首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Siess W  Essler M  Brandl R 《IUBMB life》2000,50(3):167-171
Several plant-derived polyphenolic compounds are considered to possess anticancer and apoptosis-inducing properties in cancer cells. Such compounds are recognized as naturally occurring antioxidants but also exhibit prooxidant properties under appropriate conditions. Evidence in the literature suggests that the antioxidant properties of polyphenolics such as gallotannins, curcumin, and resveratrol may not fully account for their chemopreventive effects. We propose a mechanism for the cytotoxic action of these compounds against cancer cells that involves mobilization of endogenous copper and the consequent prooxidant action.  相似文献   

2.
Breast cancer is a very frequent type of cancer and much attention is paid to therapy with considerable efforts both in the pharmacological and clinical fields.The present work aims to create a non-linear dynamic model of action of the drug Trastuzumab against HER-2 + breast cancer, mainly considering its action of ADCP (antibody-dependent phagocytosis) killing of cancer cells. The model, while also considering the other therapeutic effects induced by Trastuzumab, shows how the action of this monoclonal antibody in the induction of ADCP through the action of macrophages, is strictly connected to the formation of a multi-complex “Trastuzumab -HER-2 - macrophage” that shows a prolonged action over time, responsible for the increase in the Overall Survivor (OS) parameter reported in various. The model shows the correlation between the various therapeutic effects and the killing action of cancer cells through the variation of the dynamic fluctuation of the representative ”c” parameter.  相似文献   

3.
Molecular regulation of androgen action in prostate cancer   总被引:1,自引:0,他引:1  
  相似文献   

4.
Anticancer peptides are polycationic amphiphiles capable of preferentially killing a wide spectrum of cancer cells relative to noncancerous cells. Their primary mode of action is an interaction with the cell membrane and subsequent activation of lytic effects; however, the exact mechanism responsible for this mode of action remains controversial. Using zeta potential analyses we demonstrate the interaction of a small anticancer peptide with membrane model systems and cancer cells. Electrostatic interactions have a pivotal role in the cell killing process, and in contrast to the antimicrobial peptides action cell death occurs without achieving full neutralization of the membrane charge.  相似文献   

5.
6.
The cellular and molecular effects of the proteasome inhibitor—bortezomib—on breast cancer cells are as yet poorly characterised. Bortezomib selectively induces apoptosis in some cancer cells. However, the nature of its selectivity remains unknown. Previously, we demonstrated that: there was no effect of bortezomib action on apoptosis and a time-dependent increase in senescence of human skin fibroblasts. The study presented here provides novel information on cellular effects of bortezomib in breast cancer cells line MDA-MB-231. Our findings demonstrated that in contrast to normal fibroblasts, bortezomib treatment evoked a strong effect on apoptosis in breast cancer cells incubated in hypoxic and normoxic conditions. We observed a time-dependent increase up to 70 % in apoptosis of MDA-MB-231 cells in hypoxic and normoxic conditions. There was no effect of bortezomib action on senescence of these cells. We suggest that bortezomib may be candidates for further evaluation as chemotherapeutic agents for human breast cancer.  相似文献   

7.
Human papillomavirus (HPV) is the most common sexually transmitted infectious agent worldwide, being also responsible for 5% of all human cancers. The integration and hypermethylation mechanisms of the HPV viral genome promote the unbalanced expression of the E6, E7 and E5 oncoproteins, which are crucial factors for the carcinogenic cascade in HPV-induced cancers. This review highlights the action of E6, E7 and E5 over key regulatory targets, promoting all known hallmarks of cancer. Both well-characterized and novel targets of these HPV oncoproteins are described, detailing their mechanisms of action. Finally, this review approaches the possibility of targeting E6, E7 and E5 for therapeutic applications in the context of cancer.  相似文献   

