首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Urbanization is occurring around the globe, changing environmental conditions and influencing biodiversity and ecosystem functions. Urban domestic gardens represent a small‐grained mosaic of diverse habitats for numerous species. The challenging conditions in urban gardens support species possessing certain traits, and exclude other species. Functional diversity is therefore often altered in urban gardens. By using a multi‐taxa approach focused on native grassland plants and ground‐dwelling invertebrates with overall low mobility (snails, slugs, spiders, millipedes, woodlice, ants, rove beetles), we examined the effects of urbanization (distance to city center, percentage of sealed area) and garden characteristics on functional dispersion, functional evenness, habitat preferences and body size. We conducted a field survey in 35 domestic gardens along a rural–urban gradient in Basel, Switzerland. The various groups showed different responses to urbanization. Functional dispersion of native grassland plants decreased with increasing distance to the city center, while functional dispersion of ants decreased with increasing percentage of sealed area. Functional evenness of ants increased with increasing distance to the city center and that of rove beetles decreased with increasing percentage of sealed area. Contrary to our expectation, in rove beetles, the proportion of generalists decreased with increasing percentage of sealed area in the surroundings, and the proportion of species preferring dry conditions increased with increasing distance to the city center. Body size of species increased with distance to city center for slugs, spiders, millipedes, ants, and rove beetles. Local garden characteristics had few effects on functional diversity and habitat preferences of the groups examined. Our study supports the importance of using multi‐taxa approaches when examining effects of environmental change on biodiversity. Considering only a single group may result in misleading findings for overall biodiversity. The ground‐dwelling invertebrates investigated may be affected in different ways from the more often‐studied flying pollinators or birds.  相似文献   

2.
Agricultural intensification is recognised as a major driver of biodiversity loss in human-modified landscapes. Several agro-environmental measures at different spatial scales have been suggested to mitigate the negative impact of intensification on biodiversity and ecosystem services. The effect of these measures on the functional structure of service-providing communities remains, however, largely unexplored. Using two distinct landscape designs, we examined how the management options of organic farming at the field scale and crop diversification at the landscape level affect the taxonomic and functional structure of generalist predator communities and how these effects vary along a landscape complexity gradient. Organic farming as well as landscapes with longer and more diversified crop rotations enhanced the activity-density of spiders and rove beetles, but not the species richness or evenness. Our results indicate that the two management options affected the functional composition of communities, as they primarily enhanced the activity-density of functionally similar species. The two management options increased the functional similarity between spider species in regards to hunting mode and habitat preference. Organic farming enhanced the functional similarity of rove beetles. Management options at field and landscape levels were generally more important predictors of community structure when compared to landscape complexity. Our study highlights the importance of considering the functional composition of generalist predators in order to understand how agro-environmental measures at various scales shape community assemblages and ecosystem functioning in agricultural landscapes.  相似文献   

3.
Less intensively managed semi-natural habitats, e.g., field and meadow margins like hedgerows, are thought to be crucial landscape components for maintaining biodiversity in highly disturbed and intensively managed agricultural landscapes. In this study, we focused on the effects of three meadow margin types on activity-density, species richness and species composition of carabid and staphylinid beetles recorded by pitfall traps in Central European landscapes dominated by intensively managed meadows. Carabid activity-density was significantly higher in meadows than in meadow margins and within meadow margins their activity-density increased from grassy meadow margins via shrubby ones to woody meadow margins. We found that recorded species richness of both carabid and staphylinid beetles was not significantly affected by habitat identity (meadow margin or neighbouring meadow) and meadow margin type. Recorded species composition of both investigated taxa was significantly affected by habitat identity and interaction between habitat identity and meadow margin type (i.e. it differed between particular meadow margin types). Assemblages inhabiting various meadow margin types were more dissimilar between each other than assemblages from neighbouring meadows. Meadow margins within grassland dominated landscapes maintain local species richness by hosting different species from those living in surrounding meadows. Dissimilarity of carabid and staphylinid assemblages from meadows neighbouring both sides of particular meadow margin did not differ between meadow margin types. Our results indicate that semi-natural habitats play an important role in maintaining biodiversity not only in agricultural landscapes dominated by arable fields, but also in those dominated by meadows.  相似文献   

