首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The substrate specificity of 3-hydroxybutyrate dehydrogenase from Alcaligenes faecalis with a non-native substrate, levulinic acid, was studied by analysis of the enzyme-substrate molecular interactions. The relation between structural and kinetic parameters was investigated considering the catalytic mechanism of the enzyme. The effects of key positive mutations (H144L, H144L/W187F) on the catalytic activity of the enzyme were studied by employing a surface analysis of its interatomic contacts between the enzyme and substrate atoms. The results revealed that the alteration of hydrogen bond network and rearrangement of the hydrophobic interactions between the active site and substrate molecule are the key structural basis for the change of the substrate specificity of 3-hydroxybutyrate dehydrogenase toward levulinic acid. With this approach, the structural basis for the substrate specificity of the enzyme could be elucidated in a quantitative manner.  相似文献   

2.
A structure determination in combination with a kinetic study of the steroid converting isozyme of horse liver alcohol dehydrogenase, SS-ADH, is presented. Kinetic parameters for the substrates, 5beta-androstane-3beta,17beta-ol, 5beta-androstane-17beta-ol-3-one, ethanol, and various secondary alcohols and the corresponding ketones are compared for the SS- and EE-isozymes which differ by nine amino acid substitutions and one deletion. Differences in substrate specificity and stereoselectivity are explained on the basis of individual kinetic rate constants for the underlying ordered bi-bi mechanism. SS-ADH was crystallized in complex with 3alpha,7alpha,12alpha-trihydroxy-5beta-cholan -24-acid (cholic acid) and NAD(+), but microspectrophotometric analysis of single crystals proved it to be a mixed complex containing 60-70% NAD(+) and 30-40% NADH. The crystals belong to the space group P2(1) with cell dimensions a = 55.0 A, b = 73.2 A, c = 92.5 A, and beta = 102.5 degrees. A 98% complete data set to 1.54-A resolution was collected at 100 K using synchrotron radiation. The structure was solved by the molecular replacement method utilizing EE-ADH as the search model. The major structural difference between the isozymes is a widening of the substrate channel. The largest shifts in C(alpha) carbon positions (about 5 A) are observed in the loop region, in which a deletion of Asp115 is found in the SS isozyme. SS-ADH easily accommodates cholic acid, whereas steroid substrates of similar bulkiness would not fit into the EE-ADH substrate site. In the ternary complex with NAD(+)/NADH, we find that the carboxyl group of cholic acid ligates to the active site zinc ion, which probably contributes to the strong binding in the ternary NAD(+) complex.  相似文献   

3.
The human mitochondrial deoxyribonucleotidase catalyzes the dephosphorylation of thymidine and deoxyuridine monophosphates and participates in the regulation of the dTTP pool in mitochondria. We present seven structures of the inactive D41N variant of this enzyme in complex with thymidine 3'-monophosphate, thymidine 5'-monophosphate, deoxyuridine 5'-monophosphate, uridine 5'-monophosphate, deoxyguanosine 5'-monophosphate, uridine 2'-monophosphate, and the 5'-monophosphate of the nucleoside analog 3'-deoxy 2'3'-didehydrothymidine, and we draw conclusions about the substrate specificity based on comparisons with enzyme activities. We show that the enzyme's specificity for the deoxyribo form of nucleoside 5'-monophosphates is due to Ile-133, Phe-49, and Phe-102, which surround the 2' position of the sugar and cause an energetically unfavorable environment for the 2'-hydroxyl group of ribonucleoside 5'-monophosphates. The close binding of the 3'-hydroxyl group of nucleoside 5'-monophosphates to the enzyme indicates that nucleoside analog drugs that are substituted with a bulky group at this position will not be good substrates for this enzyme.  相似文献   

4.
The structural basis for the extreme discrimination achieved by malate dehydrogenases between a variety of closely related substrates encountered within the cell has been difficult to assess because of the lack of an appropriate catalytically competent structure of the enzyme. Here, we have determined the crystal structure of a ternary complex of porcine cytoplasmic malate dehydrogenase with the alternative substrate alpha-ketomalonate and the coenzyme analogue 1,4,5,6-tetrahydronicotinamide. Both subunits of the dimeric porcine heart, and from the prokaryotes Escherichia coli and Thermus flavus. However, large changes are noted around the active site, where a mobile loop now closes to bring key residues into contact with the substrate. This observation substantiates a postulated mechanism in which the enzyme achieves high levels of substrate discrimination through charge balancing in the active site. As the activated cofactor/substrate complex has a net negative charge, a positive counter-charge is provided by a conserved arginine in the active site loop. The enzyme must, however, also discriminate against smaller substrates, such as pyruvate. The structure shows in the closed (loop down) catalytically competent complex two arginine residues (91 and 97) are driven into close proximity. Without the complimentary, negative charge of the substrate side-chain of oxaloacetate or alpha-ketomalonate, charge repulsion would resist formation production of this catalytically productive conformation, hence minimising the effectiveness of pyruvate as a substrate. By this mechanism, malate dehydrogenase uses charge balancing to achieve fivefold orders of magnitude in discrimination between potential substrates.  相似文献   

