共查询到20条相似文献,搜索用时 9 毫秒
1.
Kim Il-Chul Kim Chang-Ho Hong Suk-In Kim Seung-Wook 《World journal of microbiology & biotechnology》2001,17(9):869-872
In order to obtain high productivity of clavulanic acid, a newly-introduced carrier, polyurethane pellet (PUP) Z97-020 was used for the immobilization process. In a stirred-tank bioreactor, batch cultivation by Streptomyces clavuligerus KK immobilized on PUP Z97-020 gave about 3100 mg of clavulanic acid per litre, representing an increase of 200% in productivity compared with that by fed-batch cultivation of free cells (1500 mg/l). However, the clavulanic acid produced rapidly decomposed due to the pH change during batch cultivation. Fed-batch cultivation by immobilized S. clavuligerus KK gave an excellent level of clavulanic acid up to 3250 mg/l, a productivity increase of 220% compared with that by fed-batch cultivation of free cells. These results suggest that immobilization with PUP Z97-020 is a more effective process for the production of clavulanic acid and that the maintenance of pH by fed-batch cultivation with glycerol as a limiting substrate prevents the clavulanic acid from decomposing during the fermentation. 相似文献
2.
Gouveia Ester R. Baptista-Neto Alvaro Azevedo Amadeus G. Badino Alberto C. Hokka Carlos O. 《World journal of microbiology & biotechnology》1999,15(5):623-627
The effect of the nitrogen source in the production medium on the level of clavulanic acid production by Streptomyces clavuligerus has been investigated. Batch cultures using two types of synthetic culture medium and two types of complex culture medium containing soybean derivatives were employed. To allow comparison of the various media, all of them were formulated with 4.0 g total nitrogen/l. It was observed that the production of clavulanic acid using synthetic medium reached values slightly greater than those usually found in the literature. However, in trials with complex media, it was found that when Samprosoy 90NB (protein extract of soybean) was utilized, production of clavulanic acid went up to 920 mg/l, twice as high as when soy meal was used, and notably higher than values reported in the literature (300–500 mg/l) for complex medium. 相似文献
3.
Optimisation of medium composition for clavulanic acid production by
Streptomyces clavuligerus 总被引:1,自引:0,他引:1
Ester R. Gouveia Alvaro Baptista-Neto Alberto C. Badino Jr Carlos O. Hokka 《Biotechnology letters》2001,23(2):157-161
Among four different commercially available nitrogen sources containing soybean derivatives, a protein extract of soybean gave the highest yield for clavulanic acid production by Streptomyces clavuligerus. A statistical method based on factorial design of experiments was applied to optimise the medium. An empirical model was obtained by applying response surface statistical analysis. The analysis of variance showed that concentrations of protein extract of soybean and glycerol and the interaction between these two variables were significant at 95% level of confidence. The maximum clavulanic acid concentration obtained in 72 h was 1.2 g l–1. 相似文献
4.
Production of cephamycin c and clavulanic acid by Streptomyces clavuligerus was investigated using different media in shake flask condition. Highest cell growth (3.8 g/L) was observed in glycerol, sucrose, proline and glutamic acid (GSPG) medium. Although, GSPG medium supported maximum growth, it was least effective for the synthesis of both cephamycin and clavulanic acid. Yield of cephamycin and clavulanic acid was maximum in dextrin and K medium, respectively. High and low level of constituents of dextrin medium, affected production of both cephamycin and clavulanic acid. Biosynthesis of clavulanic acid was associated with production of cephamycin c. 相似文献
5.
6.
Ahmed Lebrihi Pierre Germain Gérard Lefebvre 《Applied microbiology and biotechnology》1987,26(2):130-135
Summary Production of cephamycin and clavulanic acid by Streptomyces clavuligerus is controlled by the phosphate concentration. Phosphate represses the biosynthesis of cephamycin synthetase, expandase and clavulanic acid synthetase. In the presence of 2 mM phosphate, the specific activities of expandase, cephamycin synthetase and clavulanic acid synthetase were higher than in the presence of 75 mM phosphate. The specific activity of cephamycin synthetase is maximal with an initial phosphate concentration of 10 mM, whereas the specific activity of expandase is maximal with 1 mM phosphate. A correlation between cephamycin synthetase specific activity and expandase specific activity was established at phosphate concentrations higher than 10 mM. This shows that the expandase is an important enzyme in the mechanism by which the phosphate concentration affects the biosynthesis of cephamycin. 相似文献
7.