4.
Habitat fragmentation is a major driver of biodiversity loss, but observed effects vary and may depend on the group examined. Time since fragmentation may explain some differences between taxonomical groups, as some species and thus species composition respond with a delay to changes in their environment. Impacts of drivers of global change may thus be underestimated in short-term studies. In our study we experimentally fragmented nutrient-poor dry calcareous grasslands and studied the response of species richness, individual density and species composition of various groups of invertebrates (gastropods, ants, ground beetles, rove beetles, orthoptera, spiders, woodlice) in 12 small (1.5 m * 1.5 m) and 12 large (4.5 m * 4.5 m) fragments and their corresponding control plots after 7 years. We further examined responses to fragmentation in relation to body size and habitat preferences. Responses to fragmentation varied between taxonomical groups. While spider species richness and individual density were lower in fragments, the opposite was true for an orthopteran species and woodlice. Species composition and β-diversity differed between fragments and control plots for some groups. However, the interaction treatment*plot size was rarely significant. Species with high occupancy rates in undisturbed control plots responded more negatively to the fragmentation, while species with large body size were relatively more abundant in fragments in some groups. No effect of the fragmentation was found for ants, which may have the longest lag times because of long-lived colonies. However, relationships between abundance and the species’ preferences for environmental factors affected by edge effects indicate that ant diversity too may be affected in the longer-term. Our results show the importance of considering different groups in conservation management in times of widespread fragmentation of landscapes. While species richness may respond slowly, changes in abundance related to habitat preferences or morphology may allow insights into likely long-term changes.  相似文献   

5.
Local species richness of butterflies can be expected to benefit from both local habitat properties as well as the availability of suitable habitats and source populations in the surrounding landscape. Whether local species richness is dependent on local or landscape factors can be assessed by examining the relationship between local and landscape species richness. Here we studied how local species richness is related to landscape‐level species richness in landscapes differing in agricultural intensity. The relationship was linear for field boundaries in intensively cultivated landscapes and non‐linear in less‐intensively cultivated landscapes. In landscapes containing semi‐natural grasslands (on average 4% of overall land‐use), the relationship was non‐linear for field boundaries, but linear when considering local species richness of the grasslands themselves. These results show that local factors are more important than landscape factors in determining local species richness in landscapes which contained semi‐natural grasslands. Local species richness was limited by landscape factors in intensively cultivated landscapes. This interpretation was supported by the relationship between local species richness and landscape‐scale average mobility and generalist percentage of butterfly assemblages. We conclude that the management of field boundary habitat quality for butterflies is expected to be most effective in landscapes with semi‐natural grasslands, the species composition of which in turn is dependent on the regional occurrence of grasslands. Based on our results, managing non‐crop habitats for the conservation of habitat specialists and species with poor mobility will be most efficient in regions where patches of semi‐natural grasslands occur.  相似文献   

6.
The relative contribution of mixed orchard and riparian vegetation patches to local and regional diversity of Mediterranean landscapes dominated by cork-oak woodlands was tested in 2006–2007 using ground, rove and darkling beetles (Coleoptera: Carabidae, Staphylinidae, Tenebrionidae). Mixed orchard and riparian gallery habitats recorded higher values of abundance and species richness for overall beetle species, although most darkling beetle species were associated with the sclerophyllous cork-oak woodlands. Ground and rove beetle community structure changed from the orchard and riparian habitats to samples placed 100 m away into the surrounding cork-oak woodland, i.e., non-cork-oak patches enhanced beta diversity within the landscape mosaic. Analysis of ground beetle traits concerning moisture preferences revealed a higher proportion of hygrophilous species in mixed orchard and riparian gallery habitats while xerophilous species were dominant within the cork-oak woodlands. The results of this study suggested that land-use management promoting the maintenance of habitat heterogeneity enhances biodiversity conservation of important hygrophilous and xerophilous species, and subsequently the sustainable use of Mediterranean agro-forest mosaics.  相似文献   

