首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an earlier report the ultrastructure and nucleoid organelles of male gamete in Pinus tabulaeformis Carr. have been described. Presently, the ultrastructure of the cytoplasm of the egg cell and pollen tube—immediately before fertilization and during cytoplasmic transmission of male gametophyte—has been described for the same species. The fate of parental plastids and mitochondria in the proembryo has also been followed. The mature egg cell contains a large amount of mitochondria, but seems to lack normal plastids. Most plastids have transformed into large inclusions. Apart from the large inclusions, there are abundant small inclusions and other organelles in the egg cell. During fertilization, pollen tube penetrates into the egg cell at the micropylar end and thereafter the contents are released. Plastid and mitochondrion of male origin are lacking near the fusing sperm-egg nuclei. The second sperm nucleus—not involved in karyogamy—remains at a site near the receptive vacuole. This nucleus is surrounded by large amount of male cytoplasm containing mixed organelles from the sperm cell, tube cell, and egg cell. At the free nuclear proembryo stage, organelles of male and female origin are visible in the perinucleus-cytoplasmic zone. Most of the mitochondria have the same morphological features as those in the egg cell. Some of the mitochondria appear to have originated from the sperm and tube cells. Plastids are most likely of male gametophyte origin because they have similar appearance as those of the sperm and tube cell. Large inclusions in the egg cell become vacuole-like. Paternal plastids have been incorporated into the neocytoplasm of the proembryo. In the cellular proembryo, maternal mitochondria are more abundant. Plastids resembling those of the sperm and tube cell are still present. These cytological results clearly show that in P. tabulaeformis , plastids are inherited paternally and mitochondria bipaternally. The cytological mechanism of plastid and mitochondrion inheritance in gymnosperm is discussed.  相似文献   

2.
Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) ovules were used to study male gamete formation, insemination of the egg, and free nuclear and cellular proembryo development. Two male nuclei form as the pollen tube either reaches the megaspore wall or as it enters the archegonial chamber. No cell wall separates them. They are contained within the body-cell cytoplasm. A narrow extension of the pollen tube separates the neck cells and penetrates the ventral canal cell. The pollen tube then releases its contents into the egg cytoplasm. The two male gametes and a cluster of paternal organelles (plastids and mitochondria) migrate within the remains of the body-cell cytoplasm toward the egg nucleus. Microtubules are associated with this complex. The leading male gamete fuses with the egg nucleus. The zygote nucleus undergoes free nuclear division, but the cluster of paternal organelles remains discrete. Free nuclei, paternal and maternal nucleoplasm, maternal perinuclear cytoplasm, and the cluster of paternal organelles migrate en masse to the chalazal end of the archegonium. There, paternal and maternal organelles intermingle to form the neocytoplasm, the nuclei divide, and a 12-cell proembryo is formed. The importance of male nuclei or cells, the perinuclear zone, and large inclusions in cytoplasmic inheritance are discussed in the Pinaceae and in other conifer families. This completes a two-part study to determine the fate of paternal and maternal plastids and mitochondria during gamete formation, fertilization, and proembryo development in Douglas fir.  相似文献   

3.
Fertilisation and proembryo development are described from transmission electron micrographs emphasising the origin and fate of the maternal and paternal mitochondria and plastids. During central cell and egg development mitochondria migrate toward the nuclei, forming a perinuclear zone consisting predominantly of maternal mitochondria and polysomes. At the same time, maternal plastids transformed and at fertilisation are excluded from the neocytoplasm. The pollen tube releases two sperm nuclei into the egg with cytoplasm from the generative cell and the tube cell. The leading sperm nucleus fuses with the egg nucleus and a small number of paternal mitochondria and plastids are taken into the perinuclear zone. The second sperm nucleus degenerates. As the zygote nucleus undergoes mitosis followed by free nuclear division and nuclear migration to the chalazal end of the archegonium, maternal and paternal organelles intermingle within the neocytoplasm. The result is paternal inheritance of plastids and biparental, but predominantly maternal, inheritance of mitochondria. This pattern is consistent within the Pinaceae but differs from some other conifer families. Received: 9 December 1999 / Revision accepted: 30 April 2000  相似文献   

