首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Bangladesh Sundarbans is the largest continuous mangrove in the world that providing crucial environmental services, particularly related to coastal protection and livelihoods of millions of people. However, anthropogenic disturbances, diseases infestation and environmental changes including sea level rise (SLR) and fresh-water flux into the delta are threatening the Sundarbans and other mangrove ecosystems worldwide. Protection of mangrove ecosystems requires knowledge on factors that mainly drive growth and vitality of tree species to evaluate which consequences can be expected from, mainly hydrology-related, environmental changes. In this study, we assessed the nature and periodicity of tree rings in Excoecaria agallocha, a wide spread mangrove species in the Bangladesh Sundarbans. We also analysed the influence of climatic factors, such as precipitation, temperature and vapor pressure deficit (VPD), and river discharge, as a proxy of salinity on ring width (RW) and vessel features, such as mean vessel area (MVA) and mean vessel density (MVD). E. agallocha forms distinct tree-ring boundary that characterized by a narrow (2–4 cells wide) band of radially flattened fibres. The RW as well as the MVA and MVD are crossdatable. The RW is mainly driven by salinity which is influenced by freshwater inputs through precipitation during monsoon along with river discharge January to April. The MVA and MVD responded to similar seasons and months as RW, but mostly with opposite signs in MVD. The results suggest that fresh water inputs through precipitation and river discharge positively influence the radial growth of E. agallocha in the Sundarbans. The RW and vessel features can be used as proxies to explore the growth dynamics of this species, especially in relation to global environmental changes.  相似文献   

2.
根据黄土高原南北样带尺度的人工刺槐林(Robinia pseudoacacia)的年轮宽度资料,分析了该地区刺槐树木生长趋势,以及刺槐年表对气候响应随降雨梯度变化规律。研究结果表明延安以北的刺槐样点(绥德、神木)年轮指数近期趋于下降,树木有生长衰退现象;而延安以南刺槐样点(延安、富县、宜君、永寿)年轮指数近期趋于上升,树木无生长衰退现象。气候响应结果表明,刺槐年表对气候响应均以延安样点最为敏感,表现年表与温度的负相关关系,以及年表与降雨和干旱指数的正相关关系,而延安以北和以南刺槐样点对气候响应敏感性均较低。黄土高原中部延安地区地处森林草原过渡带,刺槐生长对外界环境变化最为敏感,年表中气候信号也较强;延安以南地区地处森林植被带,气候条件较为适宜刺槐林生长,因而年表中气候信号较弱;延安以北地区地处草原植被带,气候条件比较恶劣,刺槐生长对干旱气候已有一定适应性特征,因而年表中气候信号也较弱。  相似文献   

3.
Mangroves throughout the world are threatened by environmental changes apart from anthropogenic disturbances. Many of these changes may inhibit the growth and survival of mangrove species. To understand and predict the effects of global change on mangrove forests, it is necessary to obtain insights on the growth dynamics of mangroves in relation to environmental factors. This study was conducted on Sonneratia apetala, a mangrove species which grows under a range of salinity conditions across the Sundarbans in Bangladesh. We studied trees growing under respectively high, medium, and low salinity conditions based on the influence of freshwater discharge. First, the periodicity of radial growth across the year was detected by applying cambial analyses. Based on tree-ring analyses, we calculated the growth response of S. apetala to monthly variation in precipitation and temperature as well as river discharge, as a proxy for salinity. We found the cambium of S. apetala being active during the monsoon and post-monsoon period whereas it was dormant in the pre-monsoon. This periodicity in radial growth leads to the formation of distinct annual rings with ring boundaries being marked by radially flattened fibres. S. apetala trees growing under low salinity conditions generally show higher growth rates indicating the positive impact of river discharge, i.e. freshwater input on mangrove growth. Wet and warm conditions during the monsoon period positively affected S. apetala growth, especially in the low salinity zone. Our results show that salinity is the primary driver of growth dynamics of S. apetala in the Sundarbans. A gradual or seasonal increase in salinity, e.g. as a consequence of sea-level rise may therefore importantly alter the growth of this species, possibly leading to changes in mangrove forest dynamics and zonation.  相似文献   

