首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The DNA region encoding the mature form of a pneumococcal murein hydrolase (LytB) was cloned and expressed in Escherichia coli. LytB was purified by affinity chromatography, and its activity was suggested to be the first identified endo-beta-N-acetylglucosaminidase of Streptococcus pneumoniae. LytB can remove a maximum of only 25% of the radioactivity from [(3)H]choline-labeled pneumococcal cell walls in in vitro assays. Inactivation of the lytB gene of wild-type strain R6 (R6B mutant) led to the formation of long chains but did not affect either total cell wall hydrolytic activity at the stationary phase of growth or development of genetic competence. Longer chains were formed when the lytB mutation was introduced into the M31 strain (M31B mutant), which harbors a complete deletion of lytA, which codes for the major autolysin. Furthermore, the use of this mutant revealed that LytB is the first nonautolytic murein hydrolase of pneumococcus. Purified LytB added to pneumococcal cultures of R6B or M31B was capable of dispersing, in a dose-dependent manner, the long chains characteristic of these mutants into diplococci or short chains, the typical morphology of R6 and M31 strains, respectively. In vitro acetylation of purified pneumococcal cell walls did not affect the activity of LytB, whereas that of the LytA amidase was drastically reduced. On the other hand, the use of a translational fusion between the gene (gfp) coding for the green fluorescent protein (GFP) and lytB supports the notion that LytB accumulates in the cell poles of either the wild-type R6, lytB mutants, or ethanolamine-containing cells (EA cells). The GFP-LytB fusion protein was also able to unchain the lytB mutants but not the EA cells. In contrast, translational fusion protein GFP-LytA preferentially bound to the equatorial regions of choline-containing cells but did not affect their average chain length. These observations suggest the existence of specific receptors for LytB that are positioned at the polar region on the pneumococcal surface, allowing localized peptidoglycan hydrolysis and separation of the daughter cells.  相似文献   

2.
Choline-containing teichoic acid seems to be essential for the adsorption of bacteriophage Dp-1 to pneumococci. This conclusion is based on the following observations: In contrast to pneumococci grown in choline-containing medium, cells grown in medium containing ethanolamine or other submethylated aminoalcohols instead of choline were found to be resistant to infection by Dp-1. Live choline-grown bacteria and heat- or UV-inactivated cells and purified cell walls prepared from these cells were capable of adsorbing phage Dp-1; ethanolamine-grown pneumococci or cell wall preparations were unable to do so. Adsorption of Dp-1 to choline-containing cell walls was competitively inhibited by phosphorylcholine and by several choline-containing soluble cell surface components, such as the Forssman antigen and the teichoic acid-glycan complexes formed by autolytic cell wall degradation. Cell walls prepared from pneumococci grown in ethanolamine or phosphorylethanolamine were inactive. Electron microscopic studies with pneumococci that had segments of choline-containing cell wall material amid ethanolamine-containing regions indicated that the Dp-1 phage particles adsorbed exclusively to the choline-containing surface areas. We suggest that the choline residues of the pneumococcal teichoic acid are essential components of the Dp-1 phage receptors in this bacterium.  相似文献   

3.
4.
Mechanism of phage-induced lysis in pneumococci   总被引:4,自引:0,他引:4  
Earlier studies have suggested the possible role of host autolytic enzyme in the release of progeny phage from Dp-1 infected pneumococci. Several new experiments described here reinforce this notion. Specifically, the resistance of an autolysis-defective mutant to infection at low phage to cell ratios could be eliminated by prior 'coating' of the host bacteria with pneumococcal autolysin isolated from wild-type cells. Similar, productive infection was also possible by lowering the temperature of incubation to 30 degrees C, a condition that leads to a partial activation of the thermosensitive residual autolysin in the mutant cells. Other experiments, however, clearly indicate the role of the newly discovered phage-associated lysin (PAL), reported in the accompanying communication, in bacteriophage release and culture lysis; specifically, lysis was stimulated by reducing agents and inhibited by cardiolipin. It seems that both the host-related and the PAL activities are involved with Dp-1 induced lysis of pneumococci.  相似文献   

