首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chloride content and fluxes were measured in isolated resting human peripheral polymorphonuclear leukocytes. The intracellular Cl concentration of cells kept at 37 degrees C in 148 mM Cl media was approximately 80 meq/liter cell water, fourfold higher than expected for passive distribution at the cell's estimated membrane potential (approximately -53 mV). All intracellular Cl was rapidly exchangeable with external 36Cl. Cells lost Cl exponentially into Cl-free media, and reaccumulated it when Cl was restored to the bath; this reuptake was dependent on metabolism. One-way 36Cl fluxes in steady state cells were approximately 1.4 meq/liter X min. The bulk (approximately 70%) of these represented electrically silent Cl/Cl exchange mediated by a carrier insensitive to disulfonic stilbenes but blocked by the anion carrier inhibitor alpha-cyano-4-hydroxycinnamate (CHC). The remaining fluxes were characterized in some detail. About 20% of 36Cl influx behaved as active transport: it moved thermodynamically uphill and was absent in cells treated with 2-deoxy-D-glucose, displayed Michaelis-Menten kinetics with Km(Cl) congruent to 5 mM, Vmax congruent to 0.25 meq/liter X min, and was inhibited by CHC (Ki congruent to 1.7 mM), ethacrynate (Ki congruent to 50 microM), and furosemide (Ki congruent to 50 microM). About 30% of Cl efflux and approximately 8% of Cl influx behaved as electrodiffusion through a low-permeability pathway (PCl congruent to 4 X 10(-9) cm/s; gCl congruent to 1 microsecond/cm2; PK/PNa/PCl congruent to to 10:1:1); these fluxes were linear with concentration and strongly voltage sensitive. The putative Cl channel does not appear to be voltage gated, and gives evidence of single filing.  相似文献   

2.
Regulation of Cl/HCO3 exchange in gastric parietal cells.   总被引:2,自引:0,他引:2       下载免费PDF全文
Microspectrofluorimetry of the fluorescent indicators 2',7'-bis-(2-carboxyethyl)-5(and-6)carboxyfluorescein and 6-methoxy-N-(3-sulfopropyl)-quinolinium was used to measure intracellular pH (pHi), intracellular Cl (Cli), and transmembrane fluxes of HCO3 and Cl in single parietal cells (PC) in isolated rabbit gastric glands incubated in HCO3/CO2-buffered solutions. Steady-state pHi was 7.2 in both resting (50 microM cimetidine) and stimulated (100 microM histamine) PCs. Transmembrane anion (HCO3 or Cl) flux rates during Cl removal from or readdition to the perfusate were the same in resting and stimulated PCs. These rates increased at alkaline pHi, though this pHi dependence was small in the physiological range. Maximum velocity (Vmax) for Cl influx or HCO3 efflux was 80-110 mM/min at pHi 7.6-7.8, and the Km for extracellular concentrations of Cl (Clo) was 25 mM; in the physiological range (pHi 7.1-7.3), Vmax for anion fluxes was approximately 50 mM/min. Steady-state Cli in the unstimulated PC was 62 +/- 5 mM, but on histamine stimulation, Cli decreased rapidly to 25 mM and then increased back to a steady-state level of 44 mM. HCO3 fluxes due to Cl removal or readdition were completely blocked by 0.5 mM 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonic acid (H2DIDS), but Cl fluxes were only inhibited by 80%. H2DIDS did not inhibit the decrease in Cli that occurred with histamine treatment. Diphenylamine carboxylate (0.5 mM) inhibited Cl flux by only 50% and caused no additional inhibition of Cl flux when used in conjunction with H2DIDS. Transmembrane anion fluxes during solution Cl removal or readdition occurred 80% through the anion exchanger at the basal membrane and 20% through other pathway(s), presumably the Cl channel in the apical membrane. We conclude that the increase in transport activity via the Cl/HCO3 exchanger that occurs during histamine-induced increases in HCl secretion is due mostly to the decrease in Cli. In the resting cell with Cli = 62 mM, Clo = 120 mM, pHi = 7.2, and extracellular pH = 7.4, the anion exchanger is poised near its thermodynamic equilibrium. During histamine stimulation Cli drops from 62 mM to 44 mM, the thermodynamic equilibrium of the anion exchanger at the basolateral membrane is disturbed, and the anion exchanger then exchanges cellular HCO3 for extracellular Cl. Cli serves a crucial regulatory role in stimulus-secretion coupling in the PC.  相似文献   