7.
There is an increasing awareness that not only area and isolation, but also the characteristics of the landscape surrounding habitat patches influence population persistence and species diversity in fragmented landscapes. In this study, we examine the effects of grassland fragmentation and land use in the landscape matrix (on a 2 km scale) on species richness of plants, butterflies, bees and hoverflies. These organisms were studied in replicated remnant patches of different sizes and isolation, embedded in landscapes dominated either by forest, arable land or a mix of these. We found positive effects of patch area on species richness of the three insect taxa, but not of plants. Isolation had a negative effect only on hoverflies. Matrix type had contrasting effects on the studied taxa. Species richness of plants and butterflies was lowest in patches in landscapes dominated by arable land and highest in forest‐dominated landscapes. For hoverflies, the negative effect of small patch area was strongest in forest‐dominated landscapes, and there was a similar non‐significant trend for bees. Our study shows the importance of considering matrix characteristics when studying responses to habitat fragmentation. Differences in matrix response among organism groups probably impinge on differing mechanisms. A forest matrix is likely to provide additional resources for butterflies but either constitute a barrier to dispersal or deprive resources as compared to an arable matrix for hoverflies. Enhanced plant diversity in grassland patches embedded in forested landscapes can be explained by habitat generalists more easily invading these patches, or by an unpaid extinction debt in these landscapes.  相似文献   

8.
Aim To assess the relative importance of climate, biotope and soil variables as well as geographical location for the species richness of plants, butterflies, day‐active macromoths and wild bees in boreal agricultural landscapes. Location A total of 68 agricultural landscapes located in southern Finland. Methods Generalized linear mixed models were used to analyse the effects of environmental (climate, biotope and soil) and spatial (latitude and longitude) variables on species richness of four taxa in 136 study squares of 0.25 km2. Using partial regression, the variation in species richness was decomposed into the purely environmental fraction; the spatially structured environmental fraction; and the purely spatial fraction, including variables retained in cubic trend surface regression. Results Species richness of all taxa was positively correlated with temperature. Species richness of plants and butterflies was also positively correlated with the heterogeneity of landscape. The extent of low‐intensity agricultural land and forest had a positive effect, and the extent of cultivated field a negative effect on the species richness of these taxa. The effect of soil characteristics on the number of observed species was negligible for all taxa. The greatest part of the explained variation for all taxa was accounted for by the pure effect of geographical location. To a somewhat lesser extent, the species richness of plants, butterflies and bees was also related to the effects of spatially structured environmental variables, and the species richness of macromoths to the effects of environmental variables. Main conclusions Multi‐species richness of boreal agricultural landscapes at the scale of 0.25 km2 was associated with the heterogeneity of the local landscape. However, large‐scale geographical variation in species richness was also observed, which indicates the importance of climate and geographical location for the taxa studied. These results highlight the fact that, even on a landscape scale, geographical factors should be taken into account in biodiversity studies. Heterogeneous agricultural landscapes, including forest and non‐crop biotopes, should be preserved or restored to maintain biodiversity.  相似文献   

9.
Carabid beetles and ground-dwelling spiders inhabiting agroecosystems are beneficial organisms with a potential to control pest species. Intensification of agricultural management and reduction of areas covered by non-crop vegetation during recent decades in some areas has led to many potentially serious environmental problems including a decline in the diversity and abundance of beneficial arthropods in agricultural landscapes. This study investigated carabid beetle and spider assemblages in non-crop habitat islands of various sizes (50 to 18,000 square metres) within one large field, as well as the arable land within the field, using pitfall traps in two consecutive sampling periods (spring to early summer and peak summer). The non-crop habitat islands situated inside arable land hosted many unique ground-dwelling arthropod species that were not present within the surrounding arable land. Even the smallest non-crop habitat islands with areas of tens of square metres were inhabited by assemblages substantially different from these inhabiting arable land and thus enhanced the biodiversity of agricultural landscapes. The non-crop habitat area substantially affected the activity density, recorded species richness and recorded species composition of carabid and ground-dwelling spider assemblages; however, the effects were weakened when species specialised to non-crop habitats species were analysed separately. Interestingly, recorded species richness of spiders increased with non-crop habitat area, whereas recorded species richness of carabid beetles exhibited an opposite trend. There was substantial temporal variation in the spatial distribution of ground-dwelling arthropods, and contrasting patterns were observed for particular taxa (carabid beetles and spiders). In general, local environmental conditions (i.e., non-crop habitat island tree cover, shrub cover, grass cover and litter depth) were better determinants of arthropod assemblages than non-crop habitat island size, indicating that the creation of quite small but diversified (e.g., differing in vegetation cover) non-crop habitat islands could be the most efficient tool for the maintenance and enhancement of diversity of ground-dwelling carabids and spiders in agricultural landscapes.  相似文献   