5.
A murein hydrolase complex selectively lysed cultures of penicillin-resistant pneumococci and their cell walls in which the majority of muropeptide subunits were indirectly cross-linked through oligopeptide substituents (alanyl-alanine or alanyl-serine) on the epsilon-amino group of the stem peptide lysine residues. Walls of penicillin-susceptible strains were not hydrolyzed.  相似文献   

6.
Autolysin-defective pneumococci continue to synthesize both peptidoglycan and teichoic acid polymers (Fischer and Tomasz, J. Bacteriol. 157:507-513, 1984). Most of these peptidoglycan polymers are released into the surrounding medium, and a smaller portion becomes attached to the preexisting cell wall. We report here studies on the degree of cross-linking, teichoic acid substitution, and chemical composition of these peptidoglycan polymers and compare them with normal cell walls. peptidoglycan chains released from the penicillin-treated pneumococci contained no attached teichoic acids. The released peptidoglycan was hydrolyzed by M1 muramidase; over 90% of this material adsorbed to vancomycin-Sepharose and behaved like disaccharide-peptide monomers during chromatography, indicating that the released peptidoglycan contained un-cross-linked stem peptides, most of which carried the carboxy-terminal D-alanyl-D-alanine. The N-terminal residue of the released peptidoglycan was alanine, with only a minor contribution from lysine. In addition to the usual stem peptide components of pneumococcal cell walls (alanine, lysine, and glutamic acid), chemical analysis revealed the presence of significant amounts of serine, aspartate, and glycine and a high amount of alanine and glutamate as well. We suggest that these latter amino acids and the excess alanine and glutamate are present as interpeptide bridges. Heterogeneity of these was suggested by the observation that digestion of the released peptidoglycan with the pneumococcal murein hydrolase (amidase) produced peptides that were resolved by ion-exchange chromatography into two distinct peaks; the more highly mobile of these was enriched with glycine and aspartate. The peptidoglycan chains that became attached to the preexisting cell wall in the presence of penicillin contained fewer peptide cross-links and proportionally fewer attached teichoic acids than did their normal counterparts. The normal cell wall was heavily cross-linked, and the cross-linked peptides were distributed equally between the teichoic acid-linked and teichoic acid-free fragments.  相似文献   

7.
We have localized, cloned and characterized the genes coding for the lytic system of the pneumococcal phage Dp-1. The lytic enzyme of this phage (Pal), previously identified as an N -acetyl-muramoyl- L -alanine amidase, shows a modular organization similar to that described for the lytic enzymes of Streptococcus pneumoniae and its bacteriophages. The construction of chimeric enzymes between pneumococcus and bacteria (or phages) that belong to different Gram-positive families has shown that the interchange of functional domains switches enzyme specificity. Interestingly, Pal appears to be a natural chimeric enzyme of intergeneric origin, that is the N-terminal domain was highly similar to that of the murein hydrolase coded by a gene found in the phage BK5-T that infects Lactococcus lactis , whereas the C-terminal domain was homologous to those found in the lytic enzymes of the pneumococcal system that is responsible for the binding to the choline residues present in the cell wall substrate. Biochemical analysis of Pal revealed that this enzyme shares important properties with those of the major LytA101 autolysin found in an atypical, clinical pneumococcal isolate. These peculiar characteristics have been ascribed to a modified C-terminal domain. The natural chimeric enzyme described here provides further support for the theory of modular evolution of proteins and its characteristics also furnish interesting clues on the molecular mechanisms involved in the more invasive types of atypical pneumococci.  相似文献   