4.
Xerophytic thickets occur along the southwestern part of Madagascar. Although providing a wide variety of resources and services to the local population, this particular vegetation is subjected to deforestation. This study focuses on linking dendroclimatology and dendroecology by examining the spatial and temporal variability of the ecological growth conditions. Information from tree rings was retrieved, on one hand, to identify the problem of the limiting effects of past climate on growth and, on the other hand, to show how local environment takes part in the growth pattern of South Soalara species, in the southwestern part of Madagascar. Methods and principles of dendrochronology were applied on nine species belonging to seven botanical families. A total of 42 stem discs from 3 to 5 trees per species were collected at 30 cm height. All discs exhibited visible tree rings, but anatomical distinctness varied between species. This study highlighted the annual formation of tree rings through successful crossdating techniques. Then, from the nine constructed chronologies, species were grouped into three clusters. Analysis between precipitation and radial growth showed that the response to climate occurred mainly in rainy season. Large-scale climatic drivers such as sea surface temperature (SST1) of ENSO2 regions revealed a teleconnection with tree growth in cluster 1. Mean radial increments were computed from the measured tree ring width and varied from 0.66 to 1.98 mm year−1, showing that those species are slow-growing. All species were recorded as having a certain dendrochronological potential, which was ranked as useful for Rhizogum madagascariense and Terminalia gracilipes, poor for Gyrocarpus americanus and problematic for the other species. It is recommended to increase the number of wood samples and to provide more knowledge on the characteristics of the species in order to improve the quality of the chronology and the climatic signal on tree rings.  相似文献   

5.

Key message

Cambial marking experiment and cambial activity analysis offer strong evidence on existence of annual growth rings in Heritiera fomes and revealing the potential of dendrochronological applications in Bangladesh mangroves.

Abstract

Despite enormous significance in coastal protection, biodiversity conservation and livelihood support to the local communities, mangrove ecosystems have been continuously degrading mainly due to anthropogenic disturbances and climate change. Time series based on dated tree ring is an option to identify the causes of forest dilapidation. In this study, we investigated the structure and periodicity of the growth ring in Heritiera fomes, the flagship tree species of the Bangladesh Sundarbans, combining cambial marking experiment and cambial activity analysis. Distinct growth rings were found which are delineated by a band of marginal parenchyma, predominantly one cell wide but up to three and occasionally interrupted with fiber. Of the 13 trees with cambium marking experiment, one growth ring was found in each tree during a year. The dormant cambium was characterized by the abrupt boundary between xylem and cambial zone, absence of enlarging or differentiating cambial derivatives, lower number of cambial cells and thicker radial walls in cambial cells. Growth ring anomalies, i.e., wedging and partially missing rings were also found. In most of the cases, the lower part of the eccentric discs had low radial increment (<0.75 mm) and therefore the growth ring in that area merged with previous one and produced wedging or partially missing ring. However, the existence of annual rings suggests its great potential for future dendrochronological applications to reveal the dynamics of vegetation and climate in Sundarbans.
  相似文献   

6.
We compared three approaches to study climatic signals of Pinus sylvestris and Larix sibirica treering width chronologies from the forest-steppe zone of South Siberia, where both temperature and precipitation limit the conifer tree growth: 1—paired correlation of chronologies with monthly climatic variables; 2— paired and partial correlations with monthly and seasonal series of primary and secondary climatic factors, calculated in the Seascorr program; 3—paired correlation with a 15-day moving average series of climatic variables. The comparison showed that simple paired correlation with monthly series as the simplest approach could be used for a wide range of dendroclimatic studies, both as a main procedure and for preliminary analysis. The Seascorr analysis is the most suitable for assessing climate-growth relationship in extreme growth conditions and for reconstructions of extremes, e.g. droughts, and of their impact periods. The application of the 15-day moving average series is limited by availability of daily climatic data, but it describes the seasonal window of climatic response with high precision. Altogether, the combination of three approaches allowed to explore the spatial-temporal pattern of the conifers radial growth climatic response in South Siberia.  相似文献   