In this work, in silico flux balance analysis is used for predicting the metabolic behavior of Streptomyces clavuligerus during clavulanic acid production. To choose the best objective function for use in the analysis, three different optimization problems are evaluated inside the flux balance analysis formulation: (i) maximization of the specific growth rate, (ii) maximization of the ATP yield, and (iii) maximization of clavulanic acid production. Maximization of ATP yield showed the best predictions for the cellular behavior. Therefore, flux balance analysis using ATP as objective function was used for analyzing different scenarios of nutrient limitations toward establishing the effect of limiting the carbon, nitrogen, phosphorous, and oxygen sources on the growth and clavulanic acid production rates. Obtained results showed that ammonia and phosphate limitations are the ones most strongly affecting clavulanic acid biosynthesis. Furthermore, it was possible to identify the ornithine flux from the urea cycle and the α‐ketoglutarate flux from the TCA cycle as the most determinant internal fluxes for promoting clavulanic acid production. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1226–1236, 2015 相似文献
8.
【目的】棒酸(Clavulanic acid)是棒状链霉菌(Streptomyces clavuligerus)产生的β-内酰胺酶抑制剂,其合成过程中产生副产物脲,旨在探讨脲对棒酸合成的影响。【方法】通过发酵过程中脲和铵盐添加实验、阻断脲酶活性以及pH梯度实验研究脲对棒酸合成影响。【结果】脲添加实验结果表明:低浓度脲降低棒酸产量,当添加脲浓度达到20 mmol/L时,完全抑制棒酸合成。由于脲酶可以把脲水解为铵离子,导致铵离子浓度及pH提高,因此,通过阻断棒状链霉菌脲酶活性,可以更准确地反映脲对棒酸合成的影响。结果发现,脲酶敲除株发酵液中脲大量积累,浓度高达10 mmol/L,但棒酸产量没有明显降低,说明在该浓度下脲自身并不能抑制棒酸合成。添加脲降低野生菌棒酸产量,可能是脲被水解为铵离子或其引起的pH变化所致。而棒酸发酵液添加铵盐的结果显示铵离子对棒酸产量没有抑制作用;另外,pH梯度实验证实不同pH对棒酸产量影响较大。【结论】排除了脲和铵离子对棒酸合成的抑制作用,证实了脲酶水解脲导致pH提高是脲添加导致野生菌棒酸产量降低的真正原因,为进一步阐明棒酸合成调控机制提供了根据。 相似文献
9.
Optimization of nutritional requirements and feeding strategies for clavulanic acid production by Streptomyces clavuligerus 总被引:1,自引:0,他引:1
The present work reports the nutritional requirements and environmental conditions for submerged culture of Streptomyces clavuligerus for clavulanic acid production using orthogonal matrix method (Taguchi L(16) design) and also fed-batch fermentation for clavulanic acid production by feeding glycerol, arginine and threonoine to the fermentation medium intermittently. Clavulanic acid production was increased by 18% with the span of feeding glycerol and reached a maximum at 1.30mg/ml with 120h glycerol feeding as compared to 1.10mg/ml in the control. The production also increased with the span of feeding amino acids and reached a maximum of 1.31 and 1.86mg/ml with feeding arginine and threonine, respectively in 120h. There was an overall increase of 18% and 9% in clavulanic acid production with arginine and threonine feeding as compared to the respective controls (1.10 and 1.70mg/ml, respectively). 相似文献
10.
Immobilization of Streptomyces clavuligerus on loofah sponge for the production of clavulanic acid 总被引:1,自引:0,他引:1
Clavulanic acid, a naturally occurring powerful inhibitor of bacterial beta-lactamases, is produced by Streptomyces clavuligerus. The high void volume, permeability, and low cost of fibrous matrices prompted the use of Luffa cylindrica as a matrix for the immobilization of S. clavuligerus for the production of clavulanic acid. Immobilization of S. clavuligerus onto loofah sponge discs was studied with respect to the optimization of the inoculum size (number of discs) and its reusability for clavulanic acid production. Best yield of 1125 microg ml(-1) clavulanic acid was reached with two discs of loofah sponge (each approximately 0.136 g dry weight) and 120 h duration in the first cycle. Data obtained during four reusable cycles showed reduction in the initiation time of clavulanic acid production, resulting in higher levels of clavulanic acid in shorter time duration. Immobilization of S. clavuligerus on to loofah sponge discs, therefore, permit repeated reuse under the specified fermentation conditions for clavulanic acid production. 相似文献
11.