8.
A high-molecular-weight (250 000) bile salt hydrolase (cholylglycine hydrolase, EC 3.5.-.-) was isolated and purified 128-fold from the "spheroplast lysate" fraction prepared from Bacteroids fragilis subsp. fragilis ATCC 25285. The intact enzyme had a molecular weight of approx. 250 000 as determined by gel infiltration chromatography. One major protein band, corresponding to a molecular weight of 32 500, was observed on 7% sodium dodecyl sulfate polyacrylamide gel electrophoresis of pooled fractions from DEAE-cellulose column chromatography (128-fold purified). The pH optimum for the 64-fold purified enzyme isolated from Bio-Gel A 1.5 M chromatography was 4.2 and bile salt hydrolase activity measured in intact cell suspensions had a pH optimum of 4.5. Substrate specificity studies indicated that taurine and glycine conjugates of cholic acid, chenodeoxycholic acid and deoxycholic acid were readily hydrolyzed; however, lithocholic acid conjugates were not hydrolyzed. Substrate saturation kinetics were biphasic with an intermediate plateau (0.2--0.3 mM) and a complete loss of enzymatic activity was observed at high concentration for certain substrates. The presence or absence of 7-alpha-hydroxysteroid dehydrogenase was absolutely correlated with that of bile salt hydrolase activity in six to ten strains and subspecies of B. fragilis.  相似文献   

9.
Murein hydrolase activities were analyzed in synchronized cultures of Escherichia coli B/r. Cell wall-bound murein hydrolase activities, including the penicillin-sensitive endopeptidase, increased discontinuously during the cell cycle and showed maximum activity at a cell age of 30 to 35 min (generation time, 43 min). Maximum activity was observed at the same time that the rate of cell wall synthesis reached its maximum. These oscillations depended on the termination of replication: no increase in hydrolase activity was found if deoxyribonucleic acid synthesis was inhibited at an early time in the life cycle. In contrast, the activity of another murein hydrolase that was not tightly bound to the membrane (transglycosylase) increased exponentially with time, even when deoxyribonucleic acid synthesis was inhibited.  相似文献   

10.
Llull D  López R  García E 《FEBS letters》2006,580(8):1959-1964
The skl gene from Streptococcus mitis SK137 encodes a peptidoglycan hydrolase (Skl) that has been purified and biochemically characterized. Analysis of the degradation products obtained by digestion of pneumococcal cell walls with Skl revealed that this enzyme is an N-acetylmuramoyl-L-alanine amidase (EC 3.5.1.28), showing optimum activity at 30 degrees C and at a pH of 6.5. Skl is a unique member of the choline-binding family of proteins since it contains a cysteine, histidine-dependent amidohydrolases/peptidases (CHAP) domain. The CHAP domain of Skl showed homology to lysins of unknown especificity from a variety of streptococcal prophages. Skl represents the first characterized member of a new subfamily of CHAP-containing choline-binding proteins.  相似文献   

11.
A lytic enzyme active against viable, intact staphylococci is released into culture fluids upon lysis of bacteriophage-infected Staphylococcus aureus PS53 cells. This enzyme, staphylococcal phage-associated lysin (PAL), was partially purified by ammonium sulfate precipitation and gel filtration through Sephadex G-200. PAL is optimally active at pH 6.5 and 30 C, and lytic activity is greatly enhanced by the addition of reducing agents. Lytic activity was observed against all strains of staphylococci tested and against purified staphylococcal cell walls, but no activity was noted against other bacterial species. PAL possesses peptidase activity and results in the production of spheroplasts which can be osmotically stabilized for extended periods by the addition of 7.5% polyethylene glycol 4000.  相似文献   