3.
Transmembrane chloride flux in tissue-cultured chick heart cells   总被引:2,自引:2,他引:0       下载免费PDF全文
To evaluate the transmembrane movement of chloride in a preparation of cardiac muscle lacking the extracellular diffusion limitations of natural specimens, intracellular chloride concentration ( [Cl] i) and transmembrane 36Cl efflux have been determined in growth-oriented embryonic chick heart cells in tissue culture. Using the method of isotopic equilibrium, [Cl]i was 25.1 +/- 7.3 mmol x (liter cell water)- 1, comparable to the value of 24.9 +/- 5.4 mmol x (liter cell water)-1 determined by coulometric titration. Two cellular 36Cl compartments were found; one exchanged with a rate constant of 0.67 +/- 0.12 min-1 and was associated with the cardiac muscle cells; the other, attributed to the fibroblasts, exchanged with a rate constant of 0.18 +/- 0.05 min- 1. At 37 degrees C, transmembrane Cl flux of cardiac muscle under steady-state conditions was 30 pmol x cm-2 x s-1. In K-free, normal, or high-Ko solutions, the responses of the membrane potential to changes in external Cl concentration suggested that chloride conductance was low. These results indicate that Cl transport across the myocardial cell membrane is more rapid than K transport and is largely electrically silent.  相似文献   

4.
This paper describes the effect of tributyltin (TBT) on the inorganic anion permeability of lipid bilayers. When this compound is added in micromolar concentrations to one or both sides of a phosphatidyl ethanolamine (PE) membrane formed in 0.1 M NaCl or KCl (pH 7), there is no change in the electrical conductance. Under these circumstances, the Cl self-exchange flux measured with 36Cl (MCl) increases from a value of approximately 10(-12) mol.cm-2.s-1, to approximately 10(-8) mol.cm-2.s-1. It was further found that the relation between chloride flux and [TBT] and [Cl] can be described as: MCl = B[TBT] [Cl]. When chloride was replaced by an equimolar concentration of different univalent anions in the trans compartment, the heteroexchange flux of chloride followed the sequence: I greater than Br greater than Cl greater than F greater than NO3. Under all experimental conditions tested, the chloride flux was always more than 10(3) times the maximum flux predicted from the value of the membrane conductance, and at least 100 times higher than the expected fluxes of ion pairs (TBT-Cl) diffusing across the unstirred layers. Thus, the mechanism by which tributyltin increases anion permeability in bilayers seems to be that of an obligatory exchange diffusion, with the reaction between tributyltin and the halides occurring at the membrane surface. Measurements of interfacial potentials indicate that tributyltin chloride lowers the positive intrinsic dipole potential of PE membranes by approximately 70 mV (at a TBT concentration of 30 microM) without substantial alteration of other parameters of the bilayer. The estimated adsorption coefficient of TBT-Cl was found to be 3 x 10(-4) cm.  相似文献   

5.
Ion fluxes and the production of reactive oxygen species (ROS) are early events that follow elicitor treatment or microbial infection. However, molecular mechanisms for these responses as well as their relationship have been controversial and still largely unknown. We here simultaneously monitored the temporal sequence of initial events at the plasma membrane in suspension-cultured tobacco cells (cell line BY-2) in response to a purified proteinaceous elicitor, cryptogein, which induced hypersensitive cell death. The elicitor induced transient rise in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) showing two distinct peaks, followed by biphasic (rapid/transient and slow/prolonged) Cl(-) efflux and H(+) influx. Pharmacological analyses suggested that the two phases of the [Ca(2+)](cyt) response correspond to Ca(2+) influx through the plasma membrane and an inositol 1,4,5-trisphophate-mediated release of Ca(2+) from intracellular Ca(2+) stores, respectively, and the [Ca(2+)](cyt) transients and the Cl(-) efflux were mutually dependent events regulated by protein phosphorylation. The elicitor also induced production of ROS including (*)O(2)(-) and H(2)O(2), which initiated after the [Ca(2+)](cyt) rise and required Ca(2+) influx, Cl(-) efflux and protein phosphorylation. An inhibitor of NADPH oxidase, diphenylene iodonium, completely inhibited the elicitor-induced production of (*)O(2)(-) and H(2)O(2), but did not affect the [Ca(2+)](cyt) transients. These results suggest that cryptogein-induced plasma membrane Ca(2+) influx is independent of ROS, and NADPH oxidase dependent ROS production is regulated by these series of ion fluxes.  相似文献   