8.
9.
10.
Histone deacetylase inhibitors (HDACi) are promising antitumor drugs acting through reactivation of silenced tumor suppressor genes. Several HDACi are currently in clinical trials both for hematological and solid tissue malignancies. Cooperative action of HDACi and DNA methylation inhibitors (DNMTi) has been reported, making combined treatment an attractive choice for cancer therapy. There is some evidence that synergistic effects of HDACi and DNMTi are achieved by their action on common targets, including DNA methyltransferase 1 (DNMT1). To further analyze this interaction, we investigated the effect of the HDACi trichostatin A on global and gene-specific DNA methylation and applied methods with single molecule sensitivity, confocal laser scanning microscopy with avalanche photodiode detectors (APD imaging) and fluorescence correlation spectroscopy (FCS), to study its effect on the nuclear dynamics of DNMT1 in live cells. Our data show that trichostatin A treatment reduces global DNA methylation and the DNMT1 protein level and alters DNMT1 nuclear dynamics and interactions with chromatin. The mechanisms underlying these effects are apparently distinct from the mechanisms of action of the DNMT inhibitor 5-azacytidine. Our study sheds light on the molecular mechanisms underlying the synergistic action of HDACi and DNMTi and may also help to define improved policies for cancer treatment.  相似文献   

11.
G-->T transversions in the TP53 gene are more common in lung cancers from smokers than in any other cancer except for hepatocellular carcinomas linked to aflatoxin. The high frequency of G-->T transversions in lung cancer has been attributed to the mutagenic action of cigarette smoke components, in particular polycyclic aromatic hydrocarbons (PAH). In a recent review [Mutat. Res. 508 (2002) 1-19], Rodin and Rodin have questioned the direct mutagenic action of PAH-like compounds and have suggested that other factors, such as selection of pre-existing endogenous mutations by smoke-induced stress, can better explain the excess of G-->T transversions in lung tumors. Their two main arguments against an involvement of PAH are that smoking may inhibit the repair of G-->T primary lesions on the non-transcribed strand and that lung cancer cell lines show a higher frequency of G-->T transversions than primary lung tumors suggesting that these mutations are not related to smoking. We illustrate here that both of these suggestions are incompatible with available evidence and that the abundance and sequence specificity of G-->T transversions in lung tumors is best explained by a direct mutagenic action of PAH compounds present in cigarette smoke.  相似文献   

12.
The major hurdle in the fight against cancer is the non-specific nature of current treatments. The search for specific drugs that are non-cytotoxic to normal cells and can effectively target cancer cells has lead some researchers to investigate the potential anti-cancer activity of natural compounds. Some natural compounds, such as Taxol, have been shown to posses some anti-cancer potential. Pancratistatin (PST) is a natural compound that was isolated from the spider lily Pancratium littorale and shown to exhibit antineoplastic activity. The specificity of PST to cancer cells and the mechanism of PSTs action remain unknown. This study provides a detailed look at the effect of PST treatment on cancerous and normal cells. Our results indicate that PST induced apoptosis selectively in cancer cells and that the mitochondria may be the site of action of PST in cancer cells. A biochemical target available specifically in cancer cells may lead to the development of new and more effective cancer fighting agents.  相似文献   

13.
《MABS-AUSTIN》2013,5(3):222-229
With the widespread use of therapeutic monoclonal antibodies in the treatment of patients with cancer, resistance to these agents has become a major issue. Preclinical models of drug action or resistance have contributed to unravel the main mechanisms of resistance, involving both tumor-associated and host related factors. However our understanding of how a monoclonal antibody destroys cancer cells in a patient and why it one day stops being effective are still far from being complete. This review focuses on the available data on mechanisms of action and resistance to rituximab, and includes some additional information for other monoclonal antibodies. Innovative approaches designed to overcome resistance, such as combination immunotherapy, costimulation with cytokines or growth factors are presented.  相似文献   