12.
Alteration of Escherichia coli murein during amino acid starvation.   总被引:27,自引:20,他引:7       下载免费PDF全文
We have studied the mechanisms by which amino acid starvation of Escherichia coli induces resistance against the lytic and bactericidal effects of penicillin. Starvation of E. coli strain W7 of the amino acids lysine or methionine resulted in the rapid development of resistance to autolytic cell wall degradation, which may be effectively triggered in growing bacteria by a number of chemical or physical treatments. The mechanism of this effect in the amino acid-starved cells involved the production of a murein relatively resistant to the hydrolytic action of crude murein hydrolase extracts prepared from normally growing E. coli. Resistance to the autolysins was not due to the covalently linked lipoprotein. Resistance to murein hydrolase developed most rapidly and most extensively in the portion of cell wall synthesized after the onset of amino acid starvation. Lysozymes digests of the autolysin-resistant murein synthesized during the first 10 min of lysine starvation yielded (in addition to the characteristic degradation products) a high-molecular-weight material that was absent from the lysozyme-digests of control cell wall preparations. It is proposed that inhibition of protein synthesis causes a rapid modification of murein structure at the cell wall growth zone in such a manner that attachment of murein hydrolase molecules is inhibited. The mechanism may involve some aspects of the relaxed control system since protection against penicillin-induced lysis developed much slower in amino acid-starved relaxed controlled (relA) cells than in isogenic stringently controlled (relA+) bacteria.  相似文献   

13.
Five glycosidase activities from cell homogenate of carrot ( Daucus carota L. cv. Kintoki) cell cultures were assayed after extraction successively by phosphate buffer (pH 7.0) and the buffer plus 2 M NaCl. A β-galactosidase (EC 3.2.1.23) was isolated in a highly purified state from the buffer-soluble protein fraction by ammonium sulfate fractionation and chromatography on CM-Sephadex C-50, DEAE-Sephadex A-50 and Sephadex G-200. The molecular weight of this enzyme was ca 104 000 and the isoelectric point was pH 7.8. The optimal activity occurred at pH 4.4 with McIlvaine buffer. The Km and Vmax values were 1.67 m M and 201 units (mg protein)−1, respectively, for p -nitrophenyl β- d -galactopyranoside. The enzyme activity was strongly inhibited by Zn2+, Cu2+, Hg2+ and d -galactono-1,4-lactone. The enzyme acted on the β-1,4-linked galactan prepared from citrus pectin in an exo-fashion. Furthermore, the enzyme was slightly involved in the hydrolysis of the pectic polymer and cell walls purified from carrot cell cultures.  相似文献   

14.
Previous studies in our laboratory have shown that the Staphylococcus aureus LytSR two-component regulatory system affects murein hydrolase activity and autolysis. A LytSR-regulated dicistronic operon has also been identified and shown to encode two potential membrane-associated proteins, designated LrgA and LrgB, hypothesized to be involved in the control of murein hydrolase activity. In the present study, a lrgAB mutant strain was generated and analyzed to test this hypothesis. Zymographic and quantitative analysis of murein hydrolase activity revealed that the lrgAB mutant produced increased extracellular murein hydrolase activity compared to that of the wild-type strain. Complementation of the lrgAB defect by providing the lrgAB genes in trans restored the wild-type phenotype, indicating that these genes confer negative control on extracellular murein hydrolase activity. In addition to these effects, the influence of the lrgAB mutation on penicillin-induced lysis and killing was examined. These studies demonstrated that the lrgAB mutation enhanced penicillin-induced killing of cells approaching the stationary phase of growth, the time at which the lrgAB operon was shown to be maximally expressed. This effect of the lrgAB mutation on penicillin-induced killing was shown to be independent of cell lysis. In contrast, the lrgAB mutation did not affect penicillin-induced killing of cells growing in early-exponential phase, a time in which lrgAB expression was shown to be minimal. However, expression of the lrgAB operon in early-exponential-phase cells inhibited penicillin-induced killing, again independent of cell lysis. The data generated by this study suggest that penicillin-induced killing of S. aureus involves a novel regulator of murein hydrolase activity.  相似文献   