6.
After osmotic perturbation, the red blood cells of Amphiuma exhibited a volume-regulatory response that returned cell volume back to or toward control values. After osmotic swelling, cell-volume regulation (regulatory volume decrease; RVD) resulted from net cellular loss of K, Cl, and osmotically obliged H2O. In contrast, the volume-regulatory response to osmotic shrinkage (regulatory volume increase; RVI) was characterized by net cellular uptake of Na, Cl, and H2O. The net K and Na fluxes characteristic of RVD and RVI are increased by 1-2 orders of magnitude above those observed in studies of volume-static control cells. The cell membrane potential of volume-regulating and volume-static cells was measured by impalement with glass microelectrodes. The information gained from the electrical and ion-flux studies led to the conclusion that the ion fluxes responsible for cell-volume regulation proceed via electrically silent pathways. Furthermore, it was observed that Na fluxes during RVI were profoundly sensitive to medium [HCO3] and that during RVI the medium becomes more acid, whereas alkaline shifts in the suspension medium accompany RVD. The experimental observations are explained by a model featuring obligatorily coupled alkali metal-H and Cl-HCO3 exchangers. The anion- and cation-exchange pathways are separate and distinct yet functionally coupled via the net flux of H. As a result of the operation of such pathways, net alkali metal, Cl, and H2O fluxes proceed in the same direction, whereas H and HCO3 fluxes are cyclic. Data also are presented that suggest that the ion-flux pathways responsible for cell-volume regulation are not activated by changes in cell volume per se but by some event associated with osmotic perturbation, such as changes in intracellular pH.  相似文献   

7.
Tracer anion exchange flux measurements have been carried out in human red blood cells with the membrane potential clamped at various values with gramicidin. The goal of the study was to determine the effect of membrane potential on the anion translocation and binding events in the catalytic cycle for exchange. The conditions were arranged such that most of the transporters were recruited into the same configuration (inward-facing or outward-facing, depending on the direction of the Cl- gradient). We found that the membrane potential has no detectable effect on the anion translocation event, measured as 36Cl(-)-Cl- or 36Cl(-)-HCO3- exchange. The lack of effect of potential is in agreement with previous studies on red cells and is different from the behavior of the mouse erythroid band 3 gene expressed in frog oocytes (Grygorczyk, R., W. Schwarz, and H. Passow. 1987. J. Membr. Biol. 99:127-136). A negative potential decreases the potency of extracellular SO4= as an inhibitor of either Cl- or HCO3- influx. Because of the potential-dependent inhibition by SO4=, conditions could be found in which a negative intracellular potential actually accelerates 36Cl- influx. This effect is observed only in media containing multivalent anions. The simplest interpretation of the effect is that the negative potential lowers the inhibitory potency of the multivalent anion by lowering its local concentration near the transport site. The magnitude of the effect is consistent with the idea that the anions move through 10-15% of the transmembrane potential between the extracellular medium and the outward-facing transport site. In contrast to its effect on extracellular substrate binding, there is no detectable effect of membrane potential on the competition between intracellular Cl- and SO4= for transport sites. The lack of effect of potential on intracellular substrate binding suggests that the access pathway leading to the inward-facing transport site is of lower electrical resistance than that leading to the extracellular substrate site.  相似文献   