4.
F. L. Guo  S. Y. Hu 《Protoplasma》1995,186(3-4):201-207
Summary Based on the organelle differences between egg and sperm cells inPelargonium hortorum, the zygote, proembryo, and endosperm were examined under the transmission electron microscope. Plastids and mitochondria in the egg cell are significantly different from those of the sperm cell. Egg plastids are starch-containing and less electron dense. They appear circular, elliptical irregular elongate in sections. Sperm cell plastids are relatively electrondense, mostly cup-shaped or dumbbell and devoid of starch granules. Mitochondria of the egg cell are giant and mostly cup-shaped while sperm mitochondria are smaller and usually circular in section. Double fertilization is completed by 24 h after pollination and the pollen tube can be seen in the degenerated synergid. In the zygote, plastids and mitochondria from male and female gametes can be distinguished by their characteristic differences. Moreover, paternal and maternal organelles appear to be distributed at random in the zygote. Aside from the pollen tube and its released starch granules, there is no enucleated cytoplasmic body in the degenerated synergid. Two days after pollination, the zygote undergoes one transverse division to form a 2-celled proembryo which consists of one larger vacuolated basal cell and one smaller densely cytoplasmic apical cell. Paternal and maternal organelles can be detected in both cells of the proembryo and also in the endosperm at this stage. From these results, it can be concluded that plastids and mitochondria from both male and female gametes have been transmitted into the apical cell of the proembryo and most probably to the following generation.Abbreviations TEM transmission electron microscope - DAPI 4,6-diamidino-2-phenylindole - RFLP restriction fragment length polymorphism  相似文献   

5.
Developmental phases surrounding the processes of gametic delivery and fusion were examined ultrastructurally in the reduced megagametophyte of Plumbago zeylanica, which lacks synergids. Gametic delivery occurs at the end of pollen tube growth and results in deposition of two male gametes, a vegetative nucleus, and a limited amount of pollen cytoplasm between the egg and central cell. Discharge of these materials from the tube is accompanied by loss of inner and outer pollen tube plasma membranes, loss of sperm-associated cell wall components, and disruption of the formerly continuous cell wall between the egg and central cell. The dispersion of egg cell wall components directly exposes female reproductive cell membranes to the unfused male gametes and pollen tube without disrupting gametic cell plasma membranes. Presence of unfused sperms within the female gametophyte appears to be a transitory phenomenon, lasting less than 5 min at the end of over 8½ hr of pollen tube growth. At the time of gametic deposition, plasma membranes of unfused sperm cells become directly appressed to plasma membranes of both the egg and central cell. Gametic fusion is initiated by a single fusion event between membranes of participating male and female cells, which is rapidly followed by subsequent, secondary fusion events between the same two cells at different locations along their surface. Gametic fusion results in the transmission of male gamete nuclei with co-transmission of nearly the entire sperm cytoplasmic volume and organellar complement, and it is possible to identify heritable male cytoplasmic organelles within both the incipient zygote and endosperm. Paternally originating plastids may be distinguished from maternal plastids by differences in morphology and staining characteristics, whereas paternal mitochondria may be distinguished from maternal mitochondria by populational differences in mitochondrial size which are statistically significant. Such observations further indicate that transmitted paternal mitochondria seem to remain viable, as judged by their ultrastructural appearance, and are transmitted exclusively by sperm cytoplasm rather than discharged pollen cytoplasm. The presence of anucleate, membrane-bounded cytoplasmic bodies between the egg and central cell are identifiable on the basis of their enclosed organelles and indicate that fragmentation of a small amount of the sperm cytoplasm associated with the vegetative nucleus commonly occurs. The presence and identification of sperm cytoplasmic organelles and associated membranes within female reproductive cells following gametic transmission represents strong evidence in support of the cellular basis of nuclear and cytoplasmic transmission during sexual reproduction in Plumbago.  相似文献   

6.
证明了油松(Pinus tabulaeformis Carr.)雄配子存在质体物线粒体及细胞器DNA,提供了油松具父系质体和线粒体遗传基础的确切的细胞学证据,结果与松科植物在遗传学上已确定的父系质体遗传的一般规律是一致的。但精细胞中的线粒体是否能传递至胚,还需要追踪其后的发育过程。另一重要的结果是揭示了油松的雄配子是细胞,这与以前将松科植物雄配子归入雄核(精核)的类型不同。精细胞无壁,仅被质膜包围  相似文献   

