首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrologic and total phosphorus budget data were obtained during a 24 month period for Spruce Knob Lake, Randolph County, West Virginia. Total phophorus retention was approximately 36% of input for both years despite differences in flushing rate. Based on total phosphorus and hydrologic data, Spruce Knob Lake is eutrophic. Predicted spring total phosphorus concentrations from the Dillon-Rigler nutrient budget model were in close agreement with actual observed concentrations. Application of literature models predicting total phosphorus retention based on flushing rate to Spruce Knob Lake data resulted in close agreement with actual retention values. Models based on hydraulic load were inadequate when applied to Spruce Knob Lake. Relative phosphorus residence time values (lake total phosphorus/inflow total phosphorus). for both years indicated that the lake has a low sedimentation rate. Mass balance data confirmed this low rate of sedimentation.  相似文献   

2.
1. We conducted a statistical reassessment of data previously reported in the lake total phosphorus (TP) input/output literature (n = 305) to determine which lake characteristics are most strongly associated with lake phosphorus concentration and retention. We tested five different hypotheses for predicting lake TP concentrations and phosphorus retention. 2. The Vollenweider phosphorus mass loading model can be expressed as: TPout = TPin/(1 + στw), where TPin is the flow‐weighted input TP concentration, τw is the lake hydraulic retention time and σ is a first‐order rate constant for phosphorus loss. 3. The inflow‐weighted TP input concentration is a moderately strong predictor (r2 = 0.71) of lake phosphorus concentrations when using log–log transformed data. Lake TP retention is negatively correlated with lake hydraulic retention time (r2 = 0.35). 4. Of the approaches tested, the best fit to observed data was obtained by estimating σ as an inverse function of the lake's hydraulic retention time. Although this mass balance approach explained 84% of the variability in log–log transformed data, the prediction error for individual lakes was quite high. 5. Estimating σ as the ratio of a putative particle settling velocity to the mean lake depth yielded poorer predictions of lake TP (r2 = 0.77) than the approach described above, and in fact did not improve model performance compared with simply assuming that σ is a constant for all lakes. 6. Our results also demonstrate that changing the flow‐weighted input concentration should always have a directly proportionate impact on lake phosphorus concentrations, provided the type of phosphorus loaded (e.g. dissolved or particulate) does not vary.  相似文献   

3.
This study presents the long‐term evolution of two floodplains lakes (San Juana and Barbacoas) of the Magdalena River in Colombia with varying degree of connectivity to the River and with different responses to climate events (i.e., extreme floods and droughts). Historical limnological changes were identified through a multiproxy‐based reconstruction including diatoms, sedimentation, and sediment geochemistry, while historical climatic changes were derived from the application of the Standardised Precipitation‐Evapotranspiration Index. The main gradients in climatic and limnological change were assessed via multivariate analysis and generalized additive models. The reconstruction of the more isolated San Juana Lake spanned the last c. 500 years. Between c. 1,620 and 1,750 CE, riverine‐flooded conditions prevailed as indicated by high detrital input, reductive conditions, and dominance of planktonic diatoms. Since the early 1800s, the riverine meander became disconnected, conveying into a marsh‐like environment rich in aerophil diatoms and organic matter. The current lake was then formed around the mid‐1960s with a diverse lake diatom flora including benthic and planktonic diatoms, and more oxygenated waters under a gradual increase in sedimentation and nutrients. The reconstruction for Barbacoas Lake, a waterbody directly connected to the Magdalena River, spanned the last 60 years and showed alternating riverine–wetland–lake conditions in response to varying ENSO conditions. Wet periods were dominated by planktonic and benthic diatoms, while aerophil diatom species prevailed during dry periods; during the two intense ENSO periods of 1987 and 1992, the lake almost desiccated and sedimentation rates spiked. A gradual increase in sedimentation rates post‐2000 suggests that other factors rather than climate are also influencing sediment deposition in the lake. We propose that hydrological connectivity to the Magdalena River is a main factor controlling lake long‐term responses to human pressures, where highly connected lakes respond more acutely to ENSO events while isolated lakes are more sensitive to local land‐use changes.  相似文献   