8.
The unusually low 78% amino acid identity between the orthologous human SLC26A6 and mouse slc26a6 polypeptides prompted systematic comparison of their anion transport functions in Xenopus oocytes. Multiple human SLC26A6 variant polypeptides were also functionally compared. Transport was studied as unidirectional fluxes of (36)Cl(-), [(14)C]oxalate, and [(35)S]sulfate; as net fluxes of HCO(3)(-) by fluorescence ratio measurement of intracellular pH; as current by two-electrode voltage clamp; and as net Cl(-) flux by fluorescence intensity measurement of relative changes in extracellular and intracellular [Cl(-)]. Four human SLC26A6 polypeptide variants each exhibited rates of bidirectional [(14)C]oxalate flux, Cl(-)/HCO(3)(-) exchange, and Cl(-)/OH(-) exchange nearly equivalent to those of mouse slc26a6. Cl(-)/HCO(3)(-) exchange by both orthologs was cAMP-sensitive, further enhanced by coexpressed wild type cystic fibrosis transmembrane regulator but inhibited by cystic fibrosis transmembrane regulator DeltaF508. However, the very low rates of (36)Cl(-) and [(35)S]sulfate transport by all active human SLC26A6 isoforms contrasted with the high rates of the mouse ortholog. Human and mouse orthologs also differed in patterns of acute regulation. Studies of human-mouse chimeras revealed cosegregation of the high (36)Cl(-) transport phenotype with the transmembrane domain of mouse slc26a6. Mouse slc26a6 and human SLC26A6 each mediated electroneutral Cl(-)/HCO(3)(-) and Cl(-)/OH(-) exchange. In contrast, whereas Cl(-)/oxalate exchange by mouse slc26a6 was electrogenic, that mediated by human SLC26A6 appeared electroneutral. The increased currents observed in oocytes expressing either mouse or human ortholog were pharmacologically distinct from the accompanying monovalent anion exchange activities. The human SLC26A6 polypeptide variants SLC26A6c and SLC26A6d were inactive as transporters of oxalate, sulfate, and chloride. Thus, the orthologous mouse and human SLC26A6 proteins differ in anion selectivity, transport mechanism, and acute regulation, but both mediate electroneutral Cl(-)/HCO(3)(-) exchange.  相似文献   

9.
The mechanism of basolateral membrane base transport was examined in the in vitro microperfused rabbit proximal convoluted tubule (PCT) in the absence and presence of ambient CO2/HCO3- by means of the microfluorometric measurement of cell pH. The buffer capacity of the cells measured using rapid NH3 washout was 42.8 +/- 5.6 mmol.liter-1.pH unit-1 in the absence and 84.6 +/- 7.3 mmol.liter-1.pH unit-1 in the presence of CO2/HCO3-. In the presence of CO2/HCO3-, lowering peritubular pH from 7.4 to 6.8 acidified the cell by 0.30 pH units and lowering peritubular Na from 147 to 0 mM acidified the cell by 0.25 pH units. Both effects were inhibited by peritubular 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonate (SITS). In the absence of exogenous CO2/HCO3-, lowering peritubular pH from 7.4 to 6.8 acidified the cell by 0.25 pH units and lowering peritubular Na from 147 to 0 mM decreased cell pH by 0.20 pH units. Lowering bath pH from 7.4 to 6.8 induced a proton flux of 643 +/- 51 pmol.mm-1.min-1 in the presence of exogenous CO2/HCO3- and 223 +/- 27 pmol.mm-1.min-1 in its absence. Lowering bath Na from 147 to 0 mM induced proton fluxes of 596 +/- 77 pmol.mm-1.min-1 in its absence. The cell acidification induced by lowering bath pH or bath Na in the absence of CO2/HCO3- was inhibited by peritubular SITS or by acetazolamide, whereas peritubular amiloride had no effect. In the absence of exogenous CO2/HCO3-, cyanide blocked the cell acidification induced by bath Na removal, but was without effect in the presence of exogenous CO2/HCO3-. We reached the following conclusions. (a) The basolateral Na/base n greater than 1 cotransporter in the rabbit PCT has an absolute requirement for CO2/HCO3-. (b) In spite of this CO2 dependence, in the absence of exogenous CO2/HCO3-, metabolically produced CO2/HCO3- is sufficient to keep the transporter running at 30% of its control rate in the presence of ambient CO2/HCO3-. (c) There is no apparent amiloride-sensitive Na/H antiporter on the basolateral membrane of the rabbit PCT.  相似文献   

