首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural forests in South‐East Asia have been extensively converted into other land‐use systems in the past decades and still show high deforestation rates. Historically, lowland forests have been converted into rubber forests, but more recently, the dominant conversion is into oil palm plantations. While it is expected that the large‐scale conversion has strong effects on the carbon cycle, detailed studies quantifying carbon pools and total net primary production (NPPtotal) in above‐ and belowground tree biomass in land‐use systems replacing rainforest (incl. oil palm plantations) are rare so far. We measured above‐ and belowground carbon pools in tree biomass together with NPPtotal in natural old‐growth forests, ‘jungle rubber’ agroforests under natural tree cover, and rubber and oil palm monocultures in Sumatra. In total, 32 stands (eight plot replicates per land‐use system) were studied in two different regions. Total tree biomass in the natural forest (mean: 384 Mg ha?1) was more than two times higher than in jungle rubber stands (147 Mg ha?1) and >four times higher than in monoculture rubber and oil palm plantations (78 and 50 Mg ha?1). NPPtotal was higher in the natural forest (24 Mg ha?1 yr?1) than in the rubber systems (20 and 15 Mg ha?1 yr?1), but was highest in the oil palm system (33 Mg ha?1 yr?1) due to very high fruit production (15–20 Mg ha?1 yr?1). NPPtotal was dominated in all systems by aboveground production, but belowground productivity was significantly higher in the natural forest and jungle rubber than in plantations. We conclude that conversion of natural lowland forest into different agricultural systems leads to a strong reduction not only in the biomass carbon pool (up to 166 Mg C ha?1) but also in carbon sequestration as carbon residence time (i.e. biomass‐C:NPP‐C) was 3–10 times higher in the natural forest than in rubber and oil palm plantations.  相似文献   

2.
The net primary productivity, carbon (C) stocks and turnover rates (i.e. C dynamics) of tropical forests are an important aspect of the global C cycle. These variables have been investigated in lowland tropical forests, but they have rarely been studied in tropical montane forests (TMFs). This study examines spatial patterns of above‐ and belowground C dynamics along a transect ranging from lowland Amazonia to the high Andes in SE Peru. Fine root biomass values increased from 1.50 Mg C ha?1 at 194 m to 4.95 ± 0.62 Mg C ha?1 at 3020 m, reaching a maximum of 6.83 ± 1.13 Mg C ha?1 at the 2020 m elevation site. Aboveground biomass values decreased from 123.50 Mg C ha?1 at 194 m to 47.03 Mg C ha?1 at 3020 m. Mean annual belowground productivity was highest in the most fertile lowland plots (7.40 ± 1.00 Mg C ha?1 yr?1) and ranged between 3.43 ± 0.73 and 1.48 ± 0.40 Mg C ha?1 yr?1 in the premontane and montane plots. Mean annual aboveground productivity was estimated to vary between 9.50 ± 1.08 Mg C ha?1 yr?1 (210 m) and 2.59 ± 0.40 Mg C ha?1 yr?1 (2020 m), with consistently lower values observed in the cloud immersion zone of the montane forest. Fine root C residence time increased from 0.31 years in lowland Amazonia to 3.78 ± 0.81 years at 3020 m and stem C residence time remained constant along the elevational transect, with a mean of 54 ± 4 years. The ratio of fine root biomass to stem biomass increased significantly with increasing elevation, whereas the allocation of net primary productivity above‐ and belowground remained approximately constant at all elevations. Although net primary productivity declined in the TMF, the partitioning of productivity between the ecosystem subcomponents remained the same in lowland, premontane and montane forests.  相似文献   