4.
The role of meiobenthos in lake ecosystems   总被引:1,自引:0,他引:1  
It is shown that meiobenthos plays an important role in the secondary production by zoobenthos in lakes, as well as in the degradation of organic matter. In large lakes (Lake Ladoga, Lake Onega, Lake Päijänne, Lake Constance), the ratio of meiobenthic production to the production of macrobenthos is on average 50–61%. In the small Latgalian lakes (Latvia), this proportion is different: in the profundal of these lakes it varies from 92.5% in a naturally clean mesotrophic lake to 0.0004% in the most eutrophic lake, and in the littoral of lakes – from 578–1476% in mesotrophic lakes to 148–306% in eutrophic ones. The level of production of littoral meiobenthos does not depend on the trophic status of the lake, and can be equally high both in undisturbed mesotrophic lakes and in strongly eutrophicated lakes. The intensity of production of the littoral meiobenthos in oligotrophic and mesotrophic lakes, on the one hand, and in eutrophic lakes on the other, are not reliably distinguished. There is a clear tendency for a decrease of the role of profundal meiobenthos with regard to the transformation of energy flows in lake ecosystems, both with an increase in eutrophication and with an increase in the amount of organic matter in the benthal available from phytoplankton.  相似文献   

5.
Energy flux to a large, deep, salt lake from phytoplankton, periphyton and macrophyte primary production as well as fluvial transport and wind-transported terrestrial vegetation and dust were quantified. Average areal phytoplankton net photosynthesis was 511 mg C m−2 d−1. Highest rates were during water-blooms of the bluegreen alga, Nodularia spumigena. Although areal daily net photosynthesis by periphyton in Pyramid Lake was comparable to other salt lakes, annual carbon influx by periphyton was small due to the lake's graben morphology and moderate euphotic depth (mean, 11.9 m). Macrophytes were uncommon and, therefore a minor source of energy. Truckee River is the only major fluvial discharge to Pyramid Lake and dissolved organic carbon was the principal organic carbon fraction in river water. Large upstream water diversions coupled with several drought years resulted in an average fluvial organic carbon load of only 7.3 g Cm−2y−1 or 4% of median phytoplankton net photosynthesis. Tumbleweeds were the most common terrestrial plant material observed in Pyramid Lake comprising a maximum projected importance of 6% of total annual carbon input. Windborne dust represented < .1% of annual carbon input. Phytoplankton primary production is the predominant energy source to Pyramid Lake, accounting for over 80% of annual carbon influx. The relative magnitude of autochthonous and allochthonous vectors to the annual carbon budget of this desert salt lake are comparable to those of the few other large lakes for which detailed energy input budgets have been calculated.  相似文献   

6.
The quantitative aspects of denudation in the drainage areas and sediment accumulation in the corresponding closed or open lakes are approached using two methods: (1) from known mean rates of mechanical and chemical denudation and the ratio of the drainage/lake area, average terrigenous and potential chemical (biogenic and evaporites) sedimentation rates in the lake are determined; or (2) from known sedimentation rates the average denudation rate is found. In closed systems the total mass denuded during a certain unit of time is deposited in the lake as terrigenous, biogenic and evaporitic sediments, whereas open lake systems lose a major part of the dissolved river input derived from chemical denudation. Applying elementary equations describing these relationships and using ratios between mechanical and chemical denudation (weathering ratio) established in other regions, e.g. chemical weathering in the lake drainage can be estimated. Likewise, the knowledge of the ‘bio-index' (ratio of biogenic sediment/total dissolved mass) allows the calculation of the loss of dissolved matter through the outflow from the lake, etc. In a first step, existing data from modern lake systems are evaluated. Later, idealized lake systems in various climatic and morphotectonic zones can be simulated and the results utilized to better understand ancient lake systems. Modern Alpine lakes reflect increased mechanical denudation rates (100 to ≥300 mm/ka) in highly elevated drainage areas of the Central Alps (mainly crystalline rocks) and high chemical denudation (up to ca. 100 mm/ka) in carbonate rocks of the Northern Calcareous Alps. Mechanical denudation is significantly enhanced by glaciation, but transport of the detritus into lakes may be delayed until the time immediately after glacial retreat. Average rates of terrigenous lake sedimentation amount to 5 to ≥15 mm/a (crystalline rocks, high relief), or are ≤5 mm/a (carbonate rocks). Delta outbuilding was a main factor in the filling of many Alpine lakes. Lakes draining low-altitude, semi-arid parts along the eastern margin of the Alps (Lake Balaton in Hungary) have low sedimentation rates and reflect the influence of increased temperature and vegetation. In East Africa, the transition from the Late Pleistocene (arid) to the early Holocene (humid) and again back to somewhat drier conditions caused substantial rises in lake levels and changes from closed to open lake systems. In such cases, the calculation of denudation from accumulation rates is biassed as a result of intermittent sediment storage at the lake margins (low sedimentation rates in the lake centre during lake highstands) or redeposition of sediment during lowstands (lowstand shedding). The modern denudation rates of East African rift lake systems vary by a factor of ≥15 (Lake Tanganyika, crystalline rocks and more dense vegetation cover, total denudation rate ca. 4 mm/ka; Lake Turkana, young volcanic rocks and tephra, sparse vegetation, mechanical denudation rate ca. 60 mm/ka).  相似文献   