10.
In Arabidopsis thaliana cells, hypoosmotic treatment initially stimulates Ca2+ influx and inhibits its efflux and, concurrently, promotes a large H2O2 accumulation in the external medium, representative of reactive oxygen species (ROS) production. After the first 10-15 min, Ca2+ influx rate is, however, lowered, and a large rise in Ca2+ efflux, concomitant with a rapid decline in H2O2 level, takes place. The drop of the H2O2 peak, as well as the efflux of Ca2+, are prevented by treatment with submicromolar concentrations of eosin yellow (EY), selectively inhibiting the Ca2+-ATPase of the plasma membrane (PM). Comparable changes of Ca2+ fluxes are also induced by hyperosmotic treatment. However, in this case, the H2O2 level does not rise, but declines below control levels when Ca2+ efflux is activated. Also K+ and H+ net fluxes across the PM and cytoplasmic pH (pH(cyt)) are very differently influenced by the two opposite stresses: strongly decreased by hypoosmotic stress and increased under hyperosmotic treatment. The H2O2 accumulation kinetics, followed as a function of the pH(cyt) changes imposed by modulation of the PM H+-ATPase activity or weak acid treatment, show a close correlation between pH(cyt) and H2O2 formed, a larger amount being produced for changes towards acidic pH values. Overall, these results confirm a relevant role for the PM Ca2+-ATPase in switching off the signal triggering ROS production, and propose a role for the PM H+-ATPase in modulating the development of the oxidative wave through the pH(cyt) changes following the changes of its activity induced by stress conditions.  相似文献   

11.
The amphibian skin, widely used for studying the transepithelial passage of electrolytes, exhibits anion pathways relatively specific for Cl(-). We studied the effect of HgCl(2), 1.0 x 10(-4) M on its electrical parameters and unidirectional anion fluxes. In the presence of Cl(-), the transepithelial conductance (G) of the isolated skin of the Bufo arenarum toad increased considerably following exposure to HgCl(2), whereas short-circuit current (SCC)--reflecting transepithelial Na(+) transport-underwent only slight stimulation. Following the blockade of Na(+) intake by amiloride, 1.0 x 10(-4) M, the removal of Cl(-) from the solution bathing the epidermal border of the skin brought about a decrease in G, and gave rise to a gradient-induced SCC (SCCg) consistent with transepithelial passage of Cl(-) along its gradient. Addition of mercaptoethanol, 5.0 x 10(-3) M to the bath containing Hg(2+) fully reversed these effects. The increase in G was accompanied by an increase in the unidirectional (epidermal to dermal) fluxes of (36)Cl(-) and (131)I(-), and a decrease in the passage of (99m)TcO(4)(-). These results show the effects of HgCl(2) to be similar to those of theophylline, although exhibiting a different selectivity. Our data suggest that anion passage following exposure to HgCl(2) is, like that stimulated by theophylline, predominantly if not exclusively transcellular, and does not involve a significant opening of the tight junctions.  相似文献   

12.
Elicitation of cultured chickpea (Cicer arietinum L.) cells stimulates a signal transduction pathway leading to several rapid responses: (1) oxidative burst, (2) extracellular alkalinisation, (3) extracellular acidification, (4) transient K+ efflux, and (5) activation of defence related genes all within 2 hours. Induced genes are encoding acidic and basic chitinases, a thaumatin-like protein and isoflavone reductase. All these elicitor-induced responses are inhibited by the Ser/Thr protein kinase inhibitor staurosporine and the anion channel blocker anthracene-9-carboxylic acid but stimulated by the Ser/Thr protein phosphatase 2A inhibitor cantharidin. The oxidative burst leads to a transient extracellular H2O2 accumulation which seems to be preceded by O2- production, indicating dismutation of O2- to H2O2. The oxidative burst is accompanied by transient alkalinisation of the culture medium which is followed by long-lasting extracellular acidification. An 80 percent inhibition of the alkalinisation after complete inhibition of the H2O2 burst with diphenylene iodonium indicates that the elicitor induced increase of extracellular pH is mainly based on a proton consumption for O2-dismutation. A simultaneous deactivation of the plasma membrane H+-ATPase during oxidative burst and extracellular alkalinisation is also suggested. The elicitor-stimulated extracellular acidification is inhibited by the plasma membrane H+-ATPase inhibitor N, N'-dicyclohexylcarbodiimide assuming a reactivation of the H+-ATPase 25 min after elicitation. Extracellular acidification seems not to be necessary for elicitor-induced activation of defence related genes. Opposite modulation of K+ and proton fluxes after elicitation and/or treatment with the H+-ATPase effectors fusicoccin or N, N'-dicyclohexylcarbodiimide indicate that the elicitor induced transient K+ efflux is regulated by a K+/H+ exchange reaction.  相似文献   