10.
Agriculture of varying management intensity dominates fragmented tropical areas and differentially impacts organisms across and within taxa. We examined impacts of local and landscape characteristics on four groups of ants in an agricultural landscape in Chiapas, Mexico comprised of forest fragments and coffee agroecosystems varying in habitat quality. We sampled ground ants found in leaf litter and rotten logs and arboreal ants found in hollow coffee twigs and on tree trunks. Then using vegetation and agrochemical indices and conditional inference trees, we examined the relative importance of local (e.g. vegetation, elevation, agrochemical) and landscape variables (e.g. distance to and amount of nearby forest and rustic coffee) for predicting richness and abundance of ants. Leaf litter ant abundance increased with vegetation complexity; richness and abundance of ants from rotten logs, twig-nests, and tree trunks were not affected by vegetation complexity. Agrochemical use did not affect species richness or abundance of any ant group. Several local factors (including humus mass, degree of decay of logs, number of hollow twigs, tree circumference, and absence of fertilizers) were significant positive predictors of abundance and richness of some ant groups. Two landscape factors (forest within 200 m, and distance from forest) predicted richness and abundance of twig-nesting and leaf litter ants. Thus, different ant groups were influenced by different characteristics of agricultural landscapes, but all responded primarily to local characteristics. Given that ants provide ecosystem services (e.g. pest control) in coffee farms, understanding ant responses to local and landscape characteristics will likely inform farm management decisions.  相似文献   

11.
We analysed the effect of agricultural land use intensity and landscape structure on the plant diversity and improved the monitoring methodology by classifying plant species into two emergent agrotolerance groups: (i) species that occur frequently on agricultural land – common agrotolerant species, and (ii) all other species – so-called nature-value species, including habitat specialists and rare weed species. We tested the hypothesis that the species richness (alpha-diversity at habitat scale) of those species groups has differential response to changes in agricultural land use intensity, landscape structure and habitat characteristics.The proportion of (semi-)natural elements in the landscape enhanced species richness at habitat and landscape scale. Higher fertilisation rate predicted the reduction in small-scale species richness in both species groups. High species richness of agrotolerant species was associated with the vicinity of agricultural land, i.e. open field boundaries, small-area habitat patches and road verges, while it was suppressed by tree or shrub layer. The alpha-diversity of nature-value species was higher in large-area habitat patches and ditch verges.The classification of plant species based on their tolerance to agricultural disturbances is very useful in the evaluation of the effects of agricultural practices on biodiversity. The distinction between agrotolerant and nature-value plant species, and the estimation of habitat structure would increase the effectiveness of biodiversity monitoring in agricultural landscapes in comparison with classical methodology based on the assessment of total plant species richness.  相似文献   

12.
European farmland biodiversity is declining due to land use changes towards agricultural intensification or abandonment. Some Eastern European farming systems have sustained traditional forms of use, resulting in high levels of biodiversity. However, global markets and international policies now imply rapid and major changes to these systems. To effectively protect farmland biodiversity, understanding landscape features which underpin species diversity is crucial. Focusing on butterflies, we addressed this question for a cultural-historic landscape in Southern Transylvania, Romania. Following a natural experiment, we randomly selected 120 survey sites in farmland, 60 each in grassland and arable land. We surveyed butterfly species richness and abundance by walking transects with four repeats in summer 2012. We analysed species composition using Detrended Correspondence Analysis. We modelled species richness, richness of functional groups, and abundance of selected species in response to topography, woody vegetation cover and heterogeneity at three spatial scales, using generalised linear mixed effects models. Species composition widely overlapped in grassland and arable land. Composition changed along gradients of heterogeneity at local and context scales, and of woody vegetation cover at context and landscape scales. The effect of local heterogeneity on species richness was positive in arable land, but negative in grassland. Plant species richness, and structural and topographic conditions at multiple scales explained species richness, richness of functional groups and species abundances. Our study revealed high conservation value of both grassland and arable land in low-intensity Eastern European farmland. Besides grassland, also heterogeneous arable land provides important habitat for butterflies. While butterfly diversity in arable land benefits from heterogeneity by small-scale structures, grasslands should be protected from fragmentation to provide sufficiently large areas for butterflies. These findings have important implications for EU agricultural and conservation policy. Most importantly, conservation management needs to consider entire landscapes, and implement appropriate measures at multiple spatial scales.  相似文献   