7.
The mature pollen grains of Rhododendron mucronulatum Turcz. conform to the 2-celled type. Sperm cells differentiated within the pollen tube about 24 hours after germination in vitro and paired together, one of which being linked with the vegetative nucleus, forming a male germ unit (MGU). Abundance of plastids, mitochondria, microtubules and single-membrane-bounded vesicles could be visualized in each sperm cell, however, endoplasmic reticulum and Golgi apparatus were scarce. The electron-dense plastids with normal structure gave ring-like or dumbbell appearance in sections. Mitochondria were smaller and less electron-dense' in contrast to the plastids. DNA epifluorescence technique revealed that the generative and sperm cells contained numerous organelle nuclei (nucleoids). There was no difference in nucleoid number between the two sperm cells in a pollen tube. The results confirmed the possible existance of cytoplasmic inheritance potential of the male gametes of Rhododendron.  相似文献   

8.
迎红杜鹃 ( Rhododendron mucronulatum Turcz.)的成熟花粉为二细胞型 ,精细胞在花粉管中形成。花粉管中的两个精细胞及与营养核之间互相联结 ,形成雄性生殖单位。两个精细胞的细胞质中均含有丰富的细胞器 ,包括质体、线粒体、小泡及微管 ,内质网和高尔基体稀少。具正常结构的精细胞质体在切面上多呈环形或哑铃形 ,内膜不发达 ,基质电子密度高。线粒体为球形或棒状 ,基质电子密度较低。 DNA特异性荧光染色显示 ,生殖细胞及精细胞中均含有大量类核 ( nucleoid) ,两个精细胞中的类核数量无明显差异。结果证明了杜鹃精细胞中存在大量具 DNA的可遗传细胞器 ,为杜鹃属植物的双亲细胞质遗传方式提供了细胞学证据。  相似文献   

9.
Serially sectioned embryo sacs of Nicotiana tabacum were examined during fertilization events using transmission electron microscopy. After pollen tube discharge, the outer membrane of the sperm pair is removed, the two sperm cells are deposited in the degenerate synergid and the sperm cells migrate to the chalazal edge of the synergid where gametic fusion occurs. During fertilization, the male cytoplasm, including heritable organelles, is transmitted into the female reproductive cells as shown by: (1) the cytoplasmic confluence of one sperm and the central cell during cellular fusion, (2) the occurrence of sperm mitochondria (distinguished by ultrastructural differences) in the zygote cytoplasm and adjacent to the sperm nucleus, (3) the presence of darkly stained aggregates which are found exclusively in mature sperm cells within the cytoplasm of both female cells soon after cell fusion, and (4) the absence of any large enucleated cytoplasmic bodies containing recognizable organelles outside the zygote or endosperm cells. The infrequent occurrence of plastids in the sperm and the transmission of sperm cytoplasm into the egg during double fertilization provide the cytological basis for occasional biparental plastid inheritance as reported previously in tobacco. Although sperm mitochondria are transmitted into the egg/zygote, their inheritance has not been detected genetically. In one abnormal embryo sac, a pair of sperm cells was released into the cytoplasm of the presumptive zygote. Although pollen tube discharge usually removes the inner pollen-tube plasma membrane containing the two sperm cells, this did not occur in this case. When sperm cells are deposited in a degenerating synergid or outside of a cell, this outer membrane is removed, as it apparently is for fertilization.  相似文献   

10.
The cytological mechanism of plastid and mitochondrion inheritance in Pinus is an interesting research topic with only a limited number of published articles. The results indicate that the sperms of Pinus tabulaeformis Carr. contain abundant plastids, mitochondria and organelle DNA. These data provide reliable cytological evidence of paternal plastid and mitochondrion inheritance in Pinus. The results are in line with the confirmed general rule of paternal plastid inheritance in Pinaceae. But whether mitochondria in sperm cells can be transmitted into the embryos is an issue needs further developmental studies. Another important finding is that contrary to earlier classification of the male gamete of Pinaceae into the male nuclei type, the results reveal that male gametes in Pinus tabulaeformis are actually cells. However, the sperm cells are only surrounded by plasma membranes without cell walls. The larger leading sperm cell in a pollen tube section is long in shape, with a large amount of cytoplasm; while the second sperm cell is smaller, round in shape and contains less cytoplasm. Whether this feature of the male gamete type could be considered as a representative characteristic of the family is discussed and further conclusions await more experimental evidences from studies on plants from different species.  相似文献   