7.
While the forest-tundra zone in Siberia, Russia has been dendroclimatologically well-studied in recent decades, much less emphasis has been given to a wide belt of northern taiga larch forests located to the south. In this study, climate and local site conditions are explored to trace their influence on radial growth of Gmelin larch (Larix gmelinii (Rupr.) Rupr.) trees developed on permafrost soils in the northern taiga. Three dendrochronological sites characterized by great differences in thermo-hydrological regime of soils were established along a short (ca. 100 m long) transect: on a river bank (RB), at riparian zone of a stream (RZ) and on a terrace (TER). Comparative analysis of the rate and year-to-year dynamics of tree radial growth among sites revealed considerable difference in both raw and standardized tree-ring width (TRW) chronologies obtained for the RZ site, characterized by shallow soil active layer depth and saturated soils. Results of dendroclimatic analysis indicated that tree-ring growth at all the sites is mostly defined by climatic conditions of a previous year and precipitation has stronger effect on TRW chronologies in comparison to the air temperatures. Remarkably, a great difference in the climatic response of TRW chronologies has been obtained for trees growing within a very short distance from each other. The positive relation of tree-ring growth with precipitation, and negative to temperature was observed in the dry site RB. In contrary, precipitation negatively and temperature positively influenced tree radial growth of larch at the water saturated RZ. Thus, a complicate response of northern Siberian larch forest productivity to the possible climate changes is expected due to great mosaic of site conditions and variability of environmental factors controlling tree-ring growth at different sites. Our study demonstrates the new possibilities for the future dendroclimatic research in the region, as various climatic parameters can be reconstructed from tree-ring chronologies obtained for different sites.  相似文献   

8.
利用青海不同生境祁连圆柏树木年轮样本,采用3种不同去趋势方法建立树轮年表,结合青海30个气象站的气象资料,分析不同生境和去趋势方法下祁连圆柏径向生长对气候的响应差异。结果表明,祁连山区,生长季前期的平均气温是祁连圆柏树木径向生长的主要限制性因子,NEP树轮标准化宽度年表与生长季前期冬季平均气温相关最好;在柴达木盆地,生长季降水量是该地区树木径向生长的限制性因子,SPL树轮年表对生长季降水量相关较好;在青南高原,祁连圆柏径向生长对春季温度响应最为敏感,而SPL年表与春季温度呈现明显的负相关关系,相关系数达-0.606;而在青海东部地区,祁连圆柏树木径向生长对气候的响应总体不显著。位于青海西部和北部的柴达木盆地和祁连山区祁连圆柏径向生长受西风气候的影响显著,尤其是柴达木盆地,其气候受西风主导;而青南高原受西南季风影响更为显著,该地区祁连圆柏径向生长同时受西南季风气候和海拔高度两方面影响;在青海东部,祁连圆柏径向生长受东亚季风影响更为显著。  相似文献   

9.
Understanding the effects of climate on the growth of trees is important to project the response of forests to climate change. Dendrochronological analysis offers a “proxy” source for the effects of climatic variation on tree growth at different spatial and temporal scales. To examine influences of temperature and precipitation on radial growth of Pinus pseudostrobus and Abies religiosa, this study combines measurements of radial growth patterns of forest trees in the Monarch Butterfly Biosphere Reserve (MBBR) in central Mexico with temperature and precipitation variables from instrumental records. Dendrochronological samples were collected as cross sections and increment cores by using a chainsaw and increment borers, respectively. Total ring-width chronologies were developed for each site. Principal component analyses (PCA) were used to identify common temperature, precipitation and tree growth variation patterns. Correlation and response function analyses between chronologies and records of temperature and precipitation were used to evaluate the relation of climate variables on tree growth. The months during which tree growth was most strongly affected by precipitation were January, February and October from the previous year; only the temperature of September from the previous year affected the tree growth. In some chronologies, May’s average monthly maximum temperature was negatively correlated with tree growth. PCA and a comparison of PCA factor scores of climatic variables and chronologies showed no significant differences between northern, central or southern portions of the MBBR. Apparently, tree growth in the MBBR is reduced in years of low January–May precipitation combined with high summer (September of the previous year) temperatures, a scenario which is likely to occur as a consequence of global climate change.  相似文献   