13.
Lew RR 《Plant & cell physiology》2010,51(11):1889-1899
Plasma membrane fluxes of the large unicellular model algal cell Eremosphaera viridis (De Bary) were measured under various light regimes to explore the role of plasma membrane fluxes during photosynthesis and high light-induced chloroplast translocation. Plasma membrane fluxes were measured directly and non-invasively with self-referencing ion-selective (H(+), Ca(2+), K(+) and Cl(-)) potentiometric microelectrodes and oxygen amperometric microelectrodes. At light irradiances high enough to induce chloroplast migration from the cell periphery to its center, oxygen evolution declined to respiratory net O(2) uptake prior to any significant chloroplast translocation, while net K(+) and Cl(-) influx increased during the decline in photosynthetic activity (and the membrane potential depolarized). The results suggest that chloroplast translocation is not the cause of the cessation of O(2) evolution at high irradiance. Rather, the chloroplast translocation may play a protective role: shielding the centrally located nucleus from damaging light intensities. At both high and low light intensities (similar to ambient growth conditions), there was a strong inverse correlation between H(+) net fluxes and respiratory and photosynthetic net O(2) fluxes. A similar inverse relationship was also observed for Ca(2+) net fluxes, but only at higher light intensities. The net H(+) fluxes are small relative to the buffering capacity of the cell, but are clearly related to both photosynthetic and respiratory activity.  相似文献   

14.
A permanent cell line with inducible expression of the trout anion exchanger protein (trAE1) was constructed in a derivative of human embryonic kidney cells (HEK-293). In the absence of the inducer, muristerone A, the new cell line had no detectable trAE1 protein by Western analysis, biotinylation, and (36)Cl(-) flux. The amount of trAE1 protein increased with increasing dose and incubation time with muristerone A. Anion exchange inhibitors significantly inhibited the inducible flux of anions (i.e., (36)chloride and (35)sulfate) and taurine in isotonic media. The transfected cells had the characteristics of trAE1-mediated transport in intact trout erythrocytes: (1) inhibition by anion transport inhibitors, (2) pH independence over the pH range of 6.5-7.5, and (3) activation of (35)sulfate efflux by external anions in the selective order of Cl > Br > I > or = F. These cells, in contrast to trout erythrocytes, were not sensitive to the anion exchange inhibitor, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), suggesting some difference in the properties of the transfected AE1. These results demonstrate the inducible expression of new anion transport membrane protein in HEK-293 cells. This is the first expression of trAE1 in a mammalian system.  相似文献   

15.
Unidirectional chloride-36 fluxes were measured in internally dialyzed barnacle giant muscle fibers. About 50--60% of the Cl efflux was irreversibly blocked by the amino-group reactive agent, 4-acetamido-4'-isothiocyano-stilbene-2,2'-disulfonic acid (SITS), when it was applied either intra- or extracellularly. Similarly, Cl influx was also blocked by SITS. No significant effect on [Cl]i of SITS was noted in intact muscle fibers. However, the rate of net Cl efflux from muscle fibers which were Cl-loaded by overnight storage at 6 degrees C could be slowed by SITS treatment. Two classes of anions were defined based upon their effects on Cl efflux. Methanesulfonate and nitrate inhibited Cl efflux either when they replaced external chloride or when they were added to a constant external chloride concentration. The other group of anions (propionate, formate) stimulated both Cl efflux and influx and such stimulation could be blocked by SITS. Propionate influx was not nearly as large as the stimulated Cl efflux and was unaffected by SITS. Neither the effects of SITS nor those of the anion substitutes could be simply accounted for by changes in the membrane resting potential or conductance. These results suggest a mediated transport system for chloride across the barnacle sarcolemma.  相似文献   