15.
Synopsis. Tetrahymena pyriformis strain HSM secretes large quantities of acid hydrolases into the culture medium. An enzyme secreted by the ciliate and capable of degrading walls of streptococci was identified and purified to a considerable degree. The pH optimum of this enzyme was 3–4, and it was eluted after cytochrome c from Sephadex G-75 columns. Unlike lysozyme, the enzyme was thermolabile at pH 2.9, but relatively thermostable at pH 8.1. It degraded “C-labeled cell walls of streptococci releasing reducing groups. Cell walls prepared from different strains of streptococci differed in susceptibility to this enzyme, the most sensitive strain tested being of group A, type T12. It was shown in immunologic studies that this hydrolase released the group-specific carbohydrate from the walls. Secretions of Tetrahymena from early stationary-phase cultures had more bacterio-lytic activity than those from cells from late stationary-phase cultures. Further, cells from cultures grown in glucose-supplemented medium secreted less of the enzyme than ciliates of comparable age grown in unsupplemented proteose-peptone. The newly isolated bacteriolytic enzyme, presumably of lysosomal origin, may be helpful in characterizing streptococcal cell walls.  相似文献   

16.
J L Garcia  E Diaz  A Romero    P Garcia 《Journal of bacteriology》1994,176(13):4066-4072
Autolysins are endogenous enzymes that specifically degrade the covalent bonds of the cell walls and eventually can induce bacterial lysis. One of the best-characterized autolysins, the major pneumococcal LytA amidase, has evolved by the fusion of two domains, the N-terminal catalytic domain and the C-terminal domain responsible for the binding to cell walls. The precise biochemical role played by the six repeat units that form the C-terminal domain of the LytA amidase has been investigated by producing serial deletions. Biochemical analyses of the truncated mutants revealed that the LytA amidase must contain at least four units to efficiently recognize the choline residues of pneumococcal cell walls. The loss of an additional unit dramatically reduces its hydrolytic activity as well as the binding affinity, suggesting that the catalytic efficiency of this enzyme can be considerably improved by keeping the protein attached to the cell wall substrate. Truncated proteins lacking one or two repeat units were more sensitive to the inhibition by free choline than the wild-type enzyme, whereas the N-terminal catalytic domain was insensitive to this inhibition. In addition, the truncated proteins were inhibited by deoxycholate (DOC), and the expression of a LytA amidase lacking the last 11 amino acids in Streptococcus pneumoniae M31, a strain having a deletion in the lytA gene, conferred to the cells an atypical phenotype (Lyt+ DOC-) (cells autolysed at the end of the stationary phase but were not sensitive to lysis induced by DOC), which has been previously observed in some clinical isolates of pneumococci. Our results are in agreement with the existence of several choline-binding sites and suggest that the stepwise acquisition of the repeat units and the tail could be considered an evolutionary advantage for the enzyme, since the presence of these motifs increases its hydrolytic activity.  相似文献   

