating evidence that brain tumours, similar to leukaemia and many solid tumours, are organized as a developmental hierarchy which is maintained by a small fraction of cells endowed with many shared properties of tissue stem cells. Proof that neurogenesis persists throughout adult life, compliments this concept. Although the cancer cell of origin is unclear, the proliferative zones that harbour stem cells in the embryonic, post-natal and adult brain are attractive candidates within which tumour-initiation may ensue. Dysregulated, unlimited proliferation and an ability to bypass senescence are acquired capabilities of cancerous cells. These abilities in part require the establishment of a telomere maintenance mechanism for counteracting the shortening of chromosomal termini. A strategy based upon the synthesis of telomeric repeat sequences by the ribonucleoprotein telomerase, is prevalent in ~ 90% of human tumours studied, including the majority of brain tumours. This review will provide a developmental perspective with respect to normal (neurogenesis) and aberrant (tumourigenesis) cellular turnover, differentiation and function. Within this context our current knowledge of brain tumour telomere/telomerase biology will be discussed with respect to both its developmental and therapeutic relevance to the hierarchical model of brain tumourigenesis presented by the cancer stem cell paradigm.  相似文献   

5.
6.
The phenomenon of adult neurogenesis has been demonstrated in most mammals including humans. At least two regions of the adult brain maintain stem cells throughout life; the subgranular zone (SGZ) of the hippocampal dentate gyrus, and the subventricular zone (SVZ) of the lateral ventricle wall. Both regions continuously produce neurons that mature and become integrated into functional networks that are involved in learning and memory and odor discrimination, respectively. Apart from these well‐studied regions neurogenesis has been reported in a number of other brain regions, such as amygdala and cortex. However, these studies have been contested and there is currently no well‐postulated function for non‐SVZ/SGZ neurogenesis. The studies of the regional localization of neurogenesis in the brain have been made possible due to several methods for detecting adult neurogenesis including; bromodeoxyuridine labeling (BrdU) together with markers of mature neurons, genetic labeling, by mouse transgenesis, or with the use of viral vectors. These techniques are already put to creative use and will be essential for the discovery of the nature of the adult neural stem cells. In this mini‐review, we will discuss the localization of neural stem/progenitor cells in the brain and their implications as well as discussing the pro's and con's of stem cell labeling techniques. J. Cell. Physiol. 226: 1–7, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Recent findings concerning adult neurogenesis in two selected structures of the mammalian brain, the olfactory bulb and dentate gyrus of the hippocampus, present the possibility that this mechanism of neurogenesis applies for all brain regions, including the cerebral neocortex. In this way, a small number of potential neural precursor cells may exist in the cerebral neocortex, but they do not normally differentiate into cortical neurons in vivo. It has, however, been reported recently that cycling cells isolated from non-neurogenic areas of adult rat cerebral cortex could generate neurons in vitro. In this study, we analyzed the lineage potential of cycling cells from the adult mouse neocortex. For the dissection of the cerebral cortex from the adult mouse, which is significantly smaller than that of the adult rat, we have modified the previous dissection protocol developed for the rat neocortex. As a result, cycling cells from adult mouse neocortex gave rise to neurons and oligodendrocytes, but not to astrocytes, whereas when the previous dissection method was used, cycling cells gave rise to neurons, oligodendrocytes and astrocytes. This discrepancy might stem from slight contamination of the dissected mouse neocortical tissue in the previous protocol used for the dissection of rat neocortex by cells from the surrounding subependymal zone, where typical adult neural stem cells exist. The results presented here will contribute to our understanding of the nature of cycling cells in the adult mammalian neocortex, and for which future stem cell research will provide new possibilities for cell replacement therapy to be used in the treatment of neurodegenerative conditions.  相似文献   