7.
Nutrient availability, in particular of phosphorus (P), is a key factor for the structure and functioning of shallow lakes, and not least the sediment plays an important role by acting as both a nutrient source and sink. We used 21 years of monthly mass balance and lake water data from six shallow (mean depth = 1.2–2.7 m) and fast flushed (mean hydraulic retention time = 0.6–2.6 months) eutrophic Danish lakes (mean summer P concentrations ranging from 0.09 to 0.61 mg/l) to investigate long-term trends in yearly and seasonal patterns of P retention. To one of the lakes, the external P input was reduced by 70% in the early 1990s, whereas none of the other lakes have experienced major changes in external P loading for more than 20 years. All lakes showed a distinct seasonal pattern with high P concentrations and typically negative P retention during summer (up to ?300% of the external loading from May to August). During winter, P retention was overall positive (up to 50% of the external loading from December to April). Internal P loading from the sediment delayed lake recovery by approximately 10 years in the lake with the most recently reduced external loading, but in all the lakes net release of P from the sediment occurred during summer. P release in the six lakes has not abated during the past decade, indicating that the sediment of eutrophic and turbid shallow lakes remains a net source of P during summer. The seasonal variations in P retention became more pronounced with increasing P levels, and retention decreased with increasing temperature, but increased if clear water conditions were established.  相似文献   

8.
An oscillating steady state is described of phytoplankton, dominated by Prochlorothrix hollandica and Oscillatoria limnetica, and sestonic detritus in shallow, eutrophic Lake Loosdrecht (The Netherlands). A steady-state model for the coupling of the phytoplankton and detritus is discussed in relation to field and experimental data on phytoplankton growth and decomposition. According to model predictions, the phytoplankton to detritus ratio decreases hyperbolically at increasing phytoplankton growth rate and is independent of a lake's trophic state. The seston in L. Loosdrecht contains more detritus than phytoplankton as will apply to many other lakes. The model provides a basis for estimating the loss rate of the detritus, including decomposition, sedimentation and hydraulic loss. In a shallow lake like L. Loosdrecht detritus will continue to influence the water quality for years.  相似文献   

9.
野外采集和文献记载结果显示纳木错共有水生植物34种(变种),隶属于15科19属。其中,轮藻门植物1科1属1种、单子叶植物7科8属16种、双子叶植物7科10属17种。纳木错区水生植物区系整体上表现出鲜明的北温带性质。种联结分析表明纳木错水生植物种间相关性显著,这些种组构成一个连续体。样地调查显示,纳木错主要水生植物群落有11种,以沉水植物群落类型为主,兼有少量的浮叶植物群落。β-多样性测度表明,样地间种类组成随水环境差异变化明显。    相似文献   

10.
Sediment traps were placed in 29 small lakes in south and central Sweden at 2 m below the surface of the lakes and at 2 m above the lake bottom. Traps were exposed for approximately 120 days during the summer months before collection. Rates of sedimentation in both top and bottom traps were compared to 32 catchment, morphometric and water column parameters in an attempt to identify the processes which influence sediment accumulation. Using only lake water pH, maximum lake depth (Dmax) and lake surface area (Ao), 67% of the variance in the bottom trap sedimentation rates was explained. Only pH and Ao were useful predictors for the top traps. Using the bottom traps as a measure of gross sedimentation and the top traps as a measure of net sedimentation (plus periphyton growth in the traps), resuspension was separated from net sedimentation in the bottom traps. Resuspension calculated from these data is compared with more conventional methods of calculation.  相似文献   