11.
Male and female gametophyte development are described from light and transmission electron microscope preparations of ovules from first and second year Pinus monticola Dougl. seed cones. In the first year of development, pollen tubes penetrate about one-third the distance through the nucellus. The generative cell and tube nucleus move into the pollen tube. The megagametophyte undergoes early free nuclear division. First-year seed cones and pollen tubes become dormant in mid-July. In the second year, seed cones and pollen tubes resume development in April and the pollen tubes grow to the megagametophyte by mid-June. Early in June the generative cell undergoes mitosis, forming two equal-size sperm nuclei that remain within the generative cell cytoplasm. The generative cell has many extensions and abundant mitochondria and plastids. The megagametophyte resumes free nuclear division, then cell wall formation begins in early July. Cell wall formation and megagametophyte development follow the pattern found in other Pinaceae. Three to five archegonial initials form. The primary neck cell divides, forming one tier of neck cells. Jacket cells differentiate around each central cell. The central cell enlarges and becomes vacuolate; then vacuoles decrease in size and the cell divides, forming a small ventral canal cell and a large egg. Plastids in the central cell engulf large amounts of cytoplasm and enlarge. This process continues in the egg, and the peripheral cytoplasm of the egg becomes filled with transformed plastids. Mitochondria migrate around the nucleus, forming a perinuclear zone. The wide area of egg cytoplasm between these two zones has few organelles. A modified terminology for cells involved in microgametophyte development is recommended. Received: 9 December 1999 / Revision accepted: 30 April 2000  相似文献   

12.
Summary Genetic studies have demonstrated biparental inheritance of plastids in alfalfa. The ratio of paternal to maternal plastids in the progeny varies according to the genotypes of the parents, which can be classified as strong or weak transmitters of plastids. Previous cytological investigations of generative cells and male gametes have provided no consistent explanation for plastid inheritance patterns among genotypes. However, plastids in the mature egg cells of a strong female genotype (6–4) were found to be more numerous and larger than in mature eggs of a weak female genotype (CUF-B), and the plastids in 6–4 eggs are positioned equally around the nucleus. In CUF-B, the majority of plastids are positioned below (toward the micropyle) the mid level of the nucleus, which is the future division plane of the zygote. Since only the apical portion of the zygote produces the embryo proper, plastids in the basal portion were predicted to become included in the suspensor cells and not be inherited. In the present study, we examined zygotes and a two-celled proembryo from a cross between CUF-B and a strong male genotype (301), a cross that results in over 90% of the progeny possessing paternal plastids only. Our results indicate that the distribution of plastids observed in the CUF-B egg cell is maintained through the first division of the zygote. Further, paternal plastids are similarly distributed; however, within the apical portion of the zygote and in the apical cell of the two-celled proembryo, the number of paternal plastids is typically much greater than the number of maternal plastids. These findings suggest that maternal and paternal plastid distribution within the zygote is a significant factor determining the inheritance of maternal and paternal plastids in alfalfa.  相似文献   

13.
利用透射电镜技术对栽培甜菜(Beta vuigaris)花粉发育过程进行了超微结构观察。结果表明,在小孢子母细胞减数分裂期间,细胞内发生了“细胞质改组”,主要表现在核糖体减少,质体和线粒体结构发生了规律性变化。末期1不形成细胞板,而是在2个子核间形成“细胞器带”。“细胞器带”的存在起到类似细胞板的作用,暂时将细胞质分隔成两部分。四分体呈四面体型,被胼胝质壁包围。小孢子外壁的沉积始于四分体晚期,至小孢子晚期外壁已基本发育完全。单核小孢子时期,细胞核大,细胞器丰富。二细胞花粉发育主要表现在生殖细胞壁的变化上,生殖细胞壁上不具有胞间连丝。成熟花粉为三细胞型,含有1个营养细胞和2个精细胞。精细胞具有短尾突,无壁,为裸细胞,每个精细胞通过2层质膜与营养细胞的细胞质分开。生殖细胞与精细胞里缺乏质体。  相似文献   