8.
The discovery of neural stem cells (NSC) which ensure continuous neurogenesis in the adult mammalian brain, has led to a conceptual revolution in basic neuroscience and to high hopes for clinical nervous tissue repair. However, several research issues remain to address before neural stem cells can be harnessed for regenerative therapies. The presence of NSC in a nervous structure is demonstrated in vitro by primary culture of dissociated adult nervous tissue in the presence of the specific mitogens EGF and bFGF. This leads to spherical masses of proliferating cells endowed with capacities for self-renewal and, after growth factor removal, differentiation into the three characteristic cell types of nervous tissue (neurons, astrocytes, oligodendrocytes). In vivo, neurogenesis per se, i.e. production of new neurons, occurs only in a small subset of NSC-endowed structures. The production of oligodendrocytes, i.e. myelinating glial cells, is similarly restricted. Such in vivo restrictions were formally demonstrated to arise from the tissular microenvironnement, which led to the emerging concept of "neurogenic niche". In this context, major challenges now consist in identifying the nature of tissue-specific extracellular signals that determine lineage commitment of NSC progeny, understanding why NSCs display weak in vivo reactivity to lesions compared to other stem cell types in adults, and identifying the factors behind the very high resistance to tumorigenesis displayed by NSCs. Altogether, the current data offer hope for the future use of adult NSCs in regenerative therapies, provided that tissue-specific signals are identified in view of counteracting the intrinsic repression of new cell genesis and/or stimulating endogenous NSC recruitment to lesion sites.  相似文献   

9.
10.
The RNA‐binding protein Musashi1 (Msi1) is one of two mammalian homologues of DrosophilaMusashi, which is required for the asymmetric cell division of sensory organ precursor cells. In the mouse central nervous system (CNS), Msi1 is preferentially expressed in mitotically active progenitor cells in the ventricular zone (VZ) of the neural tube during embryonic development and in the subventricular zone (SVZ) of the postnatal brain. Previous studies showed that cells in the SVZ can contribute to long‐term neurogenesis in the olfactory bulb (OB), but it remains unclear whether Msi1‐expressing cells have self‐renewing potential and can contribute to neurogenesis in the adult. Here, we describe the generation of Msi1‐CreERT2 knock‐in mice and show by cell lineage tracing that Msi1‐CreERT2‐expressing cells mark neural stem cells (NSCs) in both the embryonic and adult brain. Msi1‐CreERT2 mice thus represent a new tool in our arsenal for genetically manipulating NSCs, which will be essential for understanding the molecular mechanisms underlying neural development. genesis, 51:128–134, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
The aging neurogenic subventricular zone   总被引:9,自引:0,他引:9  
In the adult mouse brain, the subventricular zone (SVZ) is a neurogenic stem cell niche only 4-5 cell diameters thick. Within this narrow zone, a unique microenvironment supports stem cell self-renewal, gliogenesis or neurogenesis lineage decisions and tangential migration of newly generated neurons out of the SVZ and into the olfactory bulb. However, with aging, SVZ neurogenesis declines. Here, we examine the dynamic interplay between SVZ cytoarchitecture and neurogenesis through aging. Assembly of high-resolution electron microscopy images of corresponding coronal sections from 2-, 10- and 22-month-old mice into photomontages reveal a thinning of the SVZ with age. Following a 2-h BrdU pulse, we detect a significant decrease in cell proliferation from 2 to 22 months. Neuroblast numbers decrease with age, as do transitory amplifying progenitor cells, while both SVZ astrocytes and adjacent ependymal cells remain relatively constant. At 22 months, only residual pockets of neurogenesis remain and neuroblasts become restricted to the anterior dorsolateral horn of the SVZ. Within this dorsolateral zone many key components of the younger neurogenic niche are maintained; however, in the aged SVZ, increased numbers of SVZ astrocytes are found interposed within the ependyma. These astrocytes co-label with markers to ependymal cells and astrocytes, form intercellular adherens junctions with neighboring ependymal cells, and some possess multiple basal bodies of cilia within their cytoplasm. Together, these data reveal an age-related, progressive restriction of SVZ neurogenesis to the dorsolateral aspect of the lateral ventricle with increased numbers of SVZ astrocytes interpolated within the ependyma.  相似文献   