3.
The objectives of this study were to examine plant biomass accumulation and carbon (C) storage in four different aged Sonneratia apetala plantations in the Leizhou Bay in South China. The allometric equations using diameter at breast height (DBH) and height (H) were developed to quantify plant biomass. The total forest biomass (TFB) of S. apetala plantation at 4, 5, 8, and 10 years old was 47.9, 71.7, 95.9, and 108.1 Mg ha?1, respectively. The forest biomass C storage in aboveground (AGB) and roots at 4, 5, 8, and 10-year plantation was 19.9, 32.6, 42.0, 49.0 Mg ha?1, respectively. Soil organic C (SOC) on the top 20 cm of sediments increased by 0.3, 6.8, 27.4, and 35.0 Mg ha?1after 4, 5, 8, and 10 years of reforestation, respectively. The average annual rate of total carbon storage (TCS) accumulation at 4, 5, 8, and 10-year S. apetala plantation was 5.0, 7.9, 8.7, and 8.4 Mg ha?1 yr?1, respectively. The TCS values in this study were underestimated because we only estimated SOC storage on the top 20-cm sediments in these plantations. This study suggests these young S. apetala plantations have the characteristics of fast growth, high biomass accumulation, and high C storage capacity, especially in sediments. They sequestrated C at a high but varying rate over time. The large-scale reforestation of S. apetala plantations in the open coastal mudflats in southern China has great potential to sequestrate more C as well as restore the degraded coastal land. The potential ecological issues associated with the increasing monoculture plantations were discussed. More long-term monitoring and research are needed to further evaluate biomass and C accumulation of S. apetala plantations over time as well as how the increasing distribution of this monoculture plantation will influence the few native mangrove remnants.  相似文献   

4.
Thousands of kilometers of shelterbelt plantations of Casuarina equisetifolia have been planted to protect the southeast coastline of China. These plantations also play an important role in the regional carbon (C) cycling. In this study, we examined plant biomass increment and C accumulation in four different aged C. equisetifolia plantations in sandy beaches in South China. The C accumulated in the C. equisetifolia plant biomass increased markedly with stand age. The annual rate of C accumulation in the C. equisetifolia plant biomass during 0–3, 3–6, 6–13 and 13–18 years stage was 2.9, 8.2, 4.2 and 1.0 Mg C ha−1 yr−1, respectively. Soil organic C (SOC) at the top 1 m soil layer in these plantations was 17.74, 5.14, 6.93, and 11.87 Mg C ha−1, respectively, with SOC density decreasing with increasing soil depth. Total C storage in the plantation ecosystem averaged 26.57, 38.50, 69.78, and 79.79 Mg C ha−1 in the 3, 6, 13 and 18- yrs plantation, with most of the C accumulated in the aboveground biomass rather than in the belowground root biomass and soil organic C. Though our results suggest that C. equisetifolia plantations have the characteristics of fast growth, high biomass accumulation, and the potential of high C sequestration despite planting in poor soil conditions, the interactive effects of soil condition, natural disturbance, and human policies on the ecosystem health of the plantation need to be further studied to fully realize the ecological and social benefits of the C equisetifolia shelterbelt forests in South China.  相似文献   

5.
Cover crop benefits include nitrogen accumulation and retention, weed suppression, organic matter maintenance, and reduced erosion. Organic farmers need region-specific information on winter cover crop performance to effectively integrate cover crops into their crop rotations. Our research objective was to compare cover crop seeding mixtures, planting dates, and termination dates on performance of rye (Secale cereale L.) and hairy vetch (Vicia villosa Roth) monocultures and mixtures in the maritime Pacific Northwest USA. The study included four seed mixtures (100% hairy vetch, 25% rye-75% hairy vetch, 50% rye-50% hairy vetch, and 100% rye by seed weight), two planting dates, and two termination dates, using a split-split plot design with four replications over six years. Measurements included winter ground cover; stand composition; cover crop biomass, N concentration, and N uptake; and June soil NO3 --N. Rye planted in mid-September and terminated in late April averaged 5.1 Mg ha-1 biomass, whereas mixtures averaged 4.1 Mg ha-1 and hairy vetch 2.3 Mg ha-1. Delaying planting by 2.5 weeks reduced average winter ground cover by 65%, biomass by 50%, and cover crop N accumulation by 40%. Similar reductions in biomass and N accumulation occurred for late March termination, compared with late April termination. Mixtures had less annual biomass variability than rye. Mixtures accumulated 103 kg ha-1 N and had mean C:N ratio <17:1 when planted in mid-September and terminated in late April. June soil NO3 --N (0 to 30 cm depth) averaged 62 kg ha-1 for rye, 97 kg ha-1 for the mixtures, and 119 kg ha-1 for hairy vetch. Weeds comprised less of the mixtures biomass (20% weeds by weight at termination) compared with the monocultures (29%). Cover crop mixtures provided a balance between biomass accumulation and N concentration, more consistent biomass over the six-year study, and were more effective at reducing winter weeds compared with monocultures.  相似文献   