10.
Numerous ring-width chronologies from different species have recently been developed in diverse tropical forests across South America. However, the temporal and spatial climate signals in these tropical chronologies is less well known. In this work, annual growth rings of Amburana cearensis, a widely distributed tropical tree species, were employed to estimate temporal and spatial patterns of climate variability in the transition from the dry Chiquitano (16–17°S) to the humid Guarayos-southern Amazon (14–15°S) forests. Four well-replicated chronologies (16–21 trees, 22–28 radii) of A. cearensis were compared with temperature and precipitation records available in the region. The interannual variations in all four A. cearensis tree-ring chronologies are positively correlated with precipitation and negatively with temperature during the late dry-early wet season, the classic moisture response seen widely in trees from dry tropical and temperate forests worldwide. However, the chronologies from the dry Chiquitano forests of southern Bolivia reflect the regional reduction in precipitation during recent decades, while the chronologies from the tropical lowland moist forests in the north capture the recent increase in precipitation in the southern Amazon basin. These results indicate that A. cearensis tree growth is not only sensitive to the moisture balance of the growing season, it can also record subtle differences in regional precipitation trends across the dry to humid forest transition. Comparisons with previously developed Centrolobium microchaete chronologies in the region reveal a substantial common signal between chronologies in similar environments, suggesting that regional differences in climate are a major drivers of tree growth along the precipitation gradient. The difficulty of finding A. cearensis trees over 150-years old is the main limitation involved in the paleoclimate application of this species. The expansion of monocultures and intensive cattle ranching in the South American tropics are contributing to the loss of these old growth A. cearensis trees and the valuable records of climate variability and climate change that they contain.  相似文献   

11.
Given the scarcity of instrumental climatic data in the South American tropics, it is valuable to explore the dendrochronological potential of the numerous tree species growing in the region. In this paper, we assessed for the first time the dendrochronological characteristics of Schinopsis brasiliensis, an arboreal species from the dry-tropical Cerrado and Chaco forests in Bolivia and adjacent countries. Similar to most woody species in the Cerrado and Chaco regions, growth rings of S. brasiliensis are delimited by the presence of thin but continuous lines of marginal parenchyma. Based on 22 samples from 15 trees, we present the first ring-width chronology for this species covering the period 1812–2011 (200 years). Additionally, a 106-year floating chronology from S. brasiliensis was developed using cores from four columns from the church of San Miguel, Santa Cruz, built in the period 1720–1740. Standard dendrochronological statistics indicate an important common signal in the radial growth of S. brasiliensis. The comparison of variations in regional climate and ring widths shows that tree growth is directly related to spring-summer rainfall and inversely related to temperature. Following the winter dry season, rainfall in late spring and early summer increases soil water supply, which activates tree growth. In contrast, above-average temperatures during the same period increase evapotranspiration, intensify the water deficit and reduce radial growth. The dependence of S. brasiliensis growth on water supply is evidence of its dendrochronological potential for reconstructing past precipitation variations in the extensive tropical Cerrado and Chaco forest formations in South America. Using wood from historical buildings opens the possibility of extending the chronologies of S. brasiliensis over the past 400–500 years.  相似文献   