14.
栽培甜菜花粉发育过程的超微结构   总被引:3,自引:0,他引:3  
利用透射电镜技术对栽培甜菜(Beta vulgaris)花粉发育过程进行了超微结构观察。结果表明, 在小孢子母细胞减数分裂期间, 细胞内发生了“细胞质改组”, 主要表现在核糖体减少, 质体和线粒体结构发生了规律性变化。末期I 不形成细胞板,而是在2个子核间形成“细胞器带”。“细胞器带”的存在起到类似细胞板的作用, 暂时将细胞质分隔成两部分。四分体呈四面体型, 被胼胝质壁包围。小孢子外壁的沉积始于四分体晚期, 至小孢子晚期外壁已基本发育完全。单核小孢子时期, 细胞核大, 细胞器丰富。二细胞花粉发育主要表现在生殖细胞壁的变化上, 生殖细胞壁上不具有胞间连丝。成熟花粉为三细胞型, 含有1个营养细胞和2个精细胞。精细胞具有短尾突, 无壁, 为裸细胞, 每个精细胞通过2层质膜与营养细胞的细胞质分开。生殖细胞与精细胞里缺乏质体。  相似文献   

15.
天竺葵雌性生殖单位的超微结构   总被引:4,自引:0,他引:4  
应用透射电镜研究了临近受精时天竺葵(Pelargonium hortorum Bailey)胚囊中的卵细胞、助细胞和中央细胞的结构。证明了卵细胞与助细胞以及助细胞与助细胞之间从合点端至珠孔端有很大的面积以质膜分界,仅珠孔端少部分以壁分隔。卵细胞与中央细胞之间同样缺乏细胞壁。在卵细胞的合点端,两质膜不同程度地分离形成宽窄相间的间隙。在间隙的絮状基质中存在小泡,这些小泡的产生似与卵和中央细胞中周质内质网的活动有关。推测小泡为多糖性质,可能为合子新壁的建造提供物质。卵细胞质中含巨大线粒体,质体和内质网也较丰富。基于超微结构的特征,可认为卵细胞具高度的生理合成活动的潜能。中央细胞极核位于珠孔端与卵器细胞毗邻,有利于在双受精作用中同时发生精细胞与卵细胞和精细胞与中央细胞核的融合。中央细胞的侧壁在珠孔端形成内突,具传递细胞的特点,表明这是雌配子体向孢子体摄取营养的重要部位。助细胞的细胞质含丰富的细胞器,这与多数植物中的相似,但具几个明显的特征,即核中存在微核仁,内质网形成圆球体或脂体,线粒体富集在丝状器的附近。传粉后花粉管进入胚囊之前,两个助细胞中一个退化。  相似文献   

16.
The structure of embryo sac before and after fertilization, embryo and endosperm development and transfer cell distribution in Phaseolus radiatus were investigated using light and transmission electron microscopy. The synergids with distinct filiform apparatus have a chalazal vacuole, numerous mitochondria and ribosomes. A cell wall exists only around the micropylar half of the synergids. The egg cell has a chalazally located nucleus, a large micropylar vacuole and several small vacuoles. Mitochondria and plasrids with starch grains are abundant. No cell wall is present at its chalazal end. There are no plasma membranes between the egg and central cell in several places. The zygote has a complete cell wall, abundant mitochondria and plastids containing starch grains. Both degenerated and persistent synergids migh.t serve as a nutrient supplement to proembryo. The wall ingrowths occur in the central cell, basal cell, inner integumentary cells, suspensor cells and endosperm cells. These transfer cells may contribute to embryo nutrition at different developmental stages of embryo.  相似文献   