16.
In caulonemal filaments of the mossPhyscomitrella patens (Hedw.), red light triggers a phytochrome-mediated transient depolarisation of the plasma membrane and the formation of side branch initials. Three-electrode voltage clamp and ion flux measurements were employed to elucidate the ionic mechanism and physiological relevance of the red-light-induced changes in ion transport. Current-voltage analyses indicated that ion channels permeable to K+ and Ca2+ are activated at the peak of the depolarisation. Calcium influx evoked by red light coincided with the depolarisation in various conditions, suggesting the involvement of voltage-gated Ca2+ channels. Respective K+ fluxes showed a small initial influx followed by a dramatic transient efflux. A role of anion channels in the depolarising current is suggested by the finding that Cl efflux was also increased after red light irradiation. In the presence of tetraethylammonium (10 mM) or niflumic acid (1 M), which block the red-light-induced membrane depolarisation and ion fluxes, the red-light-promoted formation of side branch initials was also abolished. Lanthanum (100 M), which inhibits K+ fluxes and part of the initial Ca2+ influx activated by red light, reduced the development of side branch initials in red light by 50%. The results suggest a causal link between the red-light-induced ion fluxes and the physiological response. The sequence of events underlying the red-light-triggered membrane potential transient and the role of ion transport in stimulus-response coupling are discussed in terms of a new model for ion-channel interaction at the plasma membrane during signalling.Abbreviations [Ca2+]c cytosolic free Ca2+ - I-V current-voltage - E equilibrium potential - Pr red-light-absorbing phytochrome form - Pr far-red-light-absorbing phytochrome form - SPQ 6-methoxy-l-(3-sulphonatopropyl)quinolinium - TEA tetraethylammonium  相似文献   

17.
Bernick EP  Stiffler DF 《Peptides》2000,21(6):779-783
A possible role for the peptide hormone guanylin was investigated in frog skin (Rana pipiens) epithelium. Sodium and chloride fluxes in response to this peptide were evaluated in Ussing-type chambers. Net and unidirectional Na(+) fluxes were measured by using (22)Na(+) and atomic absorption analysis of total [Na(+)], whereas net Cl(-) fluxes were measured by using electrometric titration for [Cl(-)]. Mucosal application of guanylin (0.5-2.0 micromol/l) caused marked increases in serosal to mucosal net flux and efflux of Na(+). Serosal application of guanylin over the same dose range caused similar large increases in net serosal to mucosal (S-->M) Na(+) and Cl(-) flux as well as Na(+) efflux. Responses of Na(+) influx were small and inconsistent. When frog skin was bathed on the serosal side with Cl(-)-free Ringer's solution mucosal application of guanylin stimulated large efflux and S-->M net fluxes of Na(+). Serosal treatment yielded large Na(+) effluxes and S-->M Na(+) and Cl(-) net fluxes. When frog skin serosal surfaces were bathed with Na(+)- free Ringer's solution mucosal guanylin treatment had no effect but serosal treatment produced large S-->M Cl(-) net fluxes.  相似文献   

18.
Voltage-dependent anion channels in the outer mitochondrial membrane are strongly regulated by electrical potential. In this work, one of the possible mechanisms of the outer membrane potential generation is proposed. We suggest that the inner membrane potential may be divided on two resistances in series, the resistance of the contact sites between the inner and outer membranes and the resistance of the voltage-dependent anion channels localized beyond the contacts in the outer membrane. The main principle of the proposed mechanism is illustrated by simplified electric and kinetic models. Computational behavior of the kinetic model shows a restriction of the steady-state metabolite flux through the mitochondrial membranes at relatively high concentration of the external ADP. The flux restriction was caused by a decrease of the voltage across the contact sites and by an increase in the outer membrane potential (up to +60 mV) leading to the closure of the voltage-dependent anion channels localized beyond the contact sites. This mechanism suggests that the outer membrane potential may arrest ATP release through the outer membrane beyond the contact sites, thus tightly coordinating mitochondrial metabolism and aerobic glycolysis in tumor and normal proliferating cells.  相似文献   