12.
Stem and progenitor cells of the developing and adult brain can be effectively identified and manipulated using reporter genes, introduced into transgenic reporter mouse lines or recombinant viruses. Such reporters rely on an ever-increasing variety of fluorescent proteins and a continuously expanding list of regulatory elements and of mouse lines engineered for cell- or time-specific recombination. An important extension of stem-cell-based genetic strategies is an opportunity to explore the properties of newly generated neurons and their contribution to synaptic plasticity. Here, we review available strategies for marking and quantifying various classes of stem and progenitor cells in the adult brain, genetically tracing their progeny, and studying the properties of stem cells and new neurons. We compare various experimental approaches to labeling and investigating stem cells and their progeny and discuss caveats and limitations inherent to each approach.In adult humans and animals, neural stem cells maintained at specific locations in the adult brain, can produce new neurons that integrate into the existing neural circuits and contribute to neural plasticity. Neural stem cells are the only proven source of new neurons in the adult brain; therefore, our understanding of the features and the role of newly generated neurons depends on the ability to identify adult stem cells, trace their lineage, and reveal basic mechanisms governing their maintenance, division, differentiation, and death.There are various strategies to visualize, identify, and enumerate stem cells and their progeny in the adult brain in vivo. Traditionally, studies of neurogenesis relied on immunocytochemical staining of brain sections using stem-cell-specific antibodies and their combinations and on marking (“birth dating”) dividing stem cells and their progeny using thymidine analogs. These techniques are now complemented by powerful genetic approaches for ontogenetic labeling: generation of transgenic reporter animals constitutively expressing marker proteins; indelible labeling of stem cells and their progeny using inducible (usually Cre-based) recombination; and viral delivery of marker genes to stem cells and their progeny. The general strategy for all genetic approaches to neurogenesis is to drive the expression of live markers, such as fluorescent proteins (FPs) of various color, maturation time, stability, or localization, in defined subclasses of stem cells and their progeny. This review will focus on these genetic approaches, describing available genetic tools and their applications for studying adult neurogenesis (with a bias toward hippocampal neurogenesis) and discussing their advantages and limitations. Interested readers can also consult other reviews in this series, including a review on detection and phenotypic characterization of adult neurogenesis (Kuhn et al. 2015).  相似文献   

13.
Adult neurogenesis within the subgranular zone (SGZ) of the hippocampal dentate gyrus and the subventricular zone (SVZ) of the lateral ventricle (LV) has been most intensely studied within the brains of rodents such as mice and rats. However, little is known about the cell types and processes involved in adult neurogenesis within primates such as the common marmoset (Callithrix jacchus). Moreover, substantial differences seem to exist between the neurogenic niche of the LV between rodents and humans. Here, we set out to use immunohistochemical and autogradiographic analysis to characterize the anatomy of the neurogenic niches and the expression of cell type-specific markers in those niches in the adult common marmoset brain. Moreover, we demonstrate significant differences in the activity of neurogenesis in the adult marmoset brain compared to the adult mouse brain. Finally, we provide evidence for ongoing proliferation of neuroblasts within both the SGZ and SVZ of the adult brain and further show that the age-dependent decline of neurogenesis in the hippocampus is associated with a decrease in neuroblast cells.  相似文献   

14.
Vascular endothelial growth factor-B (VEGFB) is an angiogenic and neuroprotective protein that reduces hypoxic and ischemic neuronal injury. To determine if VEGFB also regulates neurogenesis in the adult brain, we studied the effects of VEGFB administration in vitro and in vivo, as well as the effect of VEGFB gene knockout (KO) in mice, on bromodeoxyuridine (BrdU) incorporation and expression of immature neuronal markers in the subgranular zone (SGZ) of the hippocampal dentate gyrus and the forebrain subventricular zone (SVZ). Intracerebroventricular VEGFB administration increased BrdU incorporation into cells of neuronal lineage both in vitro and in vivo, and VEGFB-KO mice showed impaired neurogenesis, consistent with a neurogenesis-promoting effect of VEGFB. In addition, intraventricular administration of VEGFB restored neurogenesis to wild-type levels in VEGFB-KO mice. These results suggest a role for VEGFB in the regulation of adult neurogenesis, which could have therapeutic implications for diseases associated with central neuronal loss.  相似文献   

15.
There is a great potential for the development of new cell replacement strategies based on adult human neural stem-like cells. However, little is known about the hierarchy of cells and the unique molecular properties of stem- and progenitor cells of the nervous system. Stem cells from the adult human brain can be propagated and expanded in vitro as free floating neurospheres that are capable of self-renewal and differentiation into all three cell types of the central nervous system. Here we report the first global gene expression study of adult human neural stem-like cells originating from five human subventricular zone biopsies (mean age 42, range 33–60). Compared to adult human brain tissue, we identified 1,189 genes that were significantly up- and down-regulated in adult human neural stem-like cells (1% false discovery rate). We found that adult human neural stem-like cells express stem cell markers and have reduced levels of markers that are typical of the mature cells in the nervous system. We report that the genes being highly expressed in adult human neural stem-like cells are associated with developmental processes and the extracellular region of the cell. The calcium signaling pathway and neuroactive ligand-receptor interactions are enriched among the most differentially regulated genes between adult human neural stem-like cells and adult human brain tissue. We confirmed the expression of 10 of the most up-regulated genes in adult human neural stem-like cells in an additional sample set that included adult human neural stem-like cells (n = 6), foetal human neural stem cells (n = 1) and human brain tissues (n = 12). The NGFR, SLITRK6 and KCNS3 receptors were further investigated by immunofluorescence and shown to be heterogeneously expressed in spheres. These receptors could potentially serve as new markers for the identification and characterisation of neural stem- and progenitor cells or as targets for manipulation of cellular fate.  相似文献   