17.
玉竹(Polygonatum simizui Kitag)小孢子在分裂前,质体极性分布导致分裂后形成的生殖细胞不含质体,而营养细胞包含了小孢子中全部的质体。生殖细胞发育至成熟花粉时期,及在花粉管中分裂形成的两个精细胞中始终不含质体。虽然生殖细胞和精细胞中都存在线粒体,但细胞质中无DNA类核。玉竹雄性质体的遗传为单亲母本型。在雄配子体发育过程中,营养细胞中的质体发生明显的变化。在早期的营养细胞质中,造粉质体增殖和活跃地合成淀粉。后期,脂体增加而造粉质体消失。接近成熟时花粉富含油滴。对百合科的不同属植物质体被排除的机理及花粉中贮藏的淀粉与脂体的转变进行了讨论。  相似文献   

18.
The distribution and characteristics of plastids and mitochondria in the generative and sperm cells of Lilium regale Wils. and L. davidii Duch. were described. In L. regale there were few plastids and abundant mitochondria in the newly formed generative cell. When the generative cell became free in the vegetative cytoplasm, the plastids degenerated completely within the generative cell. It was further proved by DAPI fluorescent technique that there was no organell DNA in the generative cell within the mature pollen grain or the pollen tube. However, distribution of the plastids was strictly polarizable during the division of the micmspore in L. davidii, resulting the lack of plastids in the newly formed generative cell. Data of RFLP analysis comparable between L. davidii, L. longifiorum and their interspecific hybrid have also proved the plastid inheritance in L. davidii to be of uniparental maternal transmission. Although the mitoehondria were observed both in the generative and sperm cells of L. regale and L. davidii but their DNA was decomposed in the male gametophyte stage. Therefore the mitochondda in the sperm cell could not be transmitted into the offspring. The results provided the detail, cytological evidence that organelles in the microgametophyte are incapable of genetic transmission in the two species of Lilium.  相似文献   

19.
Summary The sperm cells of Rhododendron laetum and R. macgregoriae differentiate within the pollen tube about 24 h after germination in vitro. Threedimensional reconstruction shows that the sperm cells are paired together, and both have extensions that link with the tube nucleus, forming a male germ unit. Quantitative analysis shows that the sperm cells in each pair differ significantly in surface area, but not in cell volume nor in numbers of mitochondria or plastids. When isolated from pollen tubes by osmotic shock, the sperm cells became ellipsoidal and surrounded by their own plasma membrane, while a proportion remained in pairs linked by the inner tube plasma membrane. Both generative and sperm cells are visualized in pollen tube preparations by immunofluorescence with anti-tubulin and anti-actin monoclonal antibodies (MAbs) combined with H33258 fluorescence of the nuclei. Video-image processing shows the presence of an axial microtubule cage in the generative cells, and some microtubules are present in the cytoplasmic extensions that clasp the tube nucleus. Following sperm cell division, the extensive phragmoplast between the sperm nuclei is partitioned by the plasma membranes.  相似文献   

20.
Hong-Shi Yu  Scott D. Russell 《Planta》1994,193(1):115-122
The dynamics of plastid and mitochondrial populations in male reproductive cells of tobacco (Nicotiana tabacum L.) were examined during development using serial ultrathin sections and transmission electron microscopy to reconstruct 58 generative cells and 31 sperm cells at selected stages of maturation from generative cell formation through gametic fusion. The first haploid mitosis resulted in incomplete exclusion of plastids providing an average of 2.81 plastids and 82.7 mitochondria for each newly formed generative cell. During generative-cell maturation, plastid content decreased to an average of 0.48 plastids/generative cell at anthesis owing to autophagy of organelles. Plastids were present in low frequency within generative and sperm cells in the pollen tube and appeared to be transmitted, according to observations immediately prior to fertilization. This forms a cytological basis for genetic reports of occasional biparental plastid inheritance. In contrast, mitochondria were transmitted in larger numbers, and approximately 80 mitochondria per generative cell or sperm cell pair were retained throughout development. This provides a potentially stable source for the transmission of male mitochondrial DNA, if present at fertilization.Abbreviations GC generative cell - SC sperm cell We thank Dr. Frank J. Sonleitner, for helpful suggestions on the statistical calculations and Dr. Bing-Quan Huang for technical assistance in the preparation of embryo sacs during fertilization. This research was supported in part by U.S. Department of Agriculture grant 91-37304-6471. We gratefully acknowledge use of the Samuel Roberts Noble Electron Microscopy Laboratory of the University of Oklahoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号