19.
By applying a rapid filtration technique to isolated brush border membrane vesicles from guinea pig ileum, 36Cl uptake was quantified in the presence and absence of electrical, pH and alkali-metal ion gradients. A mixture of 20 mM-Hepes and 40 mM-citric acid, adjusted to the desired pH with Tris base, was found to be the most suitable buffer. Malate and Mes could be used to replace the citrate, but succinate, acetate and maleate proved to be unsuitable. In the absence of a pH gradient (pHout:pHin = 7.5:7.5), Cl- uptake increased slightly when an inside-positive membrane potential was applied, but uphill transport was never observed. A pH gradient (pHout:pHin = 5.0:7.5) induced both a 400% increase in the initial Cl- influx rate and a long-lasting (20 to 300 s) overshoot, indicating that a proton gradient can furnish the driving force for uphill Cl- transport. Under pH gradient conditions, initial Cl- entry rates had the following characteristics. (1) They were unaffected by cis-Na+ and/or -K+, indicating the absence of Cl-/K+, Cl-/Na+ or Cl-/K+/Na+ symport activity. (2) Inhibition by 20-100 mM-trans-Na+ and/or -K+ occurred, independent of the existence of an ion gradient. (3) Cl- entry was practically unaffected by short-circuiting the membrane potential with equilibrated potassium and valinomycin. (4) Carbonyl cyanide m-chlorophenylhydrazone was strongly inhibitory and so, to a lesser extent, was 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid [(SITS)], independent of the sign and size of the membrane potential. (5) Cl- entry was negligibly increased (less than 30%) by either trans-Cl- or -HCO3-, indicating the absence of an obligatory Cl-/anion antiport activity. In contrast, the height of the overshoot at 60 s was increased by trans-Cl-, indicating time-dependent inhibition of 36Cl efflux. That competitive inhibition of 36Cl fluxes by anions is involved here is supported by initial influx rate experiments demonstrating: (1) the saturability of Cl- influx, which was found to exhibit Michaelis-Menten kinetics; and (2) competitive inhibition of influx by cis-Cl- and -Br-. Quantitatively, the conclusion is warranted that over 85% of the total initial Cl- uptake energized by a pH gradient involves an electroneutral Cl-/H+ symporter or its physicochemical equivalent, a Cl-/OH- antiporter, exhibiting little Cl- uniport and either Cl-/Cl- or Cl-/HCO3- antiport activities.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Net proton secretion and unidirectional chloride fluxes were measured in isolated skin of toads ( Bufo bufo) and frogs ( Rana esculenta) mounted in an Ussing chamber and exposed to a Ringer's solution on the serosal side and a freshwater-like solution (1-3 mM Cl(-)) on the external side. Active proton secretion was 34.2+/-2.0 pmol.cm(-2).s(-1) ( n=18) in frog skin, and 16.7+/-1.7 pmol.cm(-2).s(-1) ( n=10) in toad skin. Proton secretion by toad skin was dependent on the transepithelial potential ( V(T)), and an amiloride-insensitive short-circuit current was stimulated by exogenous CO(2)/HCO(3)(-), indicating the presence of a rheogenic proton pump. Cl(-) influx was 37.4+/-7.5 pmol.cm(-2).s(-1) ( n=14) in frog skin and 19.5+/-3.5 pmol.cm(-2).s(-1) ( n=11) in toad skin. In toad skin, the mean Cl(-) flux ratio was larger than expected for simple electro-diffusion. In 8 of 11 sets of paired skins, influx was greater than the efflux indicating active uptake of Cl(-). Cl(-) influx in toad skin was unaffected by large perturbations (100-150 mV) of V(T), which was accomplished by adding amiloride to the outer bath under open circuit conditions. A component of the Cl(-) efflux seemed to be dependent on V(T). 4,4'-Diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS; 0.3 mM or 1.3 mM) inhibited Cl(-) influx and, surprisingly, increased Cl(-) efflux in toad skin. Influx and efflux of Cl(-) in toad skin were highly dependent on the external [Cl(-)] in the freshwater range (0.1-4 mM). (36)Cl(-) influx decreased whereas the total Cl(-) efflux increased as a function of external [Cl(-)]. These data indicate the presence of a DIDS-sensitive, electroneutral carrier mechanism with an external binding site for Cl(-). Ethoxzolamide (100 micro M), an inhibitor of carbonic anhydrase, reduced proton secretion and Cl(-) influx in frog skin. Concanamycin A (0.1-10 micro M), a specific vacuolar-type proton pump (V-ATPase) inhibitor, significantly reduced proton secretion in frog skin. In addition, concanamycin A (1 micro M) significantly reduced Cl(-) influx in frog skin. We suggest that the active proton secretion and Cl(-) influx are coupled. We hypothesise that an apical V-ATPase is capable of energising active Cl(-) uptake in fresh water by creating a favourable gradient for an apical HCO(3)(-) exit in exchange for external Cl(-). The data also suggest that a carbonic anhydrase activity provides H(+) and HCO(3)(-) for apically co-expressed proton pumps and Cl(-)/HCO(3)(-) exchangers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号