11.
Sedimentary losses of phosphorus in some natural and artificial Iowa lakes   总被引:2,自引:2,他引:0  
Phosphorus sedimentation in four natural and four artificial Iowa lakes was measured by using sediment traps to determine if sedimentary phosphorus losses were greater in artificial lakes than in natural lakes and the limnological factors influencing phosphorus loss rates. Mean phosphorus sedimentation rates ranged from 13.3 to 218 mg · m–2 day–1. Although phosphorus sedimentation rates for the natural lakes as a group did not differ significantly from the rates for artificial lakes, there were significant differences among individual lakes. Phosphorus sedimentation rates also varied significantly during different seasons at different locations within a lake and at different depths within a location. Despite the variance, phosphorus sedimentation rates were strongly correlated with inorganic sediment concentrations and inorganic matter sedimentation rates, thus suggesting that inorganic sediments influence phosphorus sedimentation rates. When Iowa data were combined with data from published studies, mean sedimentation rates were directly correlated with mean chlorophyll a concentrations of the lakes. These data strongly suggest that sedimentation rates as measured by sediment traps are strongly influenced by the trophic status of a lake. Though sedimentation rates were higher in the more productive lakes, it is suggested that these rates represent only gross sedimentation rates rather than net sedimentation rates because of resuspension and resedimentation of bottom sediments.  相似文献   

12.
A large carbon pool and small sink in boreal Holocene lake sediments   总被引:5,自引:0,他引:5  
Model‐based estimates suggest that lake sediments may be a significant, long‐term sink for organic carbon (C) at regional to global scales. These models have used various approaches to predict sediment storage at broad scales from very limited data sets. Here, we report a large‐scale direct assessment of the standing stock and sedimentation rate of C for a representative set of lakes in Finland. The 122 lakes were selected from the statistically selected Nordic Lake Survey database, they cover the entire country and the water quality represents the average lake water quality in Finland. Unlike all prior estimates, these data use sediment cores that comprise the entire sediment record. The data show that within Finland, aquatic ecosystems contain the second largest areal C stocks (19 kg C m?2) after peatlands (72 kg C m?2), and exceed by significant amounts stocks in the forest soil (uppermost 75cm; 7.2 kg C m?2) and woody biomass (3.4 kg C m?2). Kauppi et al. (1997). The Finnish estimate extrapolated over the boreal region gives a total C pool in lakes 19–27 Pg C, significantly lower than the previous model‐based estimates.  相似文献   

13.
Gibbs  M. M.  White  E. 《Hydrobiologia》1994,275(1):467-477
Lake Horowhenua, a small (2.9 km2) shallow (< 2 m deep), coastal dune lake on the west coast of the North Island of New Zealand, receives the runoff from intensive agriculture within its catchment and, until 1987, the treated sewage effluent from the town of Levin. Consequently the lake is highly enriched but with an annual cycle of algal P-limitation in winter and N-limitation in summer. There have been several schemes proposed to accelerate the improvement of the lake's water quality for recreational use. A computer hydraulic and nutrient model of Lake Horowhenua was developed using rainfall, evaporation and nutrient data to describe the nutrient budget. To match the lake nutrient concentrations, terms for in-lake processes of sedimentation, seasonal sediment nutrient release, phytoplankton production, and denitrification were required. The computer model results indicated that denitrification was the major natural restoration process accounting for a net loss of more than 50% of the N from the lake each year. Application of the model also allowed lake managers to evaluate the potential effects of a number of proposed restoration schemes.  相似文献   