6.
Carbon storage and sequestration in tropical mountain forests and their dependence on elevation and temperature are not well understood. In an altitudinal transect study in the South Ecuadorian Andes, we tested the hypotheses that (i) aboveground net primary production (ANPP) decreases continuously with elevation due to decreasing temperatures, whereas (ii) belowground productivity (BNPP) remains constant or even increases with elevation due to a shift from light to nutrient limitation of tree growth. In five tropical mountain forests between 1050 and 3060 m a.s.l., we investigated all major above‐ and belowground biomass and productivity components, and the stocks of soil organic carbon (SOC). Leaf biomass, stemwood mass and total aboveground biomass (AGB) decreased by 50% to 70%, ANPP by about 70% between 1050 and 3060 m, while stem wood production decreased 20‐fold. Coarse and large root biomass increased slightly, fine root biomass fourfold, while fine root production (minirhizotron study) roughly doubled between 1050 and 3060 m. The total tree biomass (above‐ and belowground) decreased from about 320 to 175 Mg dry mass ha?1, total NPP from ca. 13.0 to 8.2 Mg ha?1 yr?1. The belowground/aboveground ratio of biomass and productivity increased with elevation indicating a shift from light to nutrient limitation of tree growth. We propose that, with increasing elevation, an increasing nitrogen limitation combined with decreasing temperatures causes a large reduction in stand leaf area resulting in a substantial reduction of canopy carbon gain toward the alpine tree line. We conclude that the marked decrease in tree height, AGB and ANPP with elevation in these mountain forests is caused by both a belowground shift of C allocation and a reduction in C source strength, while a temperature‐induced reduction in C sink strength (lowered meristematic activity) seems to be of secondary importance.  相似文献   

7.
Approximately half of the tropical biome is in some stage of recovery from past human disturbance, most of which is in secondary forests growing on abandoned agricultural lands and pastures. Reforestation of these abandoned lands, both natural and managed, has been proposed as a means to help offset increasing carbon emissions to the atmosphere. In this paper we discuss the potential of these forests to serve as sinks for atmospheric carbon dioxide in aboveground biomass and soils. A review of literature data shows that aboveground biomass increases at a rate of 6.2 Mg ha? 1 yr? 1 during the first 20 years of succession, and at a rate of 2.9 Mg ha? 1 yr? 1 over the first 80 years of regrowth. During the first 20 years of regrowth, forests in wet life zones have the fastest rate of aboveground carbon accumulation with reforestation, followed by dry and moist forests. Soil carbon accumulated at a rate of 0.41 Mg ha? 1 yr? 1 over a 100‐year period, and at faster rates during the first 20 years (1.30 Mg carbon ha? 1 yr? 1 ). Past land use affects the rate of both above‐ and belowground carbon sequestration. Forests growing on abandoned agricultural land accumulate biomass faster than other past land uses, while soil carbon accumulates faster on sites that were cleared but not developed, and on pasture sites. Our results indicate that tropical reforestation has the potential to serve as a carbon offset mechanism both above‐ and belowground for at least 40 to 80 years, and possibly much longer. More research is needed to determine the potential for longer‐term carbon sequestration for mitigation of atmospheric CO2 emissions.  相似文献   

8.
Shrub willow biomass crops (SWBC) have been developed as a biomass feedstock for bioenergy, biofuels, and bioproducts in the northeastern and midwestern USA as well as in Europe. A previous life cycle analysis in North America showed that the SWBC production system is a low-carbon fuel source. However, this analysis is potentially inaccurate due to the limited belowground biomass data and the lack of aboveground stool biomass data. This study provides new information on the above- and belowground biomass, the carbon–nitrogen (C/N) ratio, and the root/shoot (R/S) ratio of willow biomass crops (Salix × dasyclados [SV1]), which have been in production from 5 to 19 years. The measured amounts of biomass were: 2.6 to 4.1 odt ha?1 for foliage, 4.9 to 10.9 odt ha?1 for aboveground stool (AGS), 2.9 to 5.7 odt ha?1 for coarse roots (CR), 3.1 to 10.2 odt ha?1 for belowground stool (BGS), and 5.6 to 9.9 odt ha?1 for standing fine root (FR). The stem biomass production ranged from 7.0 to 18.0 odt ha?1?year?1 for the 5- and 19-year-old willows, respectively. C/N ratios ranged from 23 for foliage to 209 for belowground stool. An average R/S ratio of 2.0, calculated as total belowground biomass (BGS, CR, and FR) plus AGS divided by annual stem biomass, can be applied to estimate the total belowground biomass production of a mature SWBC. Based on AGS, BGS, and CR and standing FR biomass data, SWBC showed a net GHG potential of ?42.9 Mg CO2 eq?ha?1 at the end of seven 3-year rotations.  相似文献   