17.
Interaction of the pneumococcal amidase with lipoteichoic acid and choline   总被引:18,自引:0,他引:18  
The choline-containing lipoteichoic acid (LTA, Forssman Antigen) of Streptococcus pneumoniae suppresses the activity of the pneumococcal autolysin, an N-acetyl-muramoyl-L-alanine-amidase (amidase) in aqueous solution [H?ltje and Tomasz (1975) Proc. Natl Acad. Sci. USA 72, 1690-1694]. The interaction between LTA and enzyme was used to establish a purification by affinity chromatography on LTA-Sepharose. The amidase could be eluted from the column with choline only. This implies that binding of the enzyme to LTA is mediated via the choline residues of the LTA. Upon binding to the LTA-Sepharose, the amidase converted from the applied E-form (an inactive form of the amidase) to the active C-form, a process which up to now was known to be mediated only by the pneumococcal choline-containing wall teichoic acid. Similar interactions between LTA and amidase seemed to occur in membrane fractions derived from choline-grown cells: the membrane-associated enzyme was present in the C-form and could be detached completely with choline, suggesting that the amidase is bound to the membrane attached LTA rather than being a membrane protein itself. This was supported by the absence of amidase activity in membrane fractions derived from ethanolamine-grown pneumococci, in which choline containing LTA is absent. The LTA-Sepharose-associated amidase was not inhibited, but retained its activity. The enzyme was also not inhibited by lipase-digested LTA. Both are conditions where the LTA is not present in micelles, unlike in aqueous solution. Therefore, mere binding to the LTA is probably not responsible for the inhibitory effect, but inhibition is a manifestation of an inaccessibility of the substrate for the amidase when bound to micellar LTA. When the interactions between choline and amidase were investigated, it was found that high choline concentrations (2%) inhibited the enzyme completely. Even in vivo, 2% choline in the culture medium led to phenotypically amidase-deficient pneumococci. Furthermore, in vitro, low choline concentrations (0.1%) suppressed the wall-mediated conversion. On the other hand, with high choline concentrations (2%) conversion took place in the absence of cell walls. Depending on how the amidase has been converted, the apparent Mr of the resulting C-amidase was different: the cell-wall-converted enzyme was of high Mr, whereas the choline-converted and the LTA-Sepharose-eluted enzyme showed an apparent low molecular mass known for the E-form, when analyzed on sucrose gradients.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Tetrahymena pyriformis strain HSM secretes large quantities of acid hydrolases into the culture medium. An enzyme secreted by the ciliate and capable of degrading walls of streptococci was identified and purified to a considerable degree. The pH optimum of this enzyme was 3--4, and it was eluted after cytochrome c from Sephadex G-75 columns. Unlike lysozyme, the enzyme was thermolabile at pH 2.9, but relatively thermostable at pH 8.1. It degraded 14C-labeled cell walls of streptococci releasing reducing groups. Cell walls prepared from different strains of streptococci differed in susceptibility to this enzyme, the most sensitive strain tested being of group A, type T12. It was shown in immunologic studies that this hydrolase released the group-specific carbohydrate from the walls. Secretions of Tetrahymena from early stationary-phase cultures had more bacteriolytic activity than those from cells from late stationary-phase cultures. Further, cells from cultures grown in glucose-supplemented medium secreted less of the enzyme than ciliates of comparable age grown in unsupplemented proteose-peptone. The newly isolated bacteriolytic enzyme, presumably of lysosomal origin, may be helpful in characterizing streptococcal cell walls.  相似文献   

19.
The activity of long-chain acyl-CoA hydrolase in rat liver was increased by the administration of peroxisome proliferators, such as ethyl p-chlorophenoxyisobutyrate, di(2-ethylhexyl)phthalate or acetylsalicylic acid. The induced activity was mainly confined in the soluble fluid after the subcellular fractionation. The enzyme was purified nearly to homogeneity from livers of rats treated with di(2-ethylhexyl)phthalate. The specific activity of the final preparation was 247 mumol palmitoyl-CoA hydrolyzed min-1 mg protein-1. The molecular weight of the native enzyme was estimated to be 150 000 by gel filtration and that of the subunits was 41 000 by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The activity of the enzyme was not increased but inhibited by bovine serum albumin or Triton X-100. The molecular and catalytic properties of the enzyme suggest that the induced enzyme was different from mitochondrial and microsomal long-chain acyl-CoA hydrolyses in liver.  相似文献   

20.
Abstract A protein that degrades pneumococcal walls containing choline, but not ethanolamine, in the teichoic acids has been isolated and purified from supernatants obtained from cultures of Clostridium acetobutylicum . The analyses of the degradation products of [3H]choline-labeled cell walls treated with this enzyme indicated that the purified protein, showing an apparent M r of 115 000, is an N-acetylmuramyl- l -alanine amidase. Our results also suggest that C. acetobutylicum contains choline in its cell wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号