14.
Experimental acidification of a softwater lake to below pH 5 fundamentally changed the sulfur cycle and lowered internal alkalinity generation (IAG). Prior to reaching pH 4.5, the balance of sulfur reduction and oxidation reactions within the lake was in favour of reduction, and the lake was a net sink for sulfate. In the four years at pH 4.5 the balance of reduction and oxidation reactions was in favour of oxidation, and there was a net production of sulfate (SO4 2–) within the lake. Evidence indicating a decrease in net SO4 2– reduction at pH 4.5 was also obtained in an anthropogenically acidified lake that had been acidified for many decades. In both lakes, the decrease in net SO4 2– reduction appeared to be linked not to a simple inhibition of SO4 2– reduction but rather to changes in benthic ecosystem structure, especially the development of metaphytic filamentous green algae, which altered the balance between SO4 2– reduction and sulfur oxidation.At pH's above 4.5, net SO4 2– reduction was the major contributor to IAG in the experimental lake, as it is in many previously studied lakes at pH 5 and above. At pH 4.5, the change in net annual SO4 2– reduction (a decrease of 110%) resulted in a 38% decrease in total IAG. Because of the important role of net SO4 2– reduction in acid neutralization in softwater lakes, models for predicting acidification and recovery of lakes may need to be modified for lakes acidified to pH <5.  相似文献   

15.
A model to predict gross sedimentation in small glacial lakes   总被引:2,自引:2,他引:0  
This study is an attempt to quantify and rank variables of significance to predict gross sedimentation (i.e., net sedimentation plus resuspension) in small glacial lakes. Sediment traps were placed in 25 Swedish lakes and exposed for about 110 days during the summer for four years. Average values of rates of gross sedimentation in bottom traps were compared to catchment and morphometric parameters determined from different types of maps. Various hypotheses concerning the factors regulating gross sedimentation in lakes were formulated and tested. Different statistical tests were used to separate random influences from causal influences. The most important 'map parameters' were: the relative depth, linked to resuspension and the form and size of lakes, the forest and open land percent of the so-called near area (= the proximate area of the lake as determined by the drainage area zonation method), the distribution of mires and lakes in the catchment, the relief of the drainage area and the theoretical lake water retention time. Each of these variables only provides a limited degree of (statistical) explanation of the variability in gross sedimentation among the lakes. The predictability of models for gross sedimentation can be markedly improved by accounting for the zonation problem, i.e., the distribution of the characteristics in the drainage area. The stability of the final model, which gives a r 2-value of 0.78, has been tested with positive results. The model allows mean values of gross sedimentation to be estimated from readily available data of geological characteristics of the lake and its drainage area. The variability in gross sedimentation from other factors/variables, such as temperature, precipitation, wind, and load of nutrients, may then be quantitatively differentiated from the impact of these geological factors/constants.  相似文献   

16.
Granberg  K. E. 《Hydrobiologia》1992,(1):395-403
Lake Päijänne, the second largest lake in Finland, has been seriously polluted since the 1960s due to the effluents from pulp and paper mills, notably the Äänekoski sulphate and sulphite pulp mills situated about 50 km north of the lake, and the sulphite pulp mill and paper mills of Jämsänkoski and Kaipola on Central Lake Päijänne.A sulphite lye evaporation and combustion plant installed at the Jämsänkoski sulphite pulp mill in 1969 reduced the organic pollution of Central Päijänne. Lignin concentration decreased and the oxygen balance improved. The sulphite pulp mill was closed in 1981 and replaced by a thermo-mechanical pulp mill. Eutrophication is the main threat to water quality in Central Lake Päijänne at present.A significant improvement in the water quality, especially in oxygen balance, was achieved in the watercourse of Äänekoski and in Northern Päijänne after replacement of the old sulphite and sulphate pulp mills at Äänekoski by a large sulphate pulp mill with a biological purification plant employing the activated sludge method. The BOD7-loading dropped from 46 to 3–4 t d–1, but the nutrient loading has not decreased sufficiently, and the Äänekoski watercourse and Northern Päijänne are still eutrophic.  相似文献   