9.
Urban areas are expanding, changing the structure and productivity of landscapes. While some urban areas have been shown to hold substantial biomass, the productivity of these systems is largely unknown. We assessed how conversion from forest to urban land uses affected both biomass structure and productivity across eastern Massachusetts. We found that urban land uses held less than half the biomass of adjacent forest expanses with a plot level mean biomass density of 33.5 ± 8.0 Mg C ha-1. As the intensity of urban development increased, the canopy cover, stem density, and biomass decreased. Analysis of Quercus rubra tree cores showed that tree-level basal area increment nearly doubled following development, increasing from 17.1 ± 3.0 to 35.8 ± 4.7 cm2 yr-1. Scaling the observed stem densities and growth rates within developed areas suggests an aboveground biomass growth rate of 1.8 ± 0.4 Mg C ha-1 yr-1, a growth rate comparable to nearby, intact forests. The contrasting high growth rates and lower biomass pools within urban areas suggest a highly dynamic ecosystem with rapid turnover. As global urban extent continues to grow, cities consider climate mitigation options, and as the verification of net greenhouse gas emissions emerges as critical for policy, quantifying the role of urban vegetation in regional-to-global carbon budgets will become ever more important.  相似文献   

10.
Switchgrass (Panicum virgatum L.), a US Department of Energy model species, is widely considered for US biomass energy production. While previous studies have demonstrated the effect of climate and management factors on biomass yield and chemical characteristics of switchgrass monocultures, information is lacking on the yield of switchgrass grown in combination with other species for biomass energy. Therefore, the objective of this quantitative review is to compare the effect of climate and management factors on the yield of switchgrass monocultures, as well as on mixtures of switchgrass, and other species. We examined all peer‐reviewed articles describing productivity of switchgrass and extracted dry matter yields, stand age, nitrogen fertilization (N), temperature (growing degree days), and precipitation/irrigation. Switchgrass yield was greater when grown in monocultures (10.9 t ha?1, n=324) than when grown in mixtures (4.4 t ha?1, n=85); yield in monocultures was also greater than the total yield of all species in the mixtures (6.9 t ha?1, n=90). The presence of legume species in mixtures increased switchgrass yield from 3.1 t ha?1 (n=65) to 8.9 t ha?1 (n=20). Total yield of switchgrass‐dominated mixtures with legumes reached 9.9 t ha?1 (n=25), which was not significantly different from the monoculture yield. The results demonstrated the potential of switchgrass for use as a biomass energy crop in both monocultures and mixtures across a wide geographic range. Monocultures, but not mixtures, showed a significant positive response to N and precipitation. The response to N for monocultures was consistent for newly established (stand age <3 years) and mature stands (stand age ≥3 years) and for lowland and upland ecotypes. In conclusion, these results suggest that fertilization with N will increase yield in monocultures, but not mixtures. For monocultures, N treatment need not be changed based on ecotype and stand age; and for mixtures, legumes should be included as an alternative N source.  相似文献   

11.
Mercado-Blanco  Jesús  Prieto  Pilar 《Plant and Soil》2012,358(1-2):301-322

Aims

This study aimed to measure the effect of plant diversity on N uptake in grasslands and to assess the mechanisms contributing to diversity effects.

Methods

Annual N uptake into above- and belowground organs and soil nitrate pools were measured in the Jena experiment on a floodplain soil with mixtures of 2–16 species and 1–4 functional groups, and monocultures. In mixtures, the deviation of measured data from data expected from monoculture performance was calculated to assess the contribution of complementarity/facilitation and selection.

Results

N uptake varied from <1 to 45 g?N m?2 yr?1, and was higher in grasslands with than without legumes. On average, N uptake was higher in mixtures (21?±?1 g?N m?2 yr?1) than monocultures (13?±?1 g?N m?2 yr?1), and increased with species richness in mixtures. However, compared to N uptake expected from biomass proportions of species in mixtures, N uptake of mixtures was only slightly higher and a significant surplus N uptake was confined to mixtures containing legumes and non-legumes.