12.
In the context of global warming, it is of high importance to assess the influence of climatic change and geographic factors on the radial growth of high-elevation trees. Using tree-ring data collected from four stands of Qilian juniper (Juniperus przewalskii Kom.) across an altitudinal gradient in the central Qilian Mountains, northwest China, we compared the radial growth characteristics and climate–growth relationships at different elevations. Results indicated that there was little difference in the tree-ring parameters of the four chronologies. Correlation analyses both for unfiltered and 10-year high-passed data of monthly climatic variables and chronologies were presented to investigate the climatic forcing on tree growth, and results revealed that the correlation patterns were consistent among the four sites, especially for high-passed data. We employed the principal components analysis method to obtain the first principal component (PC1) of the four chronologies and computed the correlations between PC1 and climate factors. The PC1 correlated significantly with winter (November–January) temperature, prior August and current May temperature, and precipitation in the previous September and current January and April, indicating that tree growth in this region was mainly limited by cold winter temperature and drought in early growing season and prior growing season (prior August and September). However, the climate–growth relationships were unstable; with an increase in temperature, the sensitivity of tree growth to temperature had decreased over the past few decades. Considering the instability of the climate–growth relationships, climate reconstructions based on tree rings in the study area should be approached with more caution.  相似文献   

13.
We examine the climate significance in tree-ring chronologies retrieved from Sabina tibetica Kom. (Tibetan juniper) at two sites ranging in elevation from 4124 to 4693 m above sea level (a.s.l.) in the Namling region, south Tibet. The study region is under the control of semi-arid plateau temperate climate. The samples were grouped into high- and low-elevation classes and standard ring-width chronologies for both classes were developed. Statistical analysis revealed a decreasing growth rate yet increasing chronology reliability with increasing elevation. Overall, correlation analyses showed that radial growth in S. tibetica at the study sites was controlled by similar climatic factors, regardless of elevation; these factors comprised early winter (November) and early summer (May–June) temperatures as well as annual precipitation (July–June). Slight differences in the correlation between tree growth along the elevation gradient and climate variables were examined. The correlations with early winter temperature varied from significantly positive at the low-elevation site to weakly positive at the high-elevation site, whereas the correlations between radial growth and early summer temperature increased from weakly negative at the low-elevation sites to strongly negative at the high-elevation sites. The abundant precipitation through the year may have masked variations in tree growth on different elevation aspects. Our results will aid future dendroclimatological studies of Namling tree rings in south Tibet and demonstrate the potential of S. tibetica Kom. for improving our understanding of environmental impacts on tree growth.  相似文献   

14.
The radial growth of trees In mountainous areas is subject to environmental conditions associated with changes In elevation. To assess the sensitivity of tree-ring growth to climate variation over a wide range of elevations, we compared the chronological characteristics of Sabina przewalskii Kom. and their relationships with climatic variables at the upper and lower treellnes In the Dulan region of the northeastern Qlnghal-Tlbetan Plateau. It was found that the radial growth in this region was controlled primarily by precipitation in late spring and early summer (from May to June). In addition, a higher temperature from April to June could Intensify drought stress and lead to narrow tree rings. The significant similarity In climate-tree growth relationships at both the upper and lower treellnes Indicated that tree rings of S. przewalskU In this region are able to provide common regional climate information. However, the chronologies at the lower forest limits showed a higher standard deviation and more significant correlations with climatic factors, suggesting that the radial growth there was more significantly Influenced by climate variation. The first principal component of the four chronologies showed a common growth response to local climate. The second principal component showed a contrasting growth response between different sampling sites. The third principal component revealed different growth patterns In response to altitudinal variation. Further analysis Indicated that the precipitation In late spring and early summer controlled the growth of S. przewalskii on a regional scale and that other factors, such as mlcroenvlronment at the sampling sites, also affected the strength of the climatic response of tree growth.  相似文献   

15.
Extremely decay-resistant wood and fire-resistant bark allow California’s redwoods to accumulate millennia of annual growth rings that can be useful in biological research. Whereas tree rings of Sequoiadendron giganteum (SEGI) helped formalize the study of dendrochronology and the principle of crossdating, those of Sequoia sempervirens (SESE) have proven much more difficult to decipher, greatly limiting dendroclimatic and other investigations of this species. We overcame these problems by climbing standing trees and coring trunks at multiple heights in 14 old-growth forest locations across California. Overall, we sampled 1,466 series with 483,712 annual rings from 120 trees and were able to crossdate 83% of SESE compared to 99% of SEGI rings. Standard and residual tree-ring chronologies spanning up to 1,685 years for SESE and 1,538 years for SEGI were created for each location to evaluate crossdating and to examine correlations between annual growth and climate. We used monthly values of temperature, precipitation, and drought severity as well as summer cloudiness to quantify potential drivers of inter-annual growth variation over century-long time series at each location. SESE chronologies exhibited a latitudinal gradient of climate sensitivities, contrasting cooler northern rainforests and warmer, drier southern forests. Radial growth increased with decreasing summer cloudiness in northern rainforests and a central SESE location. The strongest dendroclimatic relationship occurred in our southernmost SESE location, where radial growth correlated negatively with dry summer conditions and exhibited responses to historic fires. SEGI chronologies showed negative correlations with June temperature and positive correlations with previous October precipitation. More work is needed to understand quantitative relationships between SEGI radial growth and moisture availability, particularly snowmelt. Tree-ring chronologies developed here for both redwood species have numerous scientific applications, including determination of tree ages, accurate dating of fire-return intervals, archaeology, analyses of stable isotopes, long-term climate reconstructions, and quantifying rates of carbon sequestration.  相似文献   

16.
Climatic harshness is expected to increase at higher elevations; however, elevational trends of tree radial growth response of high-elevation forests to climate change need to be investigated at different locations because of existing local variability in site-specific climatic conditions. We developed tree-ring width chronologies of Yunnan fir (Abies georgei) along elevation gradients at two sites in the central Hengduan Mountains (HM). High-elevation forests of A. georgei showed growth synchronicity and common growth signals along elevation gradients, indicating a common climatic forcing, although tree radial growth rates decreased with increasing elevation. Radial growth of Yunnan fir showed positive correlations with summer temperatures and February precipitation and moisture availability, but were negatively correlated with spring temperatures. The strongest positive relationship indicated summer (July) mean and minimum temperatures are the most important growth determining climatic factors for tree radial growth in the cold environment of HM, and this relationship revealed a clear elevational trend with stronger correlations at higher altitudes. In contrast, tree radial growth was negatively correlated with June precipitation and moisture availability. The whole study period 1954–2015 was split in two sub-periods of equal length. Comparing the early sub-period (1954–1984) to the later sub-period (1985–2015), tree growth response to the summer temperatures strongly increased, while it became weaker to June precipitation and moisture availability. High-elevation Yunnan fir forests in the HM currently benefit from elevated growing season temperatures under humid summer conditions. However, increasing temperatures may induce drought stress on tree radial growth if the observed decreasing trend in humidity and precipitation continues.  相似文献   

17.
Basic knowledge of the relationships between tree growth and environmental variables is crucial for understanding forest dynamics and predicting vegetation responses to climate variations. Trees growing in tropical areas with a clear seasonality in rainfall often form annual growth rings. In the understory, however, tree growth is supposed to be mainly affected by interference for access to light and other resources. In the semi-deciduous Mayombe forest of the Democratic Republic of Congo, the evergreen species Aidia ochroleuca, Corynanthe paniculata and Xylopia wilwerthii dominate the understory. We studied their wood to determine whether they form annual growth rings in response to changing climate conditions. Distinct growth rings were proved to be annual and triggered by a common external factor for the three species. Species-specific site chronologies were thus constructed from the cross-dated individual growth-ring series. Correlation analysis with climatic variables revealed that annual radial stem growth is positively related to precipitation during the rainy season but at different months. The growth was found to associate with precipitation during the early rainy season for Aidia but at the end of the rainy season for Corynanthe and Xylopia. Our results suggest that a dendrochronological approach allows the understanding of climate–growth relationships in tropical forests, not only for canopy trees but also for evergreen understory species and thus arguably for the whole tree community. Global climate change influences climatic seasonality in tropical forest areas, which is likely to result in differential responses across species with a possible effect on forest composition over time.  相似文献   

18.
Multiple sources of evidence suggest an increasing frequency of extreme climatic events during the past century. In Bangladesh, a country strongly influenced by the South Asian monsoon climate, the years 1999 and 2006 were the most severe droughts among the ten drought events identified over the last four decades. We investigated the impact of these two drought events on radial growth and xylem anatomical features of the brevi-deciduous tree species Chukrasia tabularis in a moist tropical forest in Bangladesh. Tree radial growth declined by 54% during the 1999 and 48.7% during the 2006 droughts, respectively. Among the wood anatomical features, the number of vessels (NV) showed the highest sensitivity to drought, with a 45% decrease in the 1999 drought year, followed by total vessel area (TVA) and mean vessel area (MVA). On the other hand, Vessel density (VD) increased by 13% during the 1999 drought but the increase in VD was very low in the drought year 2006. The decreasing vessel area and increasing vessel density indicate xylem hydraulic adaptation of C. tabularis to minimize drought induced cavitation risk and to avoid hydraulic failure. The significant correlations between the Standardized Precipitation Evapotranspiration Index (SPEI) and time series of tree-ring width and vessel variables imply that decline in radial growth and changes in vessel features in C. tabularis are likely to be caused by drought induced water stress. Our analyses suggest that radial growth and wood anatomical features of C. tabularis are highly sensitive to extreme drought events in South Asian moist tropical forests and can be used to reconstruct past droughts and to model tree response to drought stress under future climate conditions.  相似文献   

19.
In spite of enormous diversity in tree species, dendrochronological records in the tropical Andes are very scarce. Therefore, it is necessary to increase the search for new tree species with high dendrochronological characteristics in the tropical Andes, including the humid Puna of Peru. We present the first tree-ring chronology from Polylepis rodolfo-vasquezii, a recently described tree species in the Central Andes of Peru between 4000 and 4400 m elevation. Fifty trees were sampled in the district of Comas, Peru. After establishing the anatomical characteristics that delimit the annual growth rings, we developed a ring-width chronology by applying conventional dendrochronological techniques. The chronology covers the period 1869–2015 (157 years) and is well replicated from 1920 to present (> 20 samples). The statistics used to evaluate the quality of the chronology indicate that the P. rodolfo-vasquezii has similar values of MS, RBAR and EPS to those shown by other Polylepis spp chronologies. To determine the main climatic factors controlling the growth of P. rodolfo-vasquezii, we compared our chronology with local and regional temperature and precipitation records. Growth season temperature (November to May) seems to be the main climatic factor modulating inter-annual variations in the growth of this species. The sensitivity to inter-annual temperature variations highlights the potential of P. rodolfo-vasquezii to provide climatically sensitive dendrochronological records in the Central Andes. To our knowledge, this is the first tree-ring record in South America displaying significant relationships with temperature over the tropical Atlantic Ocean.  相似文献   

20.
Climate transition zone is a sensitive area of climate change and ecological transition where forests are vulnerable to climate extremes. Extreme droughts are increasing in frequency and magnitude under climate change, resulting in structure and function changes of forest ecosystems. Here, to analyze climate-growth relationships and quantify tree resilience to extreme droughts, we developed six tree-ring-width chronologies from P. tabulaeformis and P. massoniana sampling sites in Mt. Jigong region, Central China. The results indicated that all chronologies from the two species had good consistency, precipitation in current April and mean temperature in current August or mean minimum temperature from current August to October were the main limiting factors of the two tree species growth, but the responses of P. massoniana ring-width to climatic factors was more complex than that of P. tabulaeformis. The results also showed that tree growth of 1999–2005 was the lowest growing period during 1979–2018, and P. massoniana grew better than P. tabulaeformis before 2005 and vice versa after 2005. Comparing low growth years of trees, we identified to study tree growth resilience. The calculations from 1988, 1999–2005 and 2011 drought years indicated that P. tabulaeformis had more increased resilience to extreme droughts than that of P. massoniana, and the two species had stronger ecological recovery and resilience under global warming and non-extreme drought conditions in the recent 40 years. These results have implications for predicting tree resilience and identifying tree species in heterogeneous forest landscapes vulnerable to future climate change in climatic transition zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号