Kuo-Cheng Chen Yun-Huin Lin Cheng-Min Tsai Chen-Hao Hsieh Jer-Yiing Houng 《Biotechnology letters》2002,24(6):455-458
Glycerol at 10–20 g l–1 increased clavulanic acid production by Streptomyces clavuligerus in shake-flask culture. The biosynthesis of clavulanic acid continued for longer by feeding glycerol and production increased to 250 mg l–1 compared with 115 mg l–1 without feeding. In fermenter batch culture, degradation of clavulanic acid began after 72 h. With glycerol feeding in fed-batch culture, clavulanic acid production was not only increased further to about 280 mg l–1 but also remained stable up to 130 h. 相似文献
12.
Simultaneous production and decomposition of clavulanic acid during Streptomyces clavuligerus cultivations 总被引:1,自引:0,他引:1
Clavulanic acid (CA) was produced by Streptomyces clavuligerus in medium containing glycerol and soy meal or soy meal extract. With regard to growth and CA productivity, the microorganism
showed significant differences if solid soy meal as such or its extract were applied as the major nitrogen source. If the
extract is used, growth and CA production take place simultaneously and in the stationary phase the CA concentration is stagnant
or reduces. If soy meal is used, growth is threefold faster and CA is only generated in the stationary phase. In the case
of using the soy meal extract, the decrease of the CA concentration is mainly due to decomposition or re-metabolisation of
CA in the presence of the microorganism. This conclusion is supported by in vivo and in vitro data on CA decomposition.
Received: 17 July 1995 / Received revision: 7 September 1995 / Accepted: 13 September 1995 相似文献
13.
14.
Clavulanic acid (CA), a potent β-lactamase inhibitor, is produced by a filamentous bacterium. Here, the effect of DO and shear,
expressed as impeller tip velocity, on CA production was examined. Cultivations were performed in a 4 L fermentor with speeds
of 600, 800 and 1,000 rpm and a fixed air flow rate (0.5 vvm). Also, cultivation with automatic control of dissolved oxygen,
at 50% air saturation, by varying stirrer speed and using a mixture of air and O2 (10% v/v) in the inlet gas, and a cultivation with fixed stirrer speed of 800 rpm and air flow rate of 0.5 vvm, enriched
with 10% v/v O2, were performed. Significant variations in CA titer, CA production rate and O2 uptake-rate were observed. It was also found that the DO level has no remarkable effect on CA production once a critical
level is surpassed. The most significant improvement in CA production was related to high stirrer speeds. 相似文献
15.
Applications of gene replacement technology to Streptomyces clavuligerus strain development for clavulanic acid production 总被引:4,自引:0,他引:4
Paradkar AS Mosher RH Anders C Griffin A Griffin J Hughes C Greaves P Barton B Jensen SE 《Applied and environmental microbiology》2001,67(5):2292-2297
Cephamycin C production was blocked in wild-type cultures of the clavulanic acid-producing organism Streptomyces clavuligerus by targeted disruption of the gene (lat) encoding lysine epsilon-aminotransferase. Specific production of clavulanic acid increased in the lat mutants derived from the wild-type strain by 2- to 2.5-fold. Similar beneficial effects on clavulanic acid production were noted in previous studies when gene disruption was used to block the production of the non-clavulanic acid clavams produced by S. clavuligerus. Therefore, mutations in lat and in cvm1, a gene involved in clavam production, were introduced into a high-titer industrial strain of S. clavuligerus to create a double mutant with defects in production of both cephamycin C and clavams. Production of both cephamycin C and non-clavulanic acid clavams was eliminated in the double mutant, and clavulanic acid titers increased about 10% relative to those of the parental strain. This represents the first report of the successful use of genetic engineering to eliminate undesirable metabolic pathways in an industrial strain used for the production of an antibiotic important in human medicine. 相似文献
16.
In biochemical processes involving filamentous microorganisms, the high shear rate may damage suspended cells leading to viability loss and cell disruption. In this work, the influence of the shear conditions in clavulanic acid (CA) production by Streptomyces clavuligerus was evaluated in a 4-dm(3) conventional stirred tank (STB) and in 6-dm(3) concentric-tube airlift (ALB) bioreactors. Batch cultivations were performed in a STB at 600 and 800 rpm and 0.5 vvm (cultivations B1 and B2) and in ALB at 3.0 and 4.1 vvm (cultivations A1 and A2) to define two initial oxygen transfer conditions in both bioreactors. The average shear rate ([Formula: see text]) of the cultivations was estimated using correlations of recent literature based on experimental data of rheological properties of the broth (consistency index, K, and flow index, n) and operating conditions, impeller speed (N) for STB and superficial gas velocity in the riser (UGR) for ALB. In the same oxygen transfer condition, the [Formula: see text] values for ALB were higher than those obtained in STB. The maximum [Formula: see text] presented a strong correlation with a maximum consistency index (K (max)) of the broth. Close values of maximum CA production were obtained in cultivations A1 and A2 (454 and 442 mg L(-1)) with similar maximum [Formula: see text] values of 4,247 and 4,225 s(-1). In cultivations B1 and B2, the maximum CA production of 269 and 402 mg L(-1) were reached with a maximum [Formula: see text] of 904 and 1,786 s(-1). The results show that high values of average shear rate increase the CA production regardless of the oxygen transfer condition and bioreactor model. 相似文献
17.