13.
In tropical landscapes, forest remnants have been reduced to narrow strips of vegetation along rivers and streams surrounded by agricultural land that affects biodiversity, depending on the habitat and landscape characteristics. To assess the effect of riparian forest loss on the diversity of Staphylininae predatory rove beetles, we considered two habitat conditions (river sites with riparian vegetation and sites with heterogeneous pastures) within two micro-basin types (with >70% and <40% forest cover) in a tropical montane cloud forest landscape, Mexico. Beetles were collected using baited pitfall traps during the rainy season of 2014. No differences were found between micro-basin types and, although species richness (0D) was similar between habitat conditions, when the diversity of common (1D) and dominant (2D) species was considered, sites with heterogeneous pastures were almost twice as diverse as those with riparian vegetation. All diversity measurements were greater in sites with heterogeneous pastures of either micro-basin type. Air temperature and canopy cover were the environmental variables that best explained the variation in beetle species composition. The greatest environmental differences related to species composition were detected between habitat conditions and were more evident in sites with heterogeneous pastures and low forest cover in the surroundings. The results suggest that replacing riparian vegetation with heterogeneous pastures, within micro-basins that lost between 30% and 60% of their forest cover, does not significantly reduce the diversity of predatory rove beetle but rather modifies the beetle composition. Effective formulation of management strategies to mitigate the impact of land use modification therefore requires an understanding of the interaction between vegetation remnants and landscape characteristics.  相似文献   

14.
Land-use intensification in Mediterranean agro-forest systems became a pressure on biodiversity, concerning particularly the woodland sensitive species. In 2001, the effects of a land-use gradient from old-growth cork-oak forest to a homogeneous agricultural area were assessed using rove beetles as indicators in a Mediterranean landscape. The aim was to find which species were negatively affected by land-use intensification at the landscape level and whether they benefited from cork-oak patches occurring along the land-use gradient. A total of 3,196 rove beetles from 88 taxa were sampled from all landscape types. Agricultural area recorded significantly higher numbers of abundance and species richness in relation to the cork-oak mosaics, i.e. the old-growth forest and the managed agro-forest landscapes (montados). Moreover, 70% of rove beetle indicator species common enough to be tested by IndVal displayed their highest indicator value for agriculture, showing a lower number of woodland indicators in comparison to ground beetles. Nevertheless, one rove beetle taxon was considered a specialist of closed woodland mosaics while no specialist ground beetle was found for that landscape typology. Some rare rove beetle species were also important in typifying diversity patterns of old-growth cork-oak forests. Hence, future management in Mediterranean landscapes should take into account not only indicator species common enough to be tested by IndVal, but also rare and endemic species. Considering the added value of cork-oak woodland cover for sensitive rove and ground beetle diversity, the strengthening of cork-oak woodland connectivity seems to be a crucial management that is required in agricultural Mediterranean landscapes.  相似文献   

15.
We compare species richness of birds, fruit-feeding butterflies and ground-foraging ants along a coffee intensification gradient represented by a reduction in the number of species of shade trees and percentage of shade cover in coffee plantations. We sampled the three taxa in the same plots within the same period of time. Two sites were selected in the Soconusco region of the state of Chiapas, Mexico. Within each site four habitat types were selected and within each habitat type four points were randomly selected. The habitat types were forest, rustic coffee, diverse shade coffee, and intensive coffee (low density of shade). We found different responses of the three taxa along the intensification gradient. While ants and butterflies generally decrease in species richness with the decrease of shade cover, birds declined in one site but increased in the other. Ant species richness appears to be more resistant to habitat modification, while butterfly species richness appears to be more sensitive. Bird species richness was correlated with distance from forest fragments but not with habitat type, suggesting that scale and landscape structure may be important for more mobile taxa. For each of these taxa, the rustic plantation was the one that maintained species richness most similar to the forest. We found no correlation between the three taxa, suggesting that none of these taxa are good candidates as surrogates for each other. We discuss the implications of these results for the conservation of biodiversity in coffee plantations, in particular, the importance of distinguishing between different levels of shade, and the possibility that different taxa might be responding to habitat changes at different spatial scales.  相似文献   