Conclusions

In our study, high N uptake of species rich mixtures was mainly due to dominance of productive species and facilitation by legumes whereas complementarity among non-legumes was of minor relevance.  相似文献   

12.
Elgersma  Anjo  Hassink  Jan 《Plant and Soil》1997,197(2):177-186
To increase our insight into the above- and belowground N flows in grass and grass-clover swards relations between crop and soil parameters were studied in a cutting trial with perennial ryegrass (Lolium perenne) monocultures and ryegrass–white clover (Trifolium repens) mixtures. The effects of clover cultivar on herbage yield, the amount of clover-derived nitrogen, apparent N transfer to companion grass, dynamics of N and organic matter in the soil were estimated.The grass monocultures had very low DM yields (<2.1 t ha-1) and a low N concentration in the harvested herbage. During 1992–1995 the annual herbage DM yield in the mixtures ranged from 7.0 to 14.3 t ha-1, the white clover DM yield from 2.4 to 11.2 t ha-1 and the mean annual clover content in the herbage DM harvested from 34 to 78%. Mixtures with the large-leaved clover cv. Alice yielded significantly more herbage and clover DM and had a higher clover content than mixtures with small/medium-leaved cvs. Gwenda and Retor. Grass cultivar did not consistently affect yield, botanical composition or soil characteristics.The apparent N2 fixation was very high, ranging from 150 to 545 kg N ha-1 in the different mixtures. For each tonne of clover DM in the harvested herbage 49 to 63 kg N was harvested, while the apparent N transfer from clover to grass varied between 55 and 113 kg N ha-1 year-1.The net N mineralization rate was lower under monocultures than under mixtures. The C mineralization and the amounts of C and N in active soil organic matter fractions were similar for monocultures and mixtures, but the C:N ratio of the active soil organic matter fractions were higher under grass than under mixtures. This explains the lower N mineralization under grass.  相似文献   

13.
Tropical forests are carbon-dense and highly productive ecosystems. Consequently, they play an important role in the global carbon cycle. In the present study we used an individual-based forest model (FORMIND) to analyze the carbon balances of a tropical forest. The main processes of this model are tree growth, mortality, regeneration, and competition. Model parameters were calibrated using forest inventory data from a tropical forest at Mt. Kilimanjaro. The simulation results showed that the model successfully reproduces important characteristics of tropical forests (aboveground biomass, stem size distribution and leaf area index). The estimated aboveground biomass (385 t/ha) is comparable to biomass values in the Amazon and other tropical forests in Africa. The simulated forest reveals a gross primary production of 24 tcha-1yr-1. Modeling above- and belowground carbon stocks, we analyzed the carbon balance of the investigated tropical forest. The simulated carbon balance of this old-growth forest is zero on average. This study provides an example of how forest models can be used in combination with forest inventory data to investigate forest structure and local carbon balances.  相似文献   

14.
Previous greenhouse gas (GHG) assessments for the shrub willow biomass crops (SWBC) production system lacked quantitative data on the soil CO2 efflux (Fc). This study quantifies the mean annual cumulative Fc, the C sequestration in the above- and belowground biomass, and the carbon balance of the production system. We utilized four SWBC fields, which have been in production for 5, 12, 14, and 19 years. Two treatments were applied: continuous production (CP)—shrub willows were harvested, and stools were allowed to regrow, and tear-out (TO) (crop removal)—shrub willows were harvested, and stools were sprayed with herbicide following spring, crushed, and mixed into the soil. Mean annual cumulative Fc were measured using dynamic closed chambers (LI-8100A and LI-8150). Across different age classes, the mean cumulative Fc ranged from 27.2 to 35.5 Mg CO2 ha?1 year?1 for CP and 26.5 to 29.3 Mg CO2 ha?1 year?1 for TO. The combined carbon (C) sequestration of the standing above- and belowground biomass, excluding stems, ranged from 50.6 to 94.8 Mg CO2 eqv. ha?1. In the CP treatment, the annual C sequestration in the fine roots and foliage offsets the annual cumulative Fc. Across different age classes, C balances ranged from ?21.5 to ?59.3 Mg CO2 ha?1 for CP and 26.5 to 29.3 Mg CO2 ha?1 for TO. The GHG potential of SWBC is about ?36.3 Mg CO2 eqv. ha?1 at the end of 19 years, suggesting that the SWBC system sequesters C until termination of the crop.  相似文献   