14.
Excessive activation of the hormone signaling pathways is implicated in several disorders of the target tissues, with cancer being one of the most serious fallouts. Steroid hormone receptors are key proteins through which steroid hormones convey their signals to the cells. Deregulated activity of the hormone receptors due to their altered activation; stability or sub-cellular localization is heavily implicated in the onset and progress of cancers. The role played by estrogen and its receptors in breast cancer remains the most thoroughly investigated steroid-dependent cancer system till date. Choosing it as an example, we have summarized the molecular mechanisms underlying the action of the estrogen receptors (ERs) in manifesting the effects of the estrogens in the cells. A special emphasis is placed on the molecular mechanism of their functionality, role of the coactivator proteins, and the reasons for the deregulated signaling. The therapeutic approaches resulting from the mechanistic study of the ER action and their efficacies are also discussed.  相似文献   

15.
Epigenomic modifiers, such as histone deacetylase inhibitors, are compounds that regulate gene expression by interfering with the enzymatic machinery that maintains the proper chromatin structure of the nucleus. These compounds are at the forefront of novel therapeutic agents for the treatment of several diseases including cancer and genetic disorders such as beta-thalassemia and sickle cell disease. Here we review the current understanding of the mechanism of action of epigenomic modifiers in the treatment of beta-thalassemia and sickle cell anemia. We also discuss how the lessons learned from the study of the effects of these compounds on the beta-globin locus, one of the best characterized regions of the human genome, might contribute to the understanding of the mechanism of action of these same compounds in cancer, where the specific regions of the genome that are responsible for the pathophysiology of the disease are often poorly defined.  相似文献   

16.
Nitric oxide-donating aspirin (NO-ASA) is a promising agent for cancer prevention. Although studied extensively, its molecular targets and mechanism of action are still unclear. S-nitrosylation of signaling proteins is emerging as an important regulatory mechanism by NO. Here, we examined whether S-nitrosylation of the NF-κB, p53, and Wnt signaling proteins by NO-ASA might explain, in part, its mechanism of action in colon cancer. NO-ASA releases significant amounts of NO detected intracellularly in HCT116 and HT-29 colon cells. Using a modified biotin switch assay we demonstrated that NO-ASA S-nitrosylates the signaling proteins p53, β-catenin, and NF-κB, in colon cancer cells in a time- and concentration-dependent manner. NO-ASA suppresses NF-κB binding to its cognate DNA oligonucleotide, which occurs without changes in the nuclear levels of the NF-κB subunits p65 and p50 and is reversed by dithiothreitol that reduces ―S―NO to ―SH. In addition to S-nitrosylation, we documented both in vitro and in vivo widespread nitration of tyrosine residues of cellular proteins in response to NO-ASA. Our results suggest that the increased intracellular NO levels following treatment with NO-ASA modulate cell signaling by chemically modifying key protein members of signaling cascades. We speculate that S-nitrosylation and tyrosine nitration are responsible, at least in part, for the inhibitory growth effect of NO-ASA on cancer cell growth and that this may represent a general mechanism of action of NO-releasing agents.  相似文献   

17.
Diosgenyl saponins are steroidal glycosides that are often found as major components in many traditional oriental medicines. Recently, a number of naturally occurring diosgenyl saponins have been shown to exert cytotoxic activity against several strains of human cancer cells. Use of these saponin compounds for cancer treatment is hampered due to the lack of understanding of their action mechanism as well as limited access to such structurally complicated molecules. In the present paper, we have prepared a group of diosgenyl saponin analogues which contain a beta-D-2-amino-2-deoxy-glucopyranose residue having different substituents at the amino group. Moderate cytotoxic activity is found for most analogues against neuroblastoma (SK-N-SH) cells, breast cancer (MCF-7) cells, and cervical cancer (HeLa) cells. The analogue 13 that contains an alpha-lipoic acid residue exhibits the highest potency against all three cancer cell lines with IC(50) ranging from 4.8 microM in SK-N-SH cells to 7.3 microM in HeLa cells. Preliminary mechanistic investigation with one saponin analogue (10) shows that the compound induces cell cycle arrest at G(1) phase in SK-N-SH cells, but the same compound induces cell cycle arrest at G(2) phase in MCF-7 cells. This result suggests that the cytotoxic activity of these saponin analogues may involve different action mechanisms in cell lines derived from different cancer sites.  相似文献   