Clavulanic acid is a potent beta-lactamase inhibitor used to combat resistance to penicillin and cephalosporin antibiotics. There is a demand for high-yielding fermentation strains for industrial production of this valuable product. Clavulanic acid biosynthesis is initiated by the condensation of L-arginine and D-glyceraldehyde-3-phosphate (G3P). To overcome the limited G3P pool and improve clavulanic acid production, we genetically engineered the glycolytic pathway in Streptomyces clavuligerus. Two genes (gap1 and gap2) whose protein products are distinct glyceraldehyde-3-phosphate dehydrogenases (GAPDHs) were inactivated in S. clavuligerus by targeted gene disruption. A doubled production of clavulanic acid was consistently obtained when gap1 was disrupted, and reversed by complementation. Addition of arginine to the cultured mutant further improved clavulanic acid production giving a greater than 2-fold increase over wild type, suggesting that arginine became limiting for biosynthesis. This is the first reported application of genetic engineering to channel precursor flux to improve clavulanic acid production. 相似文献
18.
Summary
Streptomyces clavuligerus produced simultaneously cephamycin C and clavulanic acid in defined medium in long-term fermentations and in resting-cell cultures. Biosynthesis of cephamycin by phosphate-limited resting cells was dissociated from clavulanic acid formation by removing either glycerol or sulphate from the culture medium. In absence of glycerol no clavulanic acid was formed but cephamycin production occurred, whereas in absence of sulphate no cephamycin was synthesized but clavulanic biosynthesis took place. Sulphate, sulphite and thiosulphate were excellent sulphur sources for cephamycin biosynthesis while l-methionine and l-cysteine were poor precursors of this antibiotic. Increasing concentrations of sulphate also stimulated clavulanic acid formation. The biosynthesis of clavulanic acid was much more sensitive to phosphate (10–100 mM) regulation than that of cephamycin. Therefore, the formation of both metabolites was pertially dissociated at 25 mM phosphate. By contrast, nitrogen regulation by ammonium salts or glutamic acid strongly reduced the biosynthesis of both cephamycin and clavulanic acid. 相似文献
19.
Palm and palm-kernel oils and their olein and stearin fractions were suitable as the main carbon sources for growth and production of clavulanic acid by Streptomyces clavuligerus. However, oleic and lauric acids were not utilized for growth. A spontaneous mutant, which was selected for higher cephamycin C production, also produced more clavulanic acid with these oils in the medium. 相似文献
20.
Two oligopeptide-permease-encoding genes in the clavulanic acid cluster of Streptomyces clavuligerus are essential for production of the beta-lactamase inhibitor 下载免费PDF全文
Lorenzana LM Pérez-Redondo R Santamarta I Martín JF Liras P 《Journal of bacteriology》2004,186(11):3431-3438
orf7 (oppA1) and orf15 (oppA2) are located 8 kb apart in the clavulanic acid gene cluster of Streptomyces clavuligerus and encode proteins which are 48.0% identical. These proteins show sequence similarity to periplasmic oligopeptide-binding proteins. Mutant S. clavuligerus oppA1::acc, disrupted in oppA1, lacks clavulanic acid production. Clavulanic acid production is restored by transformation with plasmid pIJ699-oppA1, which carries oppA1, but not with the multicopy plasmid pIJ699-oppA2, which carries oppA2. The mutant S. clavuligerus oppA2::aph also lacks clavulanic acid production, shows a bald phenotype, and overproduces holomycin (5). Clavulanic acid production at low levels is restored in the oppA2-disrupted mutants by transformation with plasmid pIJ699-oppA2, but it is not complemented by the multicopy plasmid pIJ699-oppA1. Both genes encode oligopeptide permeases with different substrate specificities. The disrupted S. clavuligerus oppA2::aph is not able to grow on RPPGFSPFR (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg; bradykinin), but both mutants grow on VAPG (Val-Ala-Pro-Gly) as the only nitrogen source, indicating differences in the peptide bound by the proteins encoded by both genes. The null S. clavuligerus oppA1::acc and S. clavuligerus oppA2::aph mutants are more resistant to the toxic tripeptide phosphinothricyl-alanyl-alanine (also named bialaphos) than the wild-type strain, suggesting that this peptide might be transported by these peptide-binding proteins. 相似文献