15.
The importance of the spatial organisation of individuals in explaining species coexistence within a community is widely recognised. However, few analyses of spatial structure have been performed on tropical agroforests.The main objective of this study was to highlight the links between spatial organisation of shade trees on the one hand, and shade tree species richness and cacao yield on the other, using data from 29 cacao agroforests in Costa Rica.A method of spatial statistics, Ripley's K-function, was used to analyse the spatial organisation of shade and cacao trees in the study plots. For each stand, the X and Y coordinates of ≥2.5-m-tall trees were recorded. In each plot we also assessed shade tree species richness and cacao yield (with total number of pods = number of pods damaged by frosty pod rot + number of healthy pods).Three types of stands were identified: the first was characterised by significant clustering of shade trees, the highest shade tree species richness (S = 6), and the highest number of damaged pods (139 pods ha?1 year?1). The second type was characterised by random spatial organisation of shade trees. The third type showed a trend towards regular organisation. Species richness of shade trees did not differ significantly between the last two types (S = 4 for both), nor did the number of damaged pods (56 pods ha?1 year?1 and 67 pods ha?1 year?1 respectively).Although the trends were not statistically significant for all the variables in our data set, the clustered spatial structure appears to favour a synergy between environmental (tree species richness), and provisioning (cacao production) services.  相似文献   

16.
No‐tillage cropping systems with direct seeding into a mulch of plant residues from cover crops – the so‐called direct seeding mulch‐based cropping (DMC) systems – have been adopted widely over the last 10–15 years in the Cerrado region of Brazil. They are replacing the traditional soybean monoculture with bare fallow using conventional tillage (CT) practices. The objective of this study was to examine how DMC practices affect soil organic carbon (SOC) dynamics and to assess their potential for enhanced soil carbon (C) storage. The approach was to determine soil C stocks along a chronosequence of fields under DMC, and then to apply the generic decomposition and yield (G'DAY) plant–soil model to analyse the soil C storage potential for a number of cropping systems. Forty‐five fields were selected on a plateau of Ferralsols in the central Cerrado region to represent a chronosequence of 0–12 years under continuous DMC. Before DMC the fields had been under CT soybean monoculture following the clearing of the native savannah. An average increase in SOC stocks of 0.83 Mg C ha?1 yr?1 in the 0–20 cm topsoil was measured. The corresponding increase in total soil nitrogen was 79 kg N ha?1 yr?1. The G'DAY model predicted a net accumulation of 0.70–1.15 Mg C ha?1 yr?1 in the 0–40 cm topsoil for the first 12 years, depending on the type of soil and DMC system. Model predictions showed that less soil C was accumulated under DMC systems that commenced immediately after clearing the native savannah. Gains in soil C under DMC were primarily due to the introduction of a second crop that caused higher net primary productivity, leading to higher plant C inputs to soil. A rough estimation shows that the conversion of 6 million ha of CT soybean monoculture to DMC in the Cerrados would enhance soil C storage by 4.9 Tg C yr?1 during at least the first 12 years following the conversion to DMC.  相似文献   