5.
Long chain fatty acyl-CoA synthetases are responsible for fatty acid degradation as well as physiological regulation of cellular functions via the production of long chain fatty acyl-CoA esters. We report the first crystal structures of long chain fatty acyl-CoA synthetase homodimer (LC-FACS) from Thermus thermophilus HB8 (ttLC-FACS), including complexes with the ATP analogue adenosine 5'-(beta,gamma-imido) triphosphate (AMP-PNP) and myristoyl-AMP. ttLC-FACS is a member of the adenylate forming enzyme superfamily that catalyzes the ATP-dependent acylation of fatty acid in a two-step reaction. The first reaction step was shown to propagate in AMP-PNP complex crystals soaked with myristate solution. Myristoyl-AMP was identified as the intermediate. The AMP-PNP and the myristoyl-AMP complex structures show an identical closed conformation of the small C-terminal domains, whereas the uncomplexed form shows a variety of open conformations. Upon ATP binding, the fatty acid-binding tunnel gated by an aromatic residue opens to the ATP-binding site. The gated fatty acid-binding tunnel appears only to allow one-way movement of the fatty acid during overall catalysis. The protein incorporates a hydrophobic branch from the fatty acid-binding tunnel that is responsible for substrate specificity. Based on these high resolution crystal structures, we propose a unidirectional Bi Uni Uni Bi Ping-Pong mechanism for the two-step acylation by ttLC-FACS.  相似文献   

6.
Isocitrate dehydrogenase kinase/phosphatase (AceK) regulates entry into the glyoxylate bypass by reversibly phosphorylating isocitrate dehydrogenase (ICDH). On the basis of the recently determined structure of the AceK-ICDH complex from Escherichia coli, we have classified the structures of homodimeric NADP(+)-ICDHs to rationalize and predict which organisms likely contain substrates for AceK. One example is Burkholderia pseudomallei (Bp). Here we report a crystal structure of Bp-ICDH that exhibits the necessary structural elements required for AceK recognition. Kinetic analyses provided further confirmation that Bp-ICDH is a substrate for AceK. We conclude that the highly stringent AceK binding sites on ICDH are maintained only in Gram-negative bacteria.  相似文献   

7.
Highlights? M. tuberculosis FadD13 is a peripheral membrane protein ? Mutagenesis reveals an arginine-rich patch as the site for membrane interaction ? A hydrophobic tunnel extends from the active site to the positively charged patch ? The architecture lets substrates reside partly in the membrane during catalysis  相似文献   

8.
9.
Doyle SA  Beernink PT  Koshland DE 《Biochemistry》2001,40(14):4234-4241
Isocitrate dehydrogenase (IDH) catalyzes the oxidative decarboxylation of isocitrate and has negligible activity toward other (R)-malate-type substrates. The S113E mutant of IDH significantly improves its ability to utilize isopropylmalate as a substrate and switches the substrate specificity (k(cat)/K(M)) from isocitrate to isopropylmalate. To understand the structural basis for this switch in substrate specificity, we have determined the crystal structure of IDH S113E in a complex with isopropylmalate, NADP, and Mg(2+) to 2.0 A resolution. On the basis of a comparison with previously determined structures, we identify distinct changes caused by the amino acid substitution and by the binding of substrates. The S113E complex exhibits alterations in global and active site conformations compared with other IDH structures that include loop and helix conformational changes near the active site. In addition, the angle of the hinge that relates the two domains was altered in this structure, which suggests that the S113E substitution and the binding of substrates act together to promote catalysis of isopropylmalate. Ligand binding results in reorientation of the active site helix that contains residues 113 through 116. E113 exhibits new interactions, including van der Waals contacts with the isopropyl group of isopropylmalate and a hydrogen bond with N115, which in turn forms a hydrogen bond with NADP. In addition, the loop and helix regions that bind NADP are altered, as is the loop that connects the NADP binding region to the active site helix, changing the relationship between substrates and enzyme. In combination, these interactions appear to provide the basis for the switch in substrate specificity.  相似文献   