18.
《Genomics》2022,114(4):110377
Long non-coding RNA (lncRNA) regulated by abnormal DNA methylation (ADM-lncRNA) emerges as a biomarker for cancer diagnosis and treatment. This study comprehensively described the methylation patterns of lncRNA in pan-cancer using the cancer data set in The Cancer Genome Atlas (TCGA). Based on the cancer heterogeneity of ADM-lncRNA in pan-cancer, we constructed a co-expression network of pan-cancer ADM-lncRNA (pADM-lncRNA) in 10 cancers, highlighting the combined action mode of abnormal DNA methylation, and indicating the internal connection among different cancers. Functional analysis revealed the pan-carcinogenic pathway of pADM-lncRNA and suggested potential factors for cancer heterogeneity and tumor immune microenvironment changes. Survival analysis showed the potential of pADM-lncRNA-mRNA co-expression pair as cancer biomarkers. Revealing the action mode of lncRNA and DNA methylation in cancer may help understand the key molecular mechanisms of cell carcinogenesis.  相似文献   

19.
Neither androgen ablation nor chemotherapeutic agents are effective in reducing the risk of prostate cancer progression. On the other hand, multifaceted effects of phytochemicals, such as triterpene saponins, on cancer cells have been suggested. A promising safety and tolerability profile indicate their possible application in the treatment of advanced prostate cancers. We analyzed the specificity, selectivity and versatility of desglucoanagalloside B effects on human prostate cancer cells derived from prostate cancer metastases to brain (DU-145 cells) and bone (PC-3 cells). Prominent growth arrest and apoptotic response of both cell types was observed in the presence of sub-micromolar desglucoanagalloside B concentrations. This was accompanied by cytochrome c release and caspase 3/7 activation. A relatively low cytostatic and pro-apoptotic response of cancer cells to a desglucoanagalloside B analog, anagallosaponin IV, illustrated the specificity of the effects of desglucoanagalloside B, whereas the low sensitivity of normal prostate PNT2 cells to desglucoanagalloside B showed the selectivity of its action. Inhibition of cancer cell motility was observed in the presence of both saponins, however only desglucoanagalloside B attenuated cancer cell invasive potential, predominantly through an effect on cell elastic properties. These data demonstrate the versatility of its effects on prostate cancer cells. In contrast to PNT2 cells, cancer cells tested in this study were relatively resistant to mitoxantrone. The multifaceted action of desglucoanagalloside B on basic cellular traits, crucial for prostate cancer progression, opens perspectives for elaboration of combined palliative therapies and new prostate cancer prophylaxis regimens.  相似文献   

20.
Most of the currently used cancer therapeutics are natural products. These agents were generally discovered based on their toxicity to tumour cells using various bioassays. Although the exact mechanisms of action of the most commonly used cancer therapeutics such as anthracyclins, podophyllotoxins and camptothecin are incompletely understood, it is becoming increasingly clear that these agents often show complex modes of action at the cellular level, interacting with numerous targets. Such complex modes of action may be the very reason for clinical efficacy. For discovering new cytotoxic anticancer drugs sophisticated screening methods were used. The principles of such screening projects conducted, using collections of purified natural products or extracts from plants have been described. By performing simple but robust prescreening tests such as the brine shrimp assay, bioactive extracts can be identified. Extracts (65) prepared from a collection of Egyptian plants were identified that showed cytotoxity on HepG2 cells. Interestingly, 22 (33%) of these raw extracts, induced > 2-fold induction of caspase-cleavage activity in a colon carcinoma cell line, consistent with induction of apoptosis. Only a fraction of the diversity of the biosphere has been tested for biological activity and novel cancer therapeutics remains to be discovered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号