17.
Keith  H.  Raison  R.J.  Jacobsen  K.L. 《Plant and Soil》1997,196(1):81-99
Pools and annual fluxes of carbon (C) were estimated for a mature Eucalyptus pauciflora (snowgum) forest with and without phosphorus (P) fertilizer addition to determine the effect of soil P availability on allocation of C in the stand. Aboveground biomass was estimated from allometric equations relating stem and branch diameters of individual trees to their biomass. Biomass production was calculated from annual increments in tree diameters and measurements of litterfall. Maintenance and construction respiration were calculated for each component using equations given by Ryan (1991a). Total belowground C flux was estimated from measurements of annual soil CO2 efflux less the C content of annual litterfall (assuming forest floor and soil C were at approximate steady state for the year that soil CO2 efflux was measured). The total C content of the standing biomass of the unfertilized stand was 138 t ha-1, with approximately 80% aboveground and 20% belowground. Forest floor C was 8.5 t ha-1. Soil C content (0–1 m) was 369 t ha-1 representing 70% of the total C pool in the ecosystem. Total gross annual C flux aboveground (biomass increment plus litterfall plus respiration) was 11.9 t ha-1 and gross flux belowground (coarse root increment plus fine root production plus root respiration) was 5.1 t ha-1. Total annual soil efflux was 7.1 t ha-1, of which 2.5 t ha-1 (35%) was contributed by litter decomposition.The short-term effect of changing the availability of P compared with C on allocation to aboveground versus belowground processes was estimated by comparing fertilized and unfertilized stands during the year after treatment. In the P-fertilized stand annual wood biomass increment increased by 30%, there was no evidence of change in canopy biomass, and belowground C allocation decreased by 19% relative to the unfertilized stand. Total annual C flux was 16.97 and 16.75 t ha-1 yr-1 and the ratio of below- to aboveground C allocation was 0.43 and 0.35 in the unfertilized and P-fertilized stands, respectively. Therefore, the major response of the forest stand to increased soil P availability appeared to be a shift in C allocation; with little change in total productivity. These results emphasise that both growth rate and allocation need to be estimated to predict changes in fluxes and storage of C in forests that may occur in response to disturbance or climate change.  相似文献   

18.
Abstract. Ten years (1979-1989) of growth and mortality were determined in a 130-yr old stand on the Oregon coast based on periodic remeasurements in 441000 m2 plots. Western hemlock (Tsuga heterophylla) constituted 90 % of the individuals and 57 % of the biomass. Wind is a major form of disturbance in this area, creating both small discrete and large diffuse disturbance patches; wind therefore has a direct effect on the location and extent of regeneration. Rates of tree mortality were high for this coastal stand (2.8 %/yr), especially compared to similar-aged stands in the western and eastern Cascade Ranges. Though low in absolute density, Sitka spruce (Picea sitchensis) persisted in competition with the more tolerant western hemlock. Net production of bole biomass (4.9 Mg ha-1 yr-1) did not equal mortality (8.7 Mg ha-1 yr-1), and total biomass declined over the 10-yr measurement period from 499 to 460 Mg/ha; this trend may have begun as early as the mid-1950's at a peak biomass of about 600 Mg/ha. The decline may have been due to a positive feedback in which new gaps and enlarging gap perimeters exposed more and more trees to potential wind damage.  相似文献   

19.
E. Bornemisza 《Plant and Soil》1982,67(1-3):241-246
Nitrogen inputs to the coffee ecosystem are dominated by additions of fertilizer-N (100–300 kg N ha?1 yr?1). Small nitrogen inputs from rains and variable from inputs fixation by the leguminous shade trees can amount to 1–40 kg N ha?1 yr?1. Organic matter mineralization can be an important nitrogen source also. Nitrogen losses from the system include removal of N in the harvest (15–90 kg N ha?1 yr?1), the removal of coffee and shade tree prunings for firewood, losses from erosion, leaching losses and gaseous losses. Unfortunately, very little information exists for leaching and gaseous losses and for the factors that regulate these processes. The overall nitrogen cycle in shaded coffee plantings includes three interrelated subsystems. These are the coffee, shade and weeds subcycles.  相似文献   

20.
We studied the tree communities in primary forest and three different land use systems (forest gardens, ca. 5-year-old secondary forests, cacao plantations) at 900–1200 m elevation in the environs of Lore Lindu National Park, Central Sulawesi. The primary forests had ca. 150 tree species 10 cm diameter at breast height (dbh) per hectare, which is unusually high for forests at this elevation in southeast Asia. Basal area in the primary forest was 140 m2 ha–1, one of the highest values ever recorded in tropical forests worldwide. Tree species richness declined gradually from primary forest to forest gardens, secondary forests, and cacao plantations. This decline was paralleled by shifts in tree family composition, with Lauraceae, Meliaceae, and Euphorbiaceae being predominant in primary forests, Euphorbiaceae, Rubiaceae and Myristicaeae dominating in the forest gardens and Euphorbiaceae, Urticaceae, and Ulmaceae in the secondary forests. Cacao plantations were composed almost exclusively of cacao trees and two species of legume shade trees. Forest gardens further differed from primary forests by a much lower density of understorey trees, while secondary forests had fewer species of commercial interest. Comparative studies of birds and butterflies demonstrated parallel declines of species richness, showing the importance of trees in structuring tropical forest habitats and in providing resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号