16.
Reduced neurogenesis in the aging mammalian hippocampus has been linked to cognitive deficits and increased risk of dementia. We utilized postmortem human hippocampal tissue from 26 subjects aged 18–88 years to investigate changes in expression of six genes representing different stages of neurogenesis across the healthy adult lifespan. Progressive and significant decreases in mRNA levels of the proliferation marker Ki67 (MKI67) and the immature neuronal marker doublecortin (DCX) were found in the healthy human hippocampus over the lifespan. In contrast, expression of genes for the stem cell marker glial fibrillary acidic protein delta and the neuronal progenitor marker eomesodermin was unchanged with age. These data are consistent with a persistence of the hippocampal stem cell population with age. Age‐associated expression of the proliferation and immature neuron markers MKI67 and DCX, respectively, was unrelated, suggesting that neurogenesis‐associated processes are independently altered at these points in the development from stem cell to neuron. These data are the first to demonstrate normal age‐related decreases at specific stages of adult human hippocampal neurogenesis.  相似文献   

17.
Multiple tissue niches in the human body are now recognised to harbour stem cells. Here, we have asked how different adult stem cell populations, isolated from two ontogenetically distinct human organs (skin, pancreas), actually are with respect to a panel of standard markers/characteristics. Here we show that an easily accessible adult human tissue such as skin may serve as a convenient source of adult stem cell-like populations that share markers with stem cells derived from an internal, exocrine organ. Surprisingly, both, human pancreas- and skin-derived stem/progenitor cells demonstrate differentiation patterns across lineage boundaries into cell types of ectoderm (e.g. PGP 9.5+ and GFAP+), mesoderm (e.g. alpha-SMA+) and entoderm (e.g. amylase+ and albumin+). This intriguing differentiation capability warrants systemic follow-up, since it raises the theoretical possibility that an adult human skin-derived progenitor cell population could be envisioned for possible application in cell replacement therapies.  相似文献   

18.
19.
Birth dating neurons with bromodeoxyuridine (BrdU) labeling is an established method widely employed by neurobiologists to study cell proliferation in embryonic, postnatal, and adult brain. Birth dating studies in the chick dorsal telencephalon and the mammalian striatum have suggested that these structures develop in a strikingly similar manner, in which neurons with the same birth date aggregate to form “isochronic clusters.” Here we show that isochronic cluster formation in the chick dorsal telencephalon is an artifact. In embryos given standardly employed doses of BrdU, we observed isochronic clusters but found that clusters were absent with BrdU doses close to the limits of detection. In addition, in situ hybridization experiments established that neurons in the clusters display errors in cell type specification: BrdU cell clusters in nidopallium adopted a mesopallial neuronal fate, mesopallial clusters were misspecified as nidopallial cells, and in some instances, the BrdU clusters failed to express neuronal differentiation markers characteristic of the dorsal telencephalon. These results demonstrate that the chick dorsal telencephalon does not develop by isochronic cluster formation and highlight the need to test the integrity of BrdU-treated tissue with gene expression markers of regional and cell type identity.  相似文献   

20.
In vitro osteogenic differentiation of human ES cells   总被引:1,自引:0,他引:1  
Since their isolation in 1998, human embryonic stem (hES) cells have been shown to be capable of adopting various cell fates in vitro. Here, we present in vitro data demonstrating the directed commitment of human embryonic stem cells to the osteogenic lineage. Human ES cells are shown to respond to factors that promote osteogenesis, leading to activation of the osteogenic markers osteocalcin, parathyroid hormone receptor, bone sialoprotein, osteopontin, cbfa1, and collagen 1. Moreover, the mineralized nodules obtained are composed of hydroxyapatite, further establishing the similarity of osteoblasts in culture to bone. These results show that osteoblasts can be derived from human ES cultures in vitro and provide the basis for comparison of adult and embryonic-derived osteogenesis, and for an investigation of potential applications for hES cells in orthopaedic tissue repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号