16.
17.
European agricultural landscapes are mosaics of intensively cultivated areas and semi-natural elements. Although comprising only a small fraction of the total area, semi-natural elements provide habitat for most of the landscape biodiversity. Agricultural intensification has increasingly fragmented semi-natural elements and species numbers are in decline. Insights into the effects of landscape structure on species’ distributions within and among semi-natural habitats are needed to conserve biodiversity in agricultural landscapes more effectively. We investigated the landscape- and habitat-specific diversity partitions of wild bees, true bugs, and carabid beetles in two differently structured agricultural landscapes in Switzerland. In each landscape, we partitioned the total species diversity (γ) into its additive components within (P) and among patches (βP) and among habitats (βH). In the landscape characterized by a patchy, isolated distribution of habitat elements, among-patch diversity (βP) explained 44% of the total species richness (γ) and was significantly higher than expected under a random distribution of samples among habitat patches; in the landscape with higher habitat connectivity, among-patch diversity (βP) comprised 32% of the total species richness (γ) and did not differ from the random expectation. Habitat-specific within-patch contributions to species richness were similarly low across habitat types (P=23–24%) in the patchy landscape, whereas in the more connected landscape within-patch partitions tended to be higher and differed among habitat types (P=22–38%). Functionally different groups of bees, true bugs, and carabids also responded differently to landscape structure in a manner that was consistent with known differences in resource specialization and dispersal ability. Differences in diversity partitions among landscapes and taxa indicate the need for flexible conservation strategies. Conservation of habitat-specific diversity may require more habitat patches in landscapes that have lower habitat connectivity and low within-patch diversity (P) than in landscapes with higher within-patch diversity (P).  相似文献   

18.
Organic farming, a low intensity system, may offer benefits for a range of taxa, but what affects the extent of those benefits is imperfectly understood. We explored the effects of organic farming and landscape on the activity density and species density of spiders and carabid beetles, using a large sample of paired organic and conventional farms in the UK. Spider activity density and species density were influenced by both farming system and surrounding landscape. Hunting spiders, which tend to have lower dispersal capabilities, had higher activity density, and more species were captured, on organic compared to conventional farms. There was also evidence for an interaction, as the farming system effect was particularly marked in the cropped area before harvest and was more pronounced in complex landscapes (those with little arable land). There was no evidence for any effect of farming system or landscape on web-building spiders (which include the linyphiids, many of which have high dispersal capabilities). For carabid beetles, the farming system effects were inconsistent. Before harvest, higher activity densities were observed in the crops on organic farms compared with conventional farms. After harvest, no difference was detected in the cropped area, but more carabids were captured on conventional compared to organic boundaries. Carabids were more species-dense in complex landscapes, and farming system did not affect this. There was little evidence that non-cropped habitat differences explained the farming system effects for either spiders or carabid beetles. For spiders, the farming system effects in the cropped area were probably largely attributable to differences in crop management; reduced inputs of pesticides (herbicides and insecticides) and fertilisers are possible influences, and there was some evidence for an effect of non-crop plant species richness on hunting spider activity density. The benefits of organic farming may be greatest for taxa with lower dispersal abilities generally. The evidence for interactions among landscape and farming system in their effects on spiders highlights the importance of developing strategies for managing farmland at the landscape-scale for most effective conservation of biodiversity.  相似文献   

19.
We investigate the usefulness of higher taxa as surrogates for species richness and diversity of litter/soil insects. We use data for Coleoptera (beetles) and Formicidae (ants) collected during biodiversity surveys of five tropical and two temperate countries, and use Pearson’s product moment correlations to assess the surrogacy relationship. Our results suggest that genera would provide an adequate surrogate for species richness of Coleoptera, but not for Formicidae. We suggest that the usefulness of higher taxa as surrogates for richness is dependent on both taxonomy and scale. Higher taxa provided a poor surrogate for species diversity due to the added dimension of evenness of community structure, and we recommend that higher taxa should not be used as surrogates for species diversity.  相似文献   

20.
Large tracts of natural habitat are being replaced by agriculture and urban sprawl in Mediterranean regions worldwide. We have limited knowledge about the effects of human activities on native species in these landscapes and which, if any, management practices might enhance the conservation of native biodiversity within them. Through a citizen volunteer bird-monitoring project, we compared bird abundance and species richness in northern Californian riparian zones surrounded by vineyards, urban areas, and natural areas. We assessed both local and landscape-level variables that may enhance native bird diversity in each land use type. We also demonstrate a new statistical approach, generalized estimating equations, to analyze highly variable data, such as that collected by volunteers. Avian abundance was highly correlated with both landscape context and local habitat variables, while avian richness was correlated with local habitat variables, specifically shrub richness, and percent of tree cover. In particular, shrub species richness has a strong positive correlation with riparian-preferring bird species. This suggests that active local management of riparian zones in human-dominated landscapes can increase our ability to retain native bird species in these areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号