10.
The homodimeric enzyme form of quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa ATCC 17933 crystallizes readily with the space group R3. The X-ray structure was solved at 2.6 A resolution by molecular replacement.Aside from differences in some loops, the folding of the enzyme is very similar to the large subunit of the quinoprotein methanol dehydrogenases from Methylobacterium extorquens or Methylophilus W3A1. Eight W-shaped beta-sheet motifs are arranged circularly in a propeller-like fashion forming a disk-shaped superbarrel. No electron density for a small subunit like that in methanol dehydrogenase could be found. The prosthetic group is located in the centre of the superbarrel and is coordinated to a calcium ion. Most amino acid residues found in close contact with the prosthetic group pyrroloquinoline quinone and the Ca(2+) are conserved between the quinoprotein ethanol dehydrogenase structure and that of the methanol dehydrogenases. The main differences in the active-site region are a bulky tryptophan residue in the active-site cavity of methanol dehydrogenase, which is replaced by a phenylalanine and a leucine side-chain in the ethanol dehydrogenase structure and a leucine residue right above the pyrrolquinoline quinone group in methanol dehydrogenase which is replaced by a tryptophan side-chain. Both amino acid exchanges appear to have an important influence, causing different substrate specificities of these otherwise very similar enzymes. In addition to the Ca(2+) in the active-site cavity found also in methanol dehydrogenase, ethanol dehydrogenase contains a second Ca(2+)-binding site at the N terminus, which contributes to the stability of the native enzyme.  相似文献   

11.
Divergence of substrate specificity within the context of a common structural framework represents an important mechanism by which new enzyme activity naturally evolves. We present enzymological and x-ray structural data for hamster chymase-2 (HAM2) that provides a detailed explanation for the unusual hydrolytic specificity of this rodent alpha-chymase. In enzymatic characterization, hamster chymase-1 (HAM1) showed typical chymase proteolytic activity. In contrast, HAM2 exhibited atypical substrate specificity, cleaving on the carboxyl side of the P1 substrate residues Ala and Val, characteristic of elastolytic rather than chymotryptic specificity. The 2.5-A resolution crystal structure of HAM2 complexed to the peptidyl inhibitor MeOSuc-Ala-Ala-Pro-Ala-chloromethylketone revealed a narrow and shallow S1 substrate binding pocket that accommodated only a small hydrophobic residue (e.g. Ala or Val). The different substrate specificities of HAM2 and HAM1 are explained by changes in four S1 substrate site residues (positions 189, 190, 216, and 226). Of these, Asn(189), Val(190), and Val(216) form an easily identifiable triplet in all known rodent alpha-chymases that can be used to predict elastolytic specificity for novel chymase-like sequences. Phylogenetic comparison defines guinea pig and rabbit chymases as the closest orthologs to rodent alpha-chymases.  相似文献   

12.
Fatty acyl-CoA synthetase purified from rat liver microsomes was immobilized on either CNBr-activated Sepharose 4B or activated CH-Sepharose 4B, and the enzymatic activities of the syntheses of CoA esters from lignoceric acid (C24:0) and palmitic acid (C16:0) were studied and compared. The ratio of activities of the synthesis of lignoceroyl-CoA to palmitoyl-CoA increased 4.5 fold with CH-Sepharose, but only slightly with CNBr-Sepharose. The effects of a detergent and chaotropic agent on both substrates were significantly altered by the immobilization. The results of this study thus indicate that the stability and fatty acid specificity of fatty acyl-CoA synthetase are significantly affected by the physical state of the enzyme.  相似文献   

13.
X-adrenoleukodystrophy (X-ALD) is a demyelinating disorder characterized by the accumulation of saturated very-long-chain (VLC) fatty acids (>C(22:0)) due to the impaired activity of VLC acyl-CoA synthetase (VLCAS). The gene responsible for X-ALD was found to code for a peroxisomal integral membrane protein (ALDP) that belongs to the ATP binding cassette superfamily of transporters. To understand the function of ALDP and how ALDP and VLCAS interrelate in the peroxisomal beta-oxidation of VLC fatty acids we investigated the peroxisomal topology of VLCAS protein. Antibodies raised against a peptide toward the C-terminus of VLCAS as well as against the N-terminus were used to define the intraperoxisomal localization and orientation of VLCAS in peroxisomes. Indirect immunofluorescent and electron microscopic studies show that peroxisomal VLCAS is localized on the matrix side. This finding was supported by protease protection assays and Western blot analysis of isolated peroxisomes. To further address the membrane topology of VLCAS, Western blot analysis of total membranes or integral membranes prepared from microsomes and peroxisomes indicates that VLCAS is a peripheral membrane-associated protein in peroxisomes, but an integral membrane in microsomes. Moreover, peroxisomes isolated from cultured skin fibroblasts from X-ALD patients with a mutation as well as a deletion in ALDP showed a normal amount of VLCAS. The consequence of VLCAS being localized to the luminal side of peroxisomes suggests that ALDP may be involved in stabilizing VLCAS activity, possibly through protein-protein interactions, and that loss or alterations in these interactions may account for the observed loss of peroxisomal VLCAS activity in X-ALD.  相似文献   

14.

Background

The unique S28 family of proteases is comprised of the carboxypeptidase PRCP and the aminopeptidase DPP7. The structural basis of the different substrate specificities of the two enzymes is not understood nor has the structure of the S28 fold been described.

Results

The experimentally phased 2.8 Å crystal structure is presented for human PRCP. PRCP contains an α/β hydrolase domain harboring the catalytic Asp-His-Ser triad and a novel helical structural domain that caps the active site. Structural comparisons with prolylendopeptidase and DPP4 identify the S1 proline binding site of PRCP. A structure-based alignment with the previously undescribed structure of DPP7 illuminates the mechanism of orthogonal substrate specificity of PRCP and DPP7. PRCP has an extended active-site cleft that can accommodate proline substrates with multiple N-terminal residues. In contrast, the substrate binding groove of DPP7 is occluded by a short amino-acid insertion unique to DPP7 that creates a truncated active site selective for dipeptidyl proteolysis of N-terminal substrates.

Conclusion

The results define the structure of the S28 family of proteases, provide the structural basis of PRCP and DPP7 substrate specificity and enable the rational design of selective PRCP modulators.  相似文献   

15.
The substrate specificity of the catalytic domain of SHP-1, an important regulator in the proliferation and development of hematopoietic cells, is critical for understanding the physiological functions of SHP-1. Here we report the crystal structures of the catalytic domain of SHP-1 complexed with two peptide substrates derived from SIRPalpha, a member of the signal-regulatory proteins. We show that the variable beta5-loop-beta6 motif confers SHP-1 substrate specificity at the P-4 and further N-terminal subpockets. We also observe a novel residue shift at P-2, the highly conserved subpocket in protein- tyrosine phosphatases. Our observations provide new insight into the substrate specificity of SHP-1.  相似文献   

16.
Human glyoxylate reductase/hydroxypyruvate reductase (GRHPR) is a D-2-hydroxy-acid dehydrogenase that plays a critical role in the removal of the metabolic by-product glyoxylate from within the liver. Deficiency of this enzyme is the underlying cause of primary hyperoxaluria type 2 (PH2) and leads to increased urinary oxalate levels, formation of kidney stones and renal failure. Here we describe the crystal structure of human GRHPR at 2.2 A resolution. There are four copies of GRHPR in the crystallographic asymmetric unit: in each homodimer, one subunit forms a ternary (enzyme+NADPH+reduced substrate) complex, and the other a binary (enzyme+NADPH) form. The spatial arrangement of the two enzyme domains is the same in binary and ternary forms. This first crystal structure of a true ternary complex of an enzyme from this family demonstrates the relationship of substrate and catalytic residues within the active site, confirming earlier proposals of the mode of substrate binding, stereospecificity and likely catalytic mechanism for these enzymes. GRHPR has an unusual substrate specificity, preferring glyoxylate and hydroxypyruvate, but not pyruvate. A tryptophan residue (Trp141) from the neighbouring subunit of the dimer is projected into the active site region and appears to contribute to the selectivity for hydroxypyruvate. This first crystal structure of a human GRHPR enzyme also explains the deleterious effects of naturally occurring missense mutations of this enzyme that lead to PH2.  相似文献   

17.
Phosphodiesterases (PDEs) are enzymes that modulate cyclic nucleotide signaling and as such are clinical targets for a range of disorders including congestive heart failure, erectile dysfunction, and inflammation. The PDE3 family comprises two highly homologous subtypes expressed in different tissues, and inhibitors of this family have been shown to increase lipolysis in adipocytes. A specific PDE3B (the lipocyte-localized subtype) inhibitor would be a very useful tool to evaluate the effects of PDE3 inhibition on lipolysis and metabolic rate and might become a novel tool for treatment of obesity. We report here the three-dimensional structures of the catalytic domain of human PDE3B in complex with a generic PDE inhibitor and a novel PDE3 selective inhibitor. These structures explain the dual cAMP/cGMP binding capabilities of PDE3, provide the molecular basis for inhibitor specificity, and can supply a valid platform for the design of improved compounds.  相似文献   

18.
We have employed a new pseudosubstrate, beta-(2-furyl)propionyl coenzyme A (FPCoA), to study the functional properties of two enzymes, fatty acyl-CoA dehydrogenase from porcine liver and fatty acyl-CoA oxidase from Candida tropicalis, involved in the oxidation of fatty acids. Previous studies from our laboratory have shown that the dehydrogenase exhibits oxidase activity at the rate of dissociation of the product charge-transfer complex. This raises the question of the difference in functionality between these two flavoproteins. To investigate these differences, we have compared the pH dependence of product formation, the isotope effects using tetradeuterio-FPCoA, and the spectral properties and chemical reactivity of the product charge-transfer complexes formed with the two enzymes. The pH dependencies of the reaction of FPCoA with electron-transfer flavoprotein (ETF) for the dehydrogenase and of the reaction of FPCoA with O2 for the oxidase are quite similar. Both reactions proceed more rapidly at basic pH values while substrate binds more tightly at acidic pH values. These data for both enzymes are consistent with a mechanism in which enzyme is involved in protonation of the carbonyl group of substrate followed by base-catalyzed removal of the C-2 proton from substrate. The C-2 anion of substrate may then serve as the active species in reduction of enzyme-bound flavin. The deuterium isotope effects for both enzyme systems are primary across the entire pH range, assuring that the chemically important step of substrate oxidation is rate limiting in these steady-state kinetic experiments. The two enzymes differ in the chemical reactivity of their product charge-transfer complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Siderophores are known virulence factors, and their biosynthesis is a target for new antibacterial agents. A non-ribosomal peptide synthetase-independent siderophore biosynthetic pathway in Dickeya dadantii is responsible for production of the siderophore achromobactin. The D. dadantii achromobactin biosynthesis protein D (AcsD) enzyme has been shown to enantioselectively esterify citric acid with l-serine in the first committed step of achromobactin biosynthesis. The reaction occurs in two steps: stereospecific activation of citric acid by adenylation, followed by attack of the enzyme-bound citryl adenylate by l-serine to produce the homochiral ester. We now report a detailed characterization of the substrate profile and mechanism of the second (acyl transfer) step of AcsD enzyme. We demonstrate that the enzyme catalyzes formation of not only esters but also amides from the citryl-adenylate intermediate. We have rationalized the substrate utilization profile for the acylation reaction by determining the first X-ray crystal structure of a product complex for this enzyme class. We have identified the residues that are important for both recognition of l-serine and catalysis of ester formation. Our hypotheses were tested by biochemical analysis of various mutants, one of which shows a reversal of specificity from the wild type with respect to non-natural substrates. This change can be rationalized on the basis of our structural data. That this change in specificity is accompanied by no loss in activity suggests that AcsD and other members of the non-ribosomal peptide synthetase-independent siderophore superfamily may have biotransformation potential.  相似文献   

20.
Enzymes with nucleoside hydrolase activity (NHs) belonging to homology group I either are markedly specific for pyrimidine nucleoside substrates or hydrolyze with comparable efficiencies the N-glycosidic bond in all common nucleosides. The biochemical and structural basis for these differences in substrate specificity is still unknown. Here we characterize the binding interactions between the slowly hydrolyzed substrate inosine and the Escherichia coli pyrimidine-specific NH YeiK using cryotrapping and X-ray crystallography. Guided by the structural features of the Michaelis complex, we show the synergic effect of two specific point mutations in YeiK that increase the catalytic efficiency toward purine nucleosides to values comparable to those of natural nonspecific NHs. We demonstrate that the integrity of an active-site catalytic triad comprised of two hydroxylated amino acids and one histidine residue is a requirement for the highly efficient hydrolysis of inosine by group I NHs. Instead, cleavage of the YeiK-preferred substrate uridine is not affected by mutations at the same locations, suggesting a different fine chemical mechanism for the hydrolysis of the two nucleoside substrates. Our study provides for the first time direct evidence that distinct subsets of amino acid residues are involved in the hydrolysis of purine or pyrimidine nucleosides in group I NHs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号