17.
The mass balance for total nitrogen (N) was studied over a four-year period in 16 shallow mainly eutrophic 1st order Danish lakes. Water was sampled in the main inlet of each lake 18–26 times annually, and from the outlets and the lake 19 times annually. Water was also sampled from minor inlets, although less frequently. N input and output were calculated using daily data on discharge (Q), the latter being obtained either from the Q/H relationship based on automatic recordings of water level (H) for the main in- and outlet, or by means of Q/Q relationships for the minor inlets. Annual mean N retention in the lakes ranged from 47 to 234 mg N m–2 d–1, and was particularly high in lakes with high N loading. Annual percentage retention (N ret y%) ranged from 11 to 72%. Non-linear regression analysis revealed that hydraulic retention time and mean depth accounted for 75% of the variation in annual mean N ret y% and, in combination with inlet N concentration, accounted for 84% of the variation in the in-lake N concentration. N ret % varied according to season, being higher in the second and third quarter than in the first and fourth quarter (median 18–19%). A simple model was developed for predicting monthly nitrogen retention (N ret m) on the basis of external N loading, the lake water pool of nitrogen N pool , hydraulic loading and lake water temperature. Calibration of only two parameters on data from the randomly selected 8 out of 16 lakes rendered the model capable of accurately simulating seasonal dynamics of the in-lake N concentration and N ret m in all 16 lakes. We conclude that with regard to shallow, eutrophic lakes with a relatively low hydraulic retention time, it is now possible to determine not only annual mean nitrogen retention, but also the seasonal variation in N retm . Prediction of seasonal variation in N loading of downstream N-limited coastal areas is thereby rendered much more reliable.  相似文献   

18.
Huttula  T. 《Hydrobiologia》1992,243(1):359-369
Resuspension of bottom sediments is the net result of a wide variety of different fluid mechanical processes with characteristic time and length scales that extend over six orders of magnitude. The sum of these effects is most heavily concentrated in a layer adjacent to the bottom called the benthic boundary layer (BBL). The physics of BBL must be understood before improved solutions to the resuspension problem are possible. Traditionally in lakes, sedimentation and resuspension have been modelled with the aid of equations which ignore the time and space variations of near bottom processes. This can lead to wrong estimates of material transport. With the exception of few recent studies, benthic boundary layer approach has been mainly applied to marine environments. The instrumentation has been a major problem for development of the theory and its applications, but during recent years some new instruments have been giving promising results. This paper discusses the applicability of the theory in Finnish lakes and presents results from Lake Päijänne.  相似文献   

19.
Global nutrient cycles have been altered by the use of fossil fuels and fertilizers resulting in increases in nutrient loads to aquatic systems. In the United States, excess nutrients have been repeatedly reported as the primary cause of lake water quality impairments. Setting nutrient criteria that are protective of a lakes ecological condition is one common solution; however, the data required to do this are not always easily available. A useful solution for this is to combine available field data (i.e., The United States Environmental Protection Agency (USEPA) National Lake Assessment (NLA)) with average annual nutrient load models (i.e., USGS SPARROW model) to estimate summer concentrations across a large number of lakes. In this paper we use this combined approach and compare the observed total nitrogen (TN) and total phosphorus (TN) concentrations in Northeastern lakes from the 2007 National Lake Assessment to those predicted by the Northeast SPARROW model. We successfully adjusted the SPARROW predictions to the NLA observations with the use of Vollenweider equations, simple input-output models that predict nutrient concentrations in lakes based on nutrient loads and hydraulic residence time. This allows us to better predict summer concentrations of TN and TP in Northeastern lakes and ponds. On average we improved our predicted concentrations of TN and TP with Vollenweider models by 18.7% for nitrogen and 19.0% for phosphorus. These improved predictions are being used in other studies to model ecosystem services (e.g., aesthetics) and dis-services (e.g. cyanobacterial blooms) for ~18,000 lakes in the Northeastern United States.  相似文献   

20.
Geothermal heat fluxes into the deepest waters of four caldera lakes were measured. Temperature profiles within the stratification period between July and November 2007 allowed a quantification of the acquired heat. Due to their enormous depth, heat input from the lake bed was locally separated from heat fluxes at the surface. In conclusion, a direct measurement of geothermal heat input could be accomplished. Although enhanced geothermal activity could be suspected in all cases, two lakes showed a geothermal heat flux of 0.29 or 0.27 W/m2 (Lake Shikotsu and Lake Tazawa), as found in other regions not affected by volcanism, while both other lakes (Lake Kuttara and Lake Towada) showed a greatly enhanced heat input of 1 or 18.6 W/m2, respectively. In conclusion, within our investigated set, all lakes acquired more heat from the underground than the continental heat flux average. Hence, the heat flux into the lakes from the ground was not dominated by the temperature gradient implied by the inner heat of the earth. Other effects like the general temperature difference of deep lake water and the groundwater or local sources of heat in the underground deliver more important contributions. Obviously the flow of water in the underground can play a decisive role in the heat transport into the deep waters of lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号