首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Animals exhibit an enormous diversity of life cycles and larval morphologies. The developmental basis for this diversity is not well understood. It is clear, however, that mechanisms of pattern formation in early embryos differ significantly among and within groups of animals. These differences show surprisingly little correlation with phylogenetic relationships; instead, many are correlated with ecological factors, such as changes in life histories.  相似文献   

4.
Recent molecular genetic analyses of Drosophila melanogaster and mouse central nervous system (CNS) development revealed strikingly similar genetic patterning mechanisms in the formation of the insect and vertebrate brain. Thus, in both insects and vertebrates, the correct regionalization and neuronal identity of the anterior brain anlage is controlled by the cephalic gap genes otd/Otx and ems/Emx, whereas members of the Hox genes are involved in patterning of the posterior brain. A third intermediate domain on the anteroposterior axis of the vertebrate and insect brain is characterized by the expression of the Pax2/5/8 orthologues, suggesting that the tripartite ground plans of the protostome and deuterostome brains share a common evolutionary origin. Furthermore, cross-phylum rescue experiments demonstrate that insect and mammalian members of the otd/Otx and ems/Emx gene families can functionally replace each other in embryonic brain patterning. Homologous genes involved in dorsoventral regionalization of the CNS in vertebrates and insects show remarkably similar patterning and orientation with respect to the neurogenic region (ventral in insects and dorsal in vertebrates). This supports the notion that a dorsoventral body axis inversion occurred after the separation of protostome and deuterostome lineages in evolution. Taken together, these findings demonstrate conserved genetic patterning mechanisms in insect and vertebrate brain development and suggest a monophyletic origin of the brain in protostome and deuterostome bilaterians.  相似文献   

5.
In vertebrates (deuterostomes), brain patterning depends on signals from adjacent tissues. For example, holoprosencephaly, the most common brain anomaly in humans, results from defects in signaling between the embryonic prechordal plate (consisting of the dorsal foregut endoderm and mesoderm) and the brain. I have examined whether a similar mechanism of brain development occurs in the protostome Drosophila, and find that the foregut and mesoderm act to pattern the fly embryonic brain. When the foregut and mesoderm of Drosophila are ablated, brain patterning is disrupted. The loss of Hedgehog expressed in the foregut appears to mediate this effect, as it does in vertebrates. One mechanism whereby these defects occur is a disruption of normal apoptosis in the brain. These data argue that the last common ancestor of protostomes and deuterostomes had a prototype of the brains present in modern animals, and also suggest that the foregut and mesoderm contributed to the patterning of this 'proto-brain'. They also argue that the foreguts of protostomes and deuterostomes, which have traditionally been assigned to different germ layers, are actually homologous.  相似文献   

6.
In recent years it has become evident that the developmental regulatory genes involved in patterning the embryonic body plan are conserved throughout the animal kingdom. Striking examples are the orthodenticle (otd/Otx) gene family and the Hox gene family, both of which act in the specification of anteroposterior polarity along the embryonic body axis. Studies carried out in Drosophila and mouse now demonstrate that these genes are also involved in the formation of the insect and mammalian brain; the otd/Otx genes are involved in rostral brain development and the Hox genes are involved in caudal brain development. These studies also show that the genes of the otd/Otx family can functionally replace each other in cross-phylum rescue experiments and indicate that the genetic mechanisms underlying pattern formation in insect and mammalian brain development are evolutionarily conserved. BioEssays 21:677–684, 1999. © 1999 John Wiley & Sons, Inc.  相似文献   

7.
8.
Brand A  Shirding N  Shleizer S  Ori N 《Planta》2007,226(4):941-951
Balancing shoot apical meristem (SAM) maintenance and organ formation from its flanks is essential for proper plant growth and development and for the flexibility of organ production in response to internal and external cues. Leaves are formed at the SAM flanks and display a wide variability in size and form. Tomato (Solanum lycopersicum) leaves are compound with lobed margins. We exploited 18 recessive tomato mutants, representing four distinct phenotypic classes and six complementation groups, to track the genetic mechanisms involved in meristem function and compound-leaf patterning in tomato. In goblet (gob) mutants, the SAM terminates following cotyledon production, but occasionally partially recovers and produces simple leaves. expelled shoot (exp) meristems terminate after the production of several leaves, and these leaves show a reduced level of compoundness. short pedicel (spd) mutants are bushy, with impaired meristem structure, compact inflorescences, short pedicels and less compound leaves. In multi drop (mud) mutants, the leaves are more compound and the SAM tends to divide into two active meristems after the production of a few leaves. The range of leaf-compoundness phenotypes observed in these mutants suggests that compound-leaf patterning involves an array of genetic factors, which act successively to elaborate leaf shape. Furthermore, the results indicate that similar mechanisms underlie SAM activity and compound-leaf patterning in tomato.  相似文献   

9.
10.
11.
12.
BMP signaling and early embryonic patterning   总被引:3,自引:0,他引:3  
Bone morphogenetic proteins (BMPs) play pleiotropic roles during embryonic development as well as throughout life. Recent genetic approaches especially using the mouse gene knockout system revealed that BMP signaling is greatly involved in early embryonic patterning, which is a dynamic event to establish three-dimensional polarities. The purpose of this review is to describe the diverse function of BMPs through different receptor signaling systems during embryonic patterning including gastrulation and establishment of the left-right asymmetry.  相似文献   

13.
14.
The body axis of vertebrates is composed of a serial repetition of similar anatomical modules that are called segments or metameres. This particular mode of organization is especially conspicuous at the level of the periodic arrangement of vertebrae in the spine. The segmental pattern is established during embryogenesis when the somites--the embryonic segments of vertebrates--are rhythmically produced from the paraxial mesoderm. This process involves the segmentation clock, which is a travelling oscillator that interacts with a maturation wave called the wavefront to produce the periodic series of somites. Here, we review our current understanding of the segmentation process in vertebrates.  相似文献   

15.
Targeting proteins to specific domains within the cell is central to the generation of polarity, which underlies many processes including cell fate specification and pattern formation during development. The anteroposterior and dorsoventral axes of the Drosophila melanogaster embryo are determined by the activities of localized maternal gene products. At the posterior pole of the oocyte, Oskar directs the assembly of the pole plasm, and is thus responsible for formation of abdomen and germline in the embryo. Tight restriction of oskar activity is achieved by mRNA localization, localization-dependent translation, anchoring of the RNA and protein, and stabilization of Oskar at the posterior pole. Here we report that the type 1 regulatory subunit of cAMP-dependent protein kinase (Pka-R1) is crucial for the restriction of Oskar protein to the oocyte posterior. Mutations in PKA-R1 cause premature and ectopic accumulation of Oskar protein throughout the oocyte. This phenotype is due to misregulation of PKA catalytic subunit activity and is suppressed by reducing catalytic subunit gene dosage. These data demonstrate that PKA mediates the spatial restriction of Oskar for anteroposterior patterning of the Drosophila embryo and that control of PKA activity by PKA-R1 is crucial in this process.  相似文献   

16.
The IpaH family of novel E3 ligase (NEL) enzymes occur in a variety of pathogenic and commensal bacteria that interact with eukaryotic hosts. We demonstrate that the leucine-rich repeat (LRR) substrate recognition domains of different IpaH enzymes autoinhibit the enzymatic activity of the adjacent catalytic novel E3 ligase domain by two distinct but conserved structural mechanisms. Autoinhibition is required for the in vivo biological activity of two IpaH enzymes in a eukaryotic model system. Autoinhibition was retro-engineered into a constitutively active IpaH enzyme from Yersinia pestis by introduction of single site substitutions, thereby demonstrating the conservation of autoregulatory infrastructure across the IpaH enzyme family.  相似文献   

17.
18.
The review considers the advantages of Xenopus embryos as an experimental model to study the molecular-genetic mechanisms of embryo development. The results are described that were obtained with this model in studies on the early brain development within the framework of the Russian program Human Genome.  相似文献   

19.
Gastrula organiser and embryonic patterning in the mouse   总被引:1,自引:0,他引:1  
Embryonic patterning of the mouse during gastrulation and early organogenesis engenders the specification of anterior versus posterior structures and body laterality by the interaction of signalling and modulating activities. A group of cells in the mouse gastrula, characterised by the expression of a repertoire of "organiser" genes, acts as a source and the conduit for allocation of the axial mesoderm, floor plate and definitive endoderm. The organiser and its derivatives provide the antagonistic activity that modulates WNT and TGFbeta signalling. Recent findings show that the organiser activity is augmented by morphogenetic activity of the extraembryonic and embryonic endoderm, suggesting embryonic patterning is not solely the function of the organiser.  相似文献   

20.
In the model plant Arabidopsis thaliana, the establishment of organ polarity leads to the expression of FILAMENTOUS FLOWER (FIL) and YABBY3 (YAB3) on one side of an organ. One important question that has remained unanswered is how does this positional information lead to the correct spatial activation of genes controlling tissue identity? We provide the first functional link between polarity establishment and the regulation of tissue identity by showing that FIL and YAB3 control the non-overlapping expression patterns of FRUITFULL (FUL) and SHATTERPROOF (SHP), genes necessary to form stripes of valve margin tissue that allow the fruit to shatter along two defined borders and disperse the seeds. FIL and YAB3 activate FUL and SHP redundantly with JAGGED (JAG), a gene that also promotes growth in organs, indicating that several pathways converge to regulate these genes. These activities are negatively regulated by REPLUMLESS (RPL), which divides FIL/JAG activity, creating two distinct